
Embedded Coder® Support Package for
Texas Instruments™ C2000™ Processors
Reference

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
Reference
© COPYRIGHT 2014–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
October 2014 Online only Revised for Version 14.2.0 (R2014b)
March 2015 Online only Revised for Version 15.1.0 (R2015a)
September 2015 Online only Revised for Version 15.2.0 (R2015b)
November 2015 Online only Rereleased for Version 15.2.2 (R2015b)
March 2016 Online only Revised for Version 16.1.0 (R2016a)
September 2016 Online only Revised for Version 16.2.0 (R2016b)
March 2017 Online only Revised for Version 17.1.0 (R2017a)
September 2017 Online only Revised for Version 17.2.0 (R2017b)
March 2018 Online only Revised for Version 18.1.0 (R2018a)
September 2018 Online only Revised for Version 18.2.0 (R2018b)
October 2018 Online only Revised for Version 18.2.1 (R2018b)
March 2019 Online only Revised for Version 19.1.0 (R2019a)
September 2019 Online only Revised for Version 19.2.0 (R2019b)
October 2019 Online only Revised for Version 19.2.1 (R2019b)
January 2020 Online only Revised for Version 19.2.2 (R2019b)

Configuration Parameters
1

Hardware Implementation Pane: Texas Instruments C2000
Processors . 1-2

Hardware Board Settings . 1-2

C28x-Scheduler Options . 1-37

C28x-Build Options . 1-38

C28x-Clocking . 1-42

C28x-ADC/C28x-ADC_A/C28x-ADC# . 1-46

C28x-COMP . 1-49

C28x-DAC . 1-50

C28x-eCAN_A, C28x-eCAN_B . 1-51

C28x-eCAP . 1-53

C28x-ePWM . 1-54

C28x-I2C . 1-57

C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D 1-63

C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI_D 1-66

C28x-eQEP . 1-68

C28x-Watchdog . 1-69

v

Contents

C28x-GPIO . 1-71

C28x-DMA_ch# . 1-76

C28x-EMIF . 1-84

C28x-LIN . 1-91

External Interrupt . 1-97

External Mode . 1-98

Execution profiling . 1-99

SD Card Logging . 1-100

Blocks — Alphabetical List
2

Appendix
3

Support SPI Communication . 3-2
SPI Lines . 3-2
Data Transmission . 3-3
SPI Transfer Modes . 3-4

vi Contents

Configuration Parameters

1

Hardware Implementation Pane: Texas Instruments
C2000 Processors

To configure hardware parameters for Texas Instruments C2000 processors:

1 In the Simulink® Editor, select Simulation > Model Configuration Parameters.
2 In the Configuration Parameter dialog box, click Hardware Implementation.
3 Set the Hardware board parameter to your C2000 processor.
4 The parameter values under Hardware board settings are automatically populated

to their default values.

You can optionally adjust these parameters for your particular use case.
5 Click Apply.

Note In the Hardware board drop-down list, some processors have multiple options.
Select the generic option for controlCARDs and custom boards, and select the LaunchPad
option for LaunchPads. For example, select TI Delfino F2837xS as the generic option,
and select TI Delfino F28377S Launchpad as the LaunchPad option. Based on your
selection, the default values for clock settings, pin selection, and memory mapping
change.

Hardware Board Settings
For each hardware board you select, you can configure the board parameters according
to your requirements.

Scheduler Options

Parameter Description Default Value
Base rate trigger on page 1-
37

Set the static priority of the
base rate task in the
operating system.

Timer 0

1 Configuration Parameters

1-2

Build Options

Parameter Description Default Value
Build action on page 1-38 Define how Embedded

Coder responds when you
build your model.

Build, load, and run

Device name on page 1-38 Select your device from the
selected processor family.

Enable TMU on page 1-38 Enables support for
Trigonometric Math Unit
(TMU)

enabled

Select CPU on page 1-38 Select a CPU core to run the
generated code on a dual-
core processor, such as
F2837xD.

Boot From Flash (stand
alone execution) on page 1-
38

Specify if the application
loads to the flash memory.

enabled

Use custom linker command
file on page 1-38

Indicates that the custom
linker command file must be
used during the build action.

enabled

Linker command file on
page 1-38

The path to the memory
description file required
during linking.

CCS hardware configuration
file on page 1-38

The Code Composer
Studio™ file required for
downloading the application
on the hardware.

Enable DMA to access
ePWM Registers instead of
CLA on page 1-38

Select to access ePWM
Registers

Enable DMA to peripheral
frame 1 (ePWM, HRPWM,
eCAP, eQEP, DAC,CMPSS,
and SDFM) instead of CLA
on page 1-38

Select to enable the DMA to
access peripheral frame 1

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-3

Parameter Description Default Value
Enable DMA to peripheral
frame 2 (SPI and McBSP)
instead of CLA on page 1-
38

Select to enable the DMA to
access peripheral frame 2

Enable FastRTS on page 1-
38

Enables use of optimized
floating point math
functions from C28x FPU
fastRTS library

enabled

Remap ePWMs for DMA
access (Requires silicon
revision A and above) on
page 1-38

Select to remap ePWMs
registers for DMA access

1 Configuration Parameters

1-4

Clocking

Parameter Description Default Value
Desired CPU Clock in MHz
on page 1-42

Specify the desired CPU
clock frequency (CLKIN).

Use internal oscillator on
page 1-42

Use the internal zero pin
oscillator on the CPU.

enabled

Oscillator clock (OSCCLK)
frequency in MHz on page
1-42

Oscillator frequency used in
the processor.

Auto set PLL based on
OSCCLK and CPU clock on
page 1-42

PLL values in PLLCR,
DIVSEL, and Achievable
SYSCLKOUT in MHz are
automatically calculated
based on the CPU clock
entered on the board.

PLL control register
(PLLCR) on page 1-42

If you select Auto set PLL
based on OSCCLK and
CPU clock, the auto-
calculated control register
value matches the specified
CPU clock value, based on
the oscillator clock
frequency.

PLL output divider (ODIV)
on page 1-42

Calculates SYSCLKOUT =
((OSCCLK×SYSPLLMULT)/
ODIV)/SYSDIVSEL.

Clock divider (DIVSEL) on
page 1-42

If you select Auto set PLL
based on OSCCLK and
CPU clock, the auto-
calculated control register
value matches the specified
CPU clock value, based on
the oscillator clock
frequency.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-5

Parameter Description Default Value
Achievable SYSCLKOUT in
MHz = (OSCCLK×PLLCR)/
DIVSEL on page 1-42

The auto-calculated
feedback value that matches
the Desired C28x CPU
clock in MHz value, based
on the values of OSCCLK,
PLLCR, and DIVSEL.

Set the 'Achievable
SYSCLKOUT in MHz =
(OSCCLK*SYSPLLMULT)/
SYSDIVSEL' value
calculated in CPU1 on page
1-42

Available only for CPU2 of
dual C28x core processors.
Value of this parameter
must be same as the value
of the parameter
Achievable SYSCLKOUT
in MHz =
(OSCCLK*PLLCR)/DIVSEL
(auto calculated).

Select the 'Low-Speed
Peripheral Clock Prescaler
(LSPCLK)' option used in
CPU1 on page 1-42

Available only for CPU2 of
dual C28x core processors.
Value of this parameter
must be same as the value
of the parameter Low-
Speed Peripheral Clock
Prescaler (LSPCLK)
specified in CPU1.

Low-Speed Peripheral Clock
Prescaler (LSPCLK) on page
1-42

Prescaler value used to
calculate LSPCLK based on
SYSCLKOUT.

Low-Speed Peripheral Clock
(LSPCLK) in MHz on page 1-
42

The LSPCLK value
calculated using the
SYSCLKOUT and LSPCLK
Prescaler values.

High-Speed Peripheral
Clock Prescaler (HSPCLK)
on page 1-42

Prescaler value used to
calculate HSPCLK based on
SYSCLKOUT.

1 Configuration Parameters

1-6

Parameter Description Default Value
High-Speed Peripheral
Clock (HSPCLK) in MHz on
page 1-42

The HSPCLK value
calculated using the
SYSCLKOUT and HSPCLK
Prescaler values.

Analog Subsystem Clock
Prescaler (ASYSCLK) on
page 1-42

Prescaler value used to
calculate ASYSCLK based
on SYSCLKOUT.

Analog Subsystem Clock
(ASYSCLK) in MHz on page
1-42

The ASYSCLK value
calculated using the
SYSCLKOUT and ASYSCLK
Prescaler values.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-7

ADC_x

Parameter Description Default Value
Select the CPU core which
controls ADC_x module on
page 1-46

The CPU core that controls
the ADC module.

ADC clock prescaler
(ADCCLK) on page 1-46

The ADCCLK divider for the
c2802x, c2803x, c2806x,
F28M3x, F2807x, or F2837x
processor.

ADC clock frequency in
MHz on page 1-46

The clock frequency for
ADC, which is auto
generated based on the
value you select in ADC
clock prescaler
(ADCCLK).

ADC overlap of sample and
conversion
(ADC#NONOVERLAP) on
page 1-46

Enable or disable overlap of
sample and conversion.

ADC clock prescaler
(ADCLKPS) on page 1-46

The HSPCLK is divided by
ADCLKPS (a 4-bit value) as
the first step in deriving the
core clock speed of the ADC.

3

ADC Core clock prescaler
(CPS) on page 1-46

After dividing the HSPCLK
speed by the ADC clock
prescaler (ADCLKPS)
value, divides the result by
2.

1

ADC Module clock (ADCCLK
= HSPCLK/ADCLKPS×2)/
(CPS+1)) in MHz on page 1-
46

The ADC module clock,
which indicates the ADC
operating clock speed.

1 Configuration Parameters

1-8

Parameter Description Default Value
Acquisition window
prescaler (ACQ_PS) on page
1-46

Determine the width of the
sampling or acquisition
period. A higher value
indicates a wider sampling
period.

4

Acquisition window size
((ACQ_PS+1)/ADCCLK) in
micro seconds/channel on
page 1-46

Determine the duration for
which the sampling switch is
closed.

Offset on page 1-46 Specify the offset value.
Use external reference
2.048V on page 1-46

Allows using a 2.048 V
external voltage reference.

Use external reference on
page 1-46

Allows using an external
voltage reference.

Continuous mode on page 1-
46

When the ADC generates an
end of conversion (EOC)
signal, an ADCINT#
interrupt is generated. The
interrupt indicates whether
the previous interrupt flag
has been acknowledged.

ADC offset correction
(OFFSET_TRIM: –256 to
255) on page 1-46

The 280x ADC supports
offset correction using a 9-
bit value that it adds or
subtracts before the results
are available in the ADC
result registers.

0

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-9

Parameter Description Default Value
VREFHI, VREFLO on page
1-46

When you disable the Use
external reference 2.048V
or External reference
option, the ADC logic uses a
fixed 0–3.3 V input range,
and VREFHI and VREFLO
are disabled. To interpret
the ADC input as a
ratiometric signal, select the
External reference option.
Then, set values for the
high-voltage reference
(VREFHI) and the low
voltage reference
(VREFLO).

INT pulse control on page 1-
46

Set the time when the ADC
sets ADCINTFLG ADCINTx
relative to the SOC and EOC
pulses.

SOC high priority on page 1-
46

Enable SOC high priority
mode.

All in round robin
mode

XINT2SOC external pin on
page 1-46

The pin to which the ADC
sends the XINT2SOC pulse.

ADCEXTSOC external pin on
page 1-46

The pin to which the ADC
sends the ADCEXTSOC
pulse.

COMP

Parameter Description Default Value
Comparator x (COMPx) pin
assignment on page 1-49

Assign COMP pin to a GPIO
pin.

1 Configuration Parameters

1-10

DAC

Parameter Description Default Value
DACx reference voltage on
page 1-50

Select the reference voltage
for the DAC channel A, B, or
C.

ADC reference voltage
(VREFHIA/VREFHIB)

DACx synchronization signal
on page 1-50

Select the synchronization
signal to load the value from
the writable shadow register
into the active register.

SYSCLK

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-11

eCAN_x

Parameter Description Default Value
CAN module clock
frequency (= SYSCLKOUT)
in MHz on page 1-51

The clock for the enhanced
CAN module.

CAN module clock
frequency (=SYSCLKOUT/2)
in MHz on page 1-51

The clock for the enhanced
CAN module.

Baud rate prescaler (BRP: 2
to 256)/Baud rate prescaler
(BRP: 1 to 1024) on page 1-
51

Scale the bit rate using this
value.

Time segment 1 (TSEG1) on
page 1-51

Set the value of time
segment 1. This value, with
TSEG2 and Baud rate
prescaler, determines the
length of a bit on the eCAN
bus.

Time segment 2 (TSEG2) on
page 1-51

Set the value of time
segment 2. This value, with
TSEG1 and Baud rate
prescaler, determines the
length of a bit on the eCAN
bus.

Baud rate (CAN Module
Clock/BRP/(TSEG1 + TSEG2
+1)) in bits/sec on page 1-
51

CAN module communication
speed represented in bits/
second.

SBG on page 1-51 Set the message
resynchronization
triggering.

1 Configuration Parameters

1-12

Parameter Description Default Value
SJW on page 1-51 Set the synchronization

jump width, which
determines how many units
of TQ a bit can be shortened
or lengthened by when
resynchronizing.

SAM on page 1-51 Number of samples used by
the CAN module to
determine the CAN bus
level.

Enhanced CAN Mode on
page 1-51

Enable time stamping and
usage of Mailbox Numbers
16 through 31 in the C2000
eCAN blocks.

Self test mode on page 1-
51

If you set this parameter to
True, the eCAN module
goes to loopback mode. The
loopback mode sends a
dummy acknowledge
message back.

False

Pin assignment (Tx) on page
1-51

Assign the CAN transmit pin
to use with the eCAN_B
module.

Pin assignment (Rx) on page
1-51

Assign the CAN receive pin
to use with the eCAN_B
module.

eCAP

Parameter Description Default Value
ECAPx pin assignment on
page 1-53

Assign eCAP pin to a GPIO
pin.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-13

ePWM

Parameter Description Default Value
EPWM clock divider
(EPWMCLKDIV) on page 1-
54

Select the ePWM clock
divider.

Select the 'EPWM clock
divider (EPWMCLKDIV)'
option used for CPU1 on
page 1-54

Available only for CPU2 of
dual C28x core processors.
Its value must be the same
as the value of the
parameter EPWM clock
divider (EPWMCLKDIV)
selected in CPU1.

TZx pin assignment on page
1-54

Assign the trip-zone input x
(TZx) to a GPIO pin.

SYNCI pin assignment on
page 1-54

Assign the ePWM external
sync pulse input (SYNCI) to
a GPIO pin.

SYNCO pin assignment on
page 1-54

Assign the ePWM external
sync pulse output (SYNCO)
to a GPIO pin.

PWM#x pin assignment on
page 1-54

Assign the GPIO pin to the
PWM#x module.

GPTRIP#SEL pin
assignment(GPIO0~63) on
page 1-54

Assign the ePWM trip-zone
input to a GPIO pin.

PWM1SYNCI/ GPTRIP6SEL
pin assignment on page 1-
54

Assign the ePWM sync pulse
input (SYNCI) to a GPIO pin.

DCxHTRIPSEL (Enter Hex
value between 0 and
0x6FFF) on page 1-54

Assign the Digital
Compare A high trip input
to a GPIO pin.

DCxLTRIPSEL (Enter Hex
value between 0 and
0x6FFF) on page 1-54

Assign the Digital
Compare A low trip input
to a GPIO pin.

1 Configuration Parameters

1-14

I2C

Parameter Description Default Value
Mode on page 1-57 Configure the I2C module as

Master or Slave.

Addressing format on page
1-57

In Slave mode, determines
the addressing format of the
I2C master and sets the I2C
module to the same mode.

Own address register on
page 1-57

In Slave mode, enter the 7-
bit (0–127) or 10-bit (0–
1023) address that the I2C
module uses.

Bit count on page 1-57 In Slave mode, sets the
number of bits in each data
byte the I2C module
transmits and receives.

Module clock prescaler
(IPSC: 0 to 255) on page 1-
57

In Master mode, enter a
value in the range 0–255,
inclusive, to configure the
model clock frequency.

I2C Module clock frequency
(SYSCLKOUT / (IPSC+1)) in
Hz on page 1-57

Display the frequency the
I2C module uses internally.
To set this value, change the
Module clock prescaler.

I2C Master clock frequency
(Module Clock Freq/(ICCL
+ICCH+10)) in Hz on page
1-57

Display the master clock
frequency.

Master clock Low-time
divider (ICCL: 1 to 65535)
on page 1-57

In Master mode,
determines the duration of
the low state of the SCL on
the I2C bus.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-15

Parameter Description Default Value
Master clock High-time
divider (ICCH: 1 to 65535)
on page 1-57

In Master mode,
determines the duration of
the high state of the SCL on
the I2C bus.

Enable loopback on page 1-
57

In Master mode, enables or
disables digital loopback
mode.

SDA pin assignment on page
1-57

Select a GPIO pin as an I2C
data bidirectional port.

SCL pin assignment on page
1-57

Select a GPIO pin as an I2C
clock bidirectional port.

Enable Tx interrupt on page
1-57

This parameter corresponds
to bit 5 (TXFFIENA) of the
I2C Transmit FIFO Register
(I2CFFTX).

Tx FIFO interrupt level on
page 1-57

This parameter corresponds
to bits 4–0 (TXFFIL4-0) of
the I2C transmit FIFO
register (I2CFFTX).

Enable Rx interrupt on page
1-57

This parameter corresponds
to bit 5 (RXFFIENA) of the
I2C receive FIFO register
(I2CFFRX).

Rx FIFO interrupt level on
page 1-57

This parameter corresponds
to bit 4–0 (RXFFIL4-0) of the
I2C receive FIFO register
(I2CFFRX).

Enable system interrupt on
page 1-57

Select this parameter to
configure the five basic I2C
interrupt request
parameters in the interrupt
enable register (I2CIER).

Enable AAS interrupt on
page 1-57

Enable the addressed-as-
slave interrupt bit.

1 Configuration Parameters

1-16

Parameter Description Default Value
Enable SCD interrupt on
page 1-57

Enable the stop condition
detected interrupt bit.

Enable ARDY interrupt on
page 1-57

Enable the register-access-
ready interrupt bit.

Enable NACK interrupt on
page 1-57

Enable the no
acknowledgment interrupt
bit.

Enable AL interrupt on page
1-57

Enable the arbitration-lost
interrupt bit.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-17

SCI_x

Parameter Description Default Value
Enable loopback on page 1-
63

Enable the loopback
function for self-test and
diagnostics.

Suspension mode on page 1-
63

The type of suspension to
use while debugging your
program with Code
Composer Studio.

Number of stop bits on page
1-63

Specify the number of stop
bits transmitted.

Parity mode on page 1-63 The type of parity to use.
Character length bits on
page 1-63

Length in bits of each
transmitted or received
character.

8

Desired baud rate in bits/sec
on page 1-63

Specify the desired baud
rate.

Baud rate prescaler (BRR =
(SCIHBAUD << 8) |
SCILBAUD)) on page 1-63

Scale the SCI baud rate
using this value.

Closest achievable baud rate
(LSPCLK/(BRR+1)/8) in
bits/sec on page 1-63

The closest achievable baud
rate, calculated based on
LSPCLK and BRR.

Communication mode on
page 1-63

Select the mode for
transmitting and receiving
data.

Blocking mode on page 1-
63

If this option is enabled, the
system waits until data is
available to read (when data
length is reached).

Data byte order on page 1-
63

Select an option to match
the endianness of the data
being moved.

1 Configuration Parameters

1-18

Parameter Description Default Value
Pin assignment (Tx) on page
1-63

Assign the SCI transmit pin
to use with the SCI module.

Pin assignment (Rx) on page
1-63

Assign the SCI receive pin
to use with the SCI module.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-19

SPI_x

Parameter Description Default Value
Mode on page 1-66 Set to Master or Slave.
Desired baud rate in bits/sec
on page 1-66

Specify the desired baud
rate.

Baud rate factor (SPIBRR:
between 3 and 127) on page
1-66

The value used to calculate
the baud rate.

Closest achievable baud rate
(LSPCLK/(SPIBRR+1)) in
bits/sec on page 1-66

The closest achievable baud
rate, calculated based on
LSPCLK and SPIBRR.

Suspension mode on page 1-
66

The type of suspension to
use while debugging your
program with Code
Composer Studio.

Enable loopback on page 1-
66

Enable the loopback
function for self-test and
diagnostics.

Enable 3-wire mode on page
1-66

Enables SPI communication
over three pins instead of
the normal four pins.

Enable Tx interrupt on page
1-66

Enable SPI transmit
interrupt operation.

FIFO interrupt level (Tx) on
page 1-66

Set level for transmit FIFO
interrupt.

Enable Rx interrupt on page
1-66

Enable SPI receive interrupt
operation.

FIFO interrupt level (Rx) on
page 1-66

Set level for receive FIFO
interrupt.

FIFO transmit delay on page
1-66

FIFO transmit delay (in
processor clock cycles) to
pause between data
transmissions.

1 Configuration Parameters

1-20

Parameter Description Default Value
SIMO pin assignment on
page 1-66

Assign the SPI (SIMO) to a
GPIO pin.

SOMI pin assignment on
page 1-66

Assign the SPI value (SOMI)
to a GPIO pin.

CLK pin assignment on page
1-66

Assign the CLK pin to a
GPIO pin.

STE pin assignment on page
1-66

Assign the SPI value (STE)
to a GPIO pin.

eQEP

Parameter Description Default Value
EQEP#x pin assignment on
page 1-68

Assign eQEP pin to a GPIO
pin.

Watchdog

Parameter Description Default Value
Enable watchdog on page 1-
69

Enable the watchdog timer
module.

Counter clock on page 1-69 Set the watchdog timer
period relative to OSCCLK/
512.

Timer period ((1/Counter
clock)×256) in seconds on
page 1-69

Display the timer period in
seconds. This value
automatically updates when
you change the Counter
clock parameter.

Time out event on page 1-
69

Configure the watchdog to
reset the processor or
generate an interrupt when
the software fails to reset
the watchdog counter.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-21

GPIO

Parameter Description Default Value
GPIO# on page 1-71 Use the GPIO pins for digital

input or output by
connecting to one of the
three peripheral I/O ports.

1 Configuration Parameters

1-22

DMA_ch#

Parameter Description Default Value
Enable DMA channel on
page 1-76

Enable to edit the
configuration of a specific
DMA channel.

Data size on page 1-76 Select the size of the data
bit transfer.

Interrupt source on page 1-
76

Select the peripheral
interrupt that triggers a
DMA burst for the specified
channel.

SRC wrap on page 1-76 Specify the number of
bursts before returning the
current source address
pointer to the Source
Begin Address value.

DST wrap on page 1-76 Specify the number of
bursts before returning the
current destination address
pointer to the Destination
Begin Address value.

SRC Begin address on page
1-76

Set the starting address for
the current source address
pointer.

DST Begin address on page
1-76

Set the starting address for
the current destination
address pointer.

Burst on page 1-76 Specify the number of 16-bit
words in a burst, from 1 to
32.

Transfer on page 1-76 Specify the number of
bursts in a transfer, from 1
to 65536.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-23

Parameter Description Default Value
SRC Burst step on page 1-
76

Increment or decrement the
current address pointer by
this number of 16-bit words
before the next burst.

DST Burst step on page 1-
76

Increment or decrement the
current address pointer by
this number of 16-bit words
before the next burst.

SRC Transfer step on page
1-76

Increment or decrement the
current address pointer by
this number of 16-bit words
before the next transfer.

DST Transfer step on page
1-76

Increment or decrement the
current address pointer by
this number of 16-bit words
before the next transfer.

SRC Wrap step on page 1-
76

Increment or decrement the
SRC_BEG_ADDR address
pointer by this number of
16-bit words when a wrap
event occurs.

DST Wrap step on page 1-
76

Increment or decrement the
DST_BEG_ADDR address
pointer by this number of
16-bit words when a wrap
event occurs.

Generate interrupt on page
1-76

Enable this parameter to
have the DMA channel send
an interrupt to the CPU
through the Peripheral
Interrupt Expansion (PIE) at
the beginning or end of a
data transfer.

1 Configuration Parameters

1-24

Parameter Description Default Value
Enable one shot mode on
page 1-76

Enable this parameter to
have the DMA channel
complete an entire transfer
in response to an interrupt
event trigger.

Sync enable on page 1-76 Enable this parameter to
reset the DMA wrap counter
when the Interrupt source
is set to SEQ1INT and sends
the ADCSYNC signal to the
DMA wrap counter.

Enable continuous mode on
page 1-76

Select this parameter to
leave the DMA channel
enabled upon completing a
transfer. The channel waits
for the next interrupt event
trigger.

Enable DST sync mode on
page 1-76

Enabling this parameter
resets the destination wrap
counter
(DST_WRAP_COUNT) when
Sync enable is enabled and
the DMA module receives
the SEQ1INT interrupt/
ADCSYNC signal.

Set channel 1 to highest
priority on page 1-76

Enable this option when
DMA channel 1 is
configured to handle high-
bandwidth data, such as
ADC data, and the other
DMA channels are
configured to handle lower-
priority data.

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-25

Parameter Description Default Value
Enable overflow interrupt
on page 1-76

Enable this parameter to
have the DMA channel send
an interrupt to the CPU
through the PIE if the DMA
module receives a
peripheral interrupt while a
previous interrupt from the
same peripheral is waiting
to be serviced.

1 Configuration Parameters

1-26

EMIF#

Parameter Description Default Value
EMIF clock divider
(EMIF1CLKDIV) on page 1-
84

Clock divider for clock
frequency generation.

SYSCLKOUT/2

Enable CS0 for Synchronous
memory on page 1-84

Chip select (CS0) to
interface with the SDRAM.

off

Enable CS# for
Asynchronous memory on
page 1-84

Chip select (CS2/CS3/CS4)
to interface with the
asynchronous RAM.

off

SDRAM Column address
bits on page 1-84

Value of the column address
bits or the required page
size of the connected
SDRAM.

8

Number of internal SDRAM
banks on page 1-84

Number of memory banks
inside the connected
SDRAM.

3

SDRAM data bus width in
bits on page 1-84

Data bus width of the
connected SDRAM.

16

Refresh to active command
delay cycles (T_RFC) on
page 1-84

Minimum number of
EM#CLK cycles from the
refresh or load mode
command to the refresh or
activate command in the
connected SDRAM.

3

Row precharge to Active
command delay cycles
(T_RP) on page 1-84

Minimum number of
EM#CLK cycles required
from the row precharge
command to the activate or
refresh command in the
connected SDRAM.

1

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-27

Parameter Description Default Value
Active to read or write
command delay cycles
(T_RCD) on page 1-84

Minimum number of
EM#CLK cycles from the
activate command to the
read or write command in
the connected SDRAM.

2

Last write to row precharge
command delay cycles
(T_WR) on page 1-84

Minimum number of
EM#CLK cycles from the
last write transfer or last
data in command to the row
precharge command in the
connected SDRAM.

1

Active to precharge
command delay cycles
(T_RAS) on page 1-84

Minimum number of
EM#CLK cycles from the
activate command to the
row precharge command in
the connected SDRAM.

4

Active to active command
delay cycles (T_RC) on page
1-84

Minimum number of
EM#CLK cycles from an
activate command to the
next activate command in
the same bank in the
connected SDRAM.

6

Active one bank to active
another bank command
delay cycles (T_RRD) on
page 1-84

Minimum number of
EM#CLK cycles from an
activate command in one
bank to an activate
command in a different bank
in the connected SDRAM.

1

Self-refresh exit to other
command delay cycles
(T_XSR) on page 1-84

Minimum number of
EM#CLK cycles from the
self refresh exit command to
any other command in the
connected SDRAM.

7

SDRAM refresh period
(tRefreshPeriod) in ms on
page 1-84

Defines the rate at which
the connected SDRAM
refreshes.

64

1 Configuration Parameters

1-28

Parameter Description Default Value
SDRAM CAS Latency on
page 1-84

CAS latency required to
access the connected
SDRAM.

3

Asynchronous mode on page
1-84

Asynchronous mode for the
connected asynchronous
memory.

Normal

Asynchronous data bus
width in bits on page 1-84

Data bus width of the
connected asynchronous
memory.

16

Read strobe setup cycles
(R_SETUP) on page 1-84

Number of EM#CLK cycles
from the EMIF chip select to
the pin enable for
asynchronous memory
assert.

15

Read strobe duration cycles
(R_STROBE) on page 1-84

Number of EM#CLK cycles
during which the pin enable
for the asynchronous
memory is held active.

64

Read strobe hold cycles
(R_HOLD) on page 1-84

Number of EM#CLK cycles
during which the EMIF chip
select is held active after pin
enable for the asynchronous
memory is deasserted.

7

Write strobe setup cycles
(W_SETUP) on page 1-84

Number of EM#CLK cycles
from the EMIF chip select to
the write enable for the
asynchronous memory
assert.

15

Write strobe duration cycles
(W_STROBE) on page 1-84

Number of EM#CLK cycles
during which the write
enable for the asynchronous
memory is held active.

63

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-29

Parameter Description Default Value
Write strobe hold cycles
(W_HOLD) on page 1-84

Number of EM#CLK cycles
during which the EMIF chip
select is held active after
write enable for the
asynchronous memory is
deasserted.

7

Turn around cycles (TA) on
page 1-84

Number of EM#CLK cycles
between the end of one
asynchronous memory
access and the start of
another asynchronous
memory access.

3

Enable extended wait mode
on page 1-84

Enable the extended wait
option for the asynchronous
memory.

off

Maximum extended wait
cycles for Asynchronous
memory (MAX_EXT_WAIT)
[0–255] on page 1-84

EMIF waits for
(MAX_EXT_WAIT+1) * 16
clock cycles before the
asynchronous cycle is
terminated.

128

Pin polarity of extended wait
on page 1-84

Make EMIF wait if the pin is
low or high.

High

Enable wait rise interrupt
on page 1-84

Get an interrupt based on
the detection of a rising
edge on the EM#WAIT pin.

off

Enable timeout interrupt on
page 1-84

Get an interrupt when the
EM#WAIT pin does not
become inactive within the
number of cycles defined in
Maximum extended wait
cycles for Asynchronous
memory
(MAX_EXT_WAIT) [0–
255].

off

1 Configuration Parameters

1-30

Parameter Description Default Value
Enable line trap interrupt on
page 1-84

Get an interrupt when there
is an invalid cache line size
or illegal memory access.

off

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-31

LIN

Parameter Description Default Value
LIN Module clock frequency
(LM_CLK = SYSCLKOUT/2)
in MHz on page 1-91

Display the frequency of the
LIN module clock in MHz.

Enable loopback on page 1-
91

Enable LIN loopback
testing.

Suspension mode on page 1-
91

Use this option to configure
how the LIN state machine
behaves while you debug
the program using an
emulator.

Free_run

Parity mode on page 1-91 Use this option to configure
parity checking.

None

Frame length bytes on page
1-91

Set the number of data
bytes in the response field,
from 1–8 bytes.

8

Baud rate prescaler (P:
0-16777215) on page 1-91

To set the LIN baud
manually, enter a prescaler
value from 0–16777215.

15

Baud rate fractional divider
(M: 0–15) on page 1-91

To set the LIN baud
manually, enter a fractional
divider value from 0–15.

4

Baud rate (FLINCLK =
LM_CLK/(16×(P+1+M/16))
in bits/sec on page 1-91

Display the baud rate.

Communication mode on
page 1-91

Enable or disable the LIN
module from using the ID-
field bits ID4 and ID5 for
length control.

ID4 and ID5 not used
for length control

Data byte order on page 1-
91

Set the endianness of the
LIN message data bytes.

Little_Endian

Data swap width on page 1-
91

Set the width for data swap.

1 Configuration Parameters

1-32

Parameter Description Default Value
Pin assignment (Tx) on page
1-91

Map the LINTX output to a
specific GPIO pin.

GPIO9

Pin assignment (Rx) on page
1-91

Map the LINRX input to a
specific GPIO pin.

GPIO11

LIN mode on page 1-91 Set the LIN module as a
master or a slave.

Slave

ID filtering on page 1-91 Select the type of mask
filtering comparison the LIN
module performs.

ID slave task byte

ID byte on page 1-91 If you set ID filtering as ID
byte, use this option to set
the ID BYTE, also known as
the “LIN mode message ID”.

0x3A

ID slave task byte on page
1-91

If you set ID filtering to ID
slave task byte, use this
option to set the ID-
SlaveTask BYTE.

0x30

Checksum type on page 1-
91

Select the checksum type. Classic

Enable multibuffer mode on
page 1-91

When you select this check
box, the LIN node uses
transmit and receive buffers
instead of just one register.

Selected

Enable baud rate adapt
mode on page 1-91

This option is displayed
when you set LIN mode to
Slave.

Not selected

Inconsistent synch field
error interrupt on page 1-
91

If you enable this option, the
slave node generates
interrupts when it detects
irregularities in the synch
field.

Disabled

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-33

Parameter Description Default Value
No response error interrupt
on page 1-91

If you enable this option, the
LIN module generates an
interrupt if it does not
receive a complete response
from the master node within
a timeout period.

Disabled

Timeout after 3 wakeup
signals interrupt on page 1-
91

When enabled, the slave
node generates an interrupt
when it sends three wakeup
signals to the master node
and does not receive a
header in response.

Disabled

Timeout after wakeup signal
interrupt on page 1-91

When enabled, the slave
node generates an interrupt
when it sends a wakeup
signal to the master node
and does not receive a
header in response.

Disabled

Timeout interrupt on page
1-91

When enabled, the slave
node generates an interrupt
after 4 seconds of inactivity
on the LIN bus.

Disabled

Wakeup interrupt on page 1-
91

The LIN slave mode
generates a wakeup
interrupt based on a request
or condition.

Disabled

External Interrupt

Parameter Description Default Value
XINT# GPIO on page 1-97 Set the GPIO pin for

external interrupt.

XINT# Polarity on page 1-
97

Set the polarity for external
interrupt.

1 Configuration Parameters

1-34

External Mode

Parameter Description Default Value
Communication interface on
page 1-98

Use the serial option to
run your model in external
mode with serial
communication.

Serial port on page 1-98 Enter the COM port used by
the target hardware.

Verbose on page 1-98 Select to view the external
mode execution progress
and updates in the
Diagnostic Viewer or in the
MATLAB command window.

Execution Profiling

Parameter Description Default Value
Number of profiling samples
to collect on page 1-99

Enter the number of
profiling samples to collect.

SD Card Logging

Parameter Description Default Value
Enable MAT-file logging on
SD card on page 1-100

Enables the MAT-file logging
for SD card.

off

SPI module on page 1-100 Select the desired interface
on which the SD card is
connected to hardware
board.

SPI baud rate on page 1-100 Select the desired option for
the SPI interface used by
the SD card.

Maximum achievable
supported by the
inserted SD Card

For more information on selecting a hardware support package and general configuration
settings, see “Hardware Implementation Pane” (Simulink).

 Hardware Implementation Pane: Texas Instruments C2000 Processors

1-35

See Also

More About
• “Modeling”
• “Run on Target Hardware”

1 Configuration Parameters

1-36

C28x-Scheduler Options
Use scheduler options to specify the base rate of your model. An interrupt can be used as
a base rate trigger source for the scheduler. The scheduler options available are:

• Timer 0—The default option to schedule all synchronous rates present in your model
with CPU Timer 0. When you select this option, the CPU Timer 0 is set according to
the base rate of the model.

• ADCINT1—The option to schedule all synchronous rates present in your model with
ADC interrupt 1 (ADCINT1). When you select this option, make sure that ADCINT1
triggers periodically at base rate used in the model.

• ADCINT2—The option to schedule all synchronous rates present in your model with
ADC interrupt 2 (ADCINT2). When you select this option, make sure that ADCINT2
triggers periodically at base rate used in the model.

Warning Replacing the default scheduler interrupt source Timer 0 with ADCINT1 or
ADCINT2 is an advanced setting. Ensure that you configure ADCINT1 or ADCINT2 to
trigger periodically at the specified base rate. If the ADCINT1 or ADCINT2 does not
trigger periodically or triggers at a different rate from the base rate, the model execution
on the target is unpredictable.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 C28x-Scheduler Options

1-37

C28x-Build Options
Use the build options to specify how the build process takes place.

You can set the following parameters for build options:

Build action
Define how Embedded Coder responds when you build your model.

The Build, load and run option is supported for Texas Instruments Code
Composer Studio CCS v4 and the later versions.

If you select the Build, load and run option, you must provide the required CCS
hardware configuration file.

The TI Concerto F28M35x/F28M36x processors support only CCS v5 and the later
versions. The TI Delfino F2807x/F2837x processors support only CCS v6 and the later
versions.

Device Name
Select a particular device from the selected processor family.

Enable TMU
This option enables support for Trigonometric Math Unit (TMU). Relaxed floating-
point mode also gets enabled as TMU hardware instructions are replaced only in
relaxed floating point mode.

RTS library calls are replaced with the corresponding TMU hardware instructions for
the following floating-point operations: floating point division, sqrt, sin, cos, atan, and
atan2.

Note There are algorithmic differences between the TMU hardware instructions and
the library routines, so the results of operations may differ slightly.

This option is available only for TI F2804x, F2807x, F2837xD and F2837xS
processors.

Select CPU
Select a CPU core to run the generated code on a dual-core processor, such as
F2837xD. Ensure you create two different models to run in different CPU cores. Use
the appropriate options of this parameter to generate the code for your models.

1 Configuration Parameters

1-38

The clock settings and the CPU assignment for F2837xD processor peripherals are
available only when you select CPU1 option. If you select CPU2, ensure you specify the
same clock frequency as you have specified for the CPU1 model.

The GPIO pin configuration registers are available only for CPU1. For the GPIOs used
in CPU2 model, configure the GPIO pins from CPU1.

For a Simulink generated code that you run in CPU1, the GPIO pin configuration for
CPU2 takes place automatically. However, ensure you do not use the same GPIO pins
in both CPU1 and CPU2.

For a handwritten code that you run in CPU1, ensure you configure the GPIO pins for
CPU2 from CPU1.

Boot From Flash (stand alone execution)
The option to specify if the application has to load to the flash. If you do not select this
option, the application loads to the RAM.

Use custom linker command file
Select this option, if you have your own custom linker file, which you can specify in
the Linker command file parameter. If you do not select this option, based on the
device you have selected, a default custom linker command file is used.

Linker command file
For each family of TI processor selected under Target hardware resources, one
linker command file is selected automatically.

For a different variant of the processor, you can select the variant from the ‘src’ folder
in the Support Package installation path. You can also create custom linker command
file and select the file path using the Browse button.

The linker command file path provided can be absolute or relative. If the path
provided is relative, the path must be selected with respect to the folder where the
model is present or the code generation folder.

CCS hardware configuration file
In the Support Package installation folder, open CCS_Config and select one of the
ccxml files.

Alternately, can use Code Composer Studio to create the ccxml file. In Code
Composer Studio, go to File > New > Target Configuration File. Select the file you
created using the Browse button. You can also edit the ccxml file using the Edit
button.

 C28x-Build Options

1-39

The ccxml files provided with Embedded Coder Support Package for Texas
Instruments C2000 Processors are as follows:

• f28027.ccxml—TI F28027 with Texas Instruments XDS100v1 USB Emulator
• f28035.ccxml—TI F28035 with Texas Instruments XDS100v1 USB Emulator
• f28069.ccxml—TI F28069 with Texas Instruments XDS100v1 USB Emulator
• f2808.ccxml—TI F2808 with Texas Instruments XDS100v1 USB Emulator
• f2808_eZdsp.ccxml—F2808 Spectrum Digital DSK-EVM-eZdsp onboard USB

Emulator
• f28044.ccxml—TI F28044 with Texas Instruments XDS100v1 USB Emulator
• f28335.ccxml—TI F28335 with Texas Instruments XDS100v1 USB Emulator
• f28335_eZdsp.ccxml—F28335 Spectrum Digital DSK-EVM-eZdsp onboard USB

Emulator
• f2812_BH2000.ccxml—Blackhawk USB2000 Controller for F2812 eZDSP
• f28x_generic.ccxml—Generic Texas Instruments XDS100v1 USB Emulator
• f28x_ezdsp_generic.ccxml—Generic Spectrum Digital eZdsp onboard USB

Emulator
• f28x_ezdsp_generic.ccxml—Generic Spectrum Digital eZdsp onboard USB

Emulator
• f28377S.ccxml—TI F2837xS with Texas Instruments XDS100v2 USB Emulator
• f28075.ccxml—TI F2807x with Texas Instruments XDS100v2 USB Emulator
• f28377D.ccxml—TI F2837xD with Texas Instruments XDS100v2 USB Emulator
• f28379D.ccxml—TI F2839xD with Texas Instruments XDS100v2 USB Emulator
• f28004x.ccxml—TI F28004x with Texas Instruments XDS100v2 USB Emulator

The ccxml files provided with Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto™ Processors are as follows:

• f28M35x.ccxml – Texas Instruments XDS100v2 USB Emulator_0
• f28M36x.ccxml – Texas Instruments XDS100v2 USB Emulator_0

Enable DMA to access ePWM Registers instead of CLA
The option that you can select to enable the DMA to access ePWM registers instead of
CLA. This option is available only for F2806x processors.

1 Configuration Parameters

1-40

Enable DMA to peripheral frame 1 (ePWM, HRPWM, eCAP, eQEP, DAC, CMPSS,
and SDFM) instead of CLA

The option that you can select to enable the DMA to access peripheral frame 1
(ePWM, HRPWM, eCAP, eQEP, DAC, CMPSS and SDFM) registers instead of CLA. This
option is available only for F2837xD, F2837xS, F2807x processors.

Enable DMA to peripheral frame 2 (SPI and McBSP) instead of CLA
The option that you can select to enable the DMA to access peripheral frame 2 (SPI
and McBSP) registers instead of CLA. This option is available only for F2837xD,
F2837xS, F2807x processors.

Enable FastRTS
This option enables the use of optimized floating point math functions from C28x FPU
fastRTS library instead of standard RTS library functions.

By using FastRTS library routines, you can achieve execution speeds considerable
faster without rewriting existing code. This option is available only for F2806x,
F2833x, F28M35x (C28x) and F28M35x (C28x) processors.

Remap ePWMs for DMA access (Requires silicon revision A and above)
The option that you can select to remap ePWMs registers for DMA access. This option
is available only for F2833x processors.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 See Also

1-41

C28x-Clocking
Use the clocking options to achieve the CPU clock rate specified on the board. The default
clocking values run the CPU clock (CLKIN) at its maximum frequency. The parameters
use the external oscillator frequency on the board (OSCCLK) that is recommended by the
processor vendor.

For F2837xD and F2838xD dual-core processor, the clock settings are available only when
you select the CPU1 option in the Build options > Select CPU parameter. When you
select CPU2 option in the Build options > Select CPU parameter, set the CPU clock
with the value available in the Achievable SYSCLKOUT in MHz parameter for the
CPU1 model.

You can get feedback on the closest achievable SYSCLKOUT value with the specified
oscillator clock frequency by selecting the Auto set PLL based on OSCCLK and CPU
clock check box. Alternatively, you can manually specify the PLL value for the
SYSCLKOUT value calculation.

Change the clocking values if:

• You want to change the CPU frequency.
• The external oscillator frequency differs from the value recommended by the

manufacturer.

To determine the CPU frequency (CLKIN), use the following equation:

CLKIN = (OSCCLK × PLLCR) / (DIVSEL or CLKINDIV)

Where,

• CLKIN is the frequency at which the CPU operates, also known as the CPU clock.
• OSCCLK is the frequency of the oscillator.
• PLLCR is the PLL control register value.
• CLKINDIV is the clock in the divider.
• DIVSEL is the divider select.

The availability of the DIVSEL or CLKINDIV parameters changes depending on the
processor that you select. If neither parameter is available, use the following equation:

CLKIN = (OSCCLK × PLLCR) / 2

1 Configuration Parameters

1-42

You can set the following parameters for clocking:

Desired C28x CPU clock in MHz
Specify the desired CPU clock frequency (CLKIN). This value is taken automatically
for Achievable SYSCLKOUT in MHz = (OSCCLK×PLLCR)/DIVSEL.

CPU Clock in MHz (C28SYSCLK/SYSCLKOUT)
Enter the value that you specified for Desired C28x CPU clock in MHz. This
parameter is available only for TI Concerto F28M35x/ F28M36x processors. For more
information, see the PLL-Based Clock Module section in the Texas Instruments
Reference Guide for your processor.

Use internal oscillator
Use the internal zero pin oscillator on the CPU. This parameter is enabled by default.

Oscillator clock (OSCCLK) frequency in MHz
Oscillator frequency used in the processor. This parameter is not available for TI
Concerto F28M35x/ F28M36x processors.

Auto set PLL based on OSCCLK and CPU clock
PLL values in PLLCR, DIVSEL, and Achievable SYSCLKOUT in MHz are
automatically calculated based on the CPU clock entered on the board. This
parameter is not available for TI Concerto F28M35x/ F28M36x processors.

PLL control register (PLLCR)
If you select Auto set PLL based on OSCCLK and CPU clock, the auto calculated
control register value achieves the specified CPU clock value, based on the oscillator
clock frequency. Alternatively, you can select a value for PLL control register
(PLLCR). This parameter is not available for TI Concerto F28M35x/ F28M36x
processors.

PLL output divider (ODIV)
Calculates SYSCLKOUT = ((OSCCLK×SYSPLLMULT)/ODIV)/SYSDIVSEL.

Clock divider (DIVSEL)
If you select Auto set PLL based on OSCCLK and CPU clock, the auto calculated
control register value achieves the specified CPU clock value, based on the oscillator
clock frequency. Alternatively, you can select a value for Clock divider (DIVSEL).
This parameter is not available for TI Concerto F28M35x/ F28M36x processors.

 C28x-Clocking

1-43

Achievable SYSCLKOUT in MHz = (OSCCLK×PLLCR)/DIVSEL
The auto calculated feedback value that matches the Desired C28x CPU clock in
MHz value, based on the values of OSCCLK, PLLCR, and DIVSEL. This parameter is
not available for TI Concerto F28M35x/ F28M36x processors.

Set the 'Achievable SYSCLKOUT in MHz = (OSCCLK*SYSPLLMULT)/SYSDIVSEL'
value calculated in CPU1

Available only for CPU2 of dual C28x core processors. Value of this parameter must
be same as the value of the parameter Achievable SYSCLKOUT in MHz =
(OSCCLK*PLLCR)/DIVSEL (auto calculated).

Select the 'Low-Speed Peripheral Clock Prescaler (LSPCLK)' option used in CPU1
Available only for CPU2 of dual C28x core processors. Value of this parameter must
be same as the value of the parameter Low-Speed Peripheral Clock Prescaler
(LSPCLK) specified in CPU1.

Low-Speed Peripheral Clock Prescaler (LSPCLK)
The value using which LSPCLK is scaled. This value is based on SYSCLKOUT.

Low-Speed Peripheral Clock (LSPCLK) in MHz
The value is calculated based on LSPCLK Prescaler. Example: SPI uses a LSPCLK.

High-Speed Peripheral Clock Prescaler (HSPCLK)
The value using which HSPCLK is scaled. This value is based on SYSCLKOUT.

High-Speed Peripheral Clock (HSPCLK) in MHZ
The value is calculated based on HSPCLK Prescaler. Example: ADC uses a HSPCLK.

Analog Subsystem Clock Prescaler (ASYSCLK)
The value using which ASYSCLK is scaled. This value is based on SYSCLKOUT. This
option is available only for TI Concerto F28M35x/ F28M36x processors.

Analog Subsystem Clock (ASYSCLK)
The value calculated using the SYSCLKOUT and ASYSCLK Prescaler values. This
option is available only for TI Concerto F28M35x/ F28M36x processors.

1 Configuration Parameters

1-44

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 See Also

1-45

C28x-ADC/C28x-ADC_A/C28x-ADC#
The high-speed peripheral clock (HSPCLK) or the system clock (SYSCLKOUT) controls
the internal timing of ADC modules. The ADC derives the operating clock speed from the
HSPCLK/SYSCLKOUT speed in several prescaler stages. For more information about
configuring these scalers, see “Configuring Acquisition Window Width for ADC Blocks”.

You can set the following parameters for the ADC clock prescaler:

Select the CPU core which controls ADC_x module
This parameter is available only for the dual-core processor F2837xD with the Build
options > Select CPU parameter set to CPU1.

The CPU core that controls the ADC module. When you select the Auto option for the
ADC_x module in a model, the ADC_x module is assigned to the CPU1 core during
code generation if the ADC_x block is present in the model, else it is assigned to the
CPU2 core. If an ADC_x module is assigned to a CPU core, you cannot use that
module in a model that runs in the other CPU core.

ADC clock prescaler (ADCCLK)
Select the ADCCLK divider. This is specific to a processor.

ADC clock frequency in MHz
The clock frequency for ADC, which is auto generated based on the value you select
in ADC clock prescaler (ADCCLK).

ADC overlap of sample and conversion (ADC#NONOVERLAP)
Enable or disable overlap of sample and conversion.

ADC clock prescaler (ADCLKPS)
The HSPCLK is divided by ADCLKPS (a 4-bit value) as the first step in deriving the
core clock speed of the ADC. The default value is 3.

ADC Core clock prescaler (CPS)
After dividing the HSPCLK speed by the ADC clock prescaler (ADCLKPS) value,
divides the result by 2. The default value is 1.

ADC Module clock (ADCCLK = HSPCLK/ADCLKPS*2)/(CPS+1)) in MHz
The ADC module clock, which indicates the ADC operating clock speed.

1 Configuration Parameters

1-46

Acquisition window prescaler (ACQ_PS)
This value determines the width of the sampling or acquisition period. The higher the
value, the wider is the sampling period. This value does not directly alter the core
clock speed of the ADC. The default value is 4.

Acquisition window size ((ACQ_PS+1)/ADCCLK) in micro seconds/channel
Acquisition window size determines the duration for which the sampling switch is
closed. The width of SOC pulse is ADCTRL1[11:8] + 1 times the ADCLK period.

Offset
Specifies the offset value.

Use external reference 2.048VExternal reference
By default, an internally generated band gap voltage reference supplies the ADC
logic. However, depending on application requirements, you can enable the external
reference so that the ADC logic uses an external voltage reference instead.

Continuous mode
When the ADC generates an end of conversion (EOC) signal, an ADCINT# interrupt
that indicates whether the previous interrupt flag has been acknowledged or not is
generated.

ADC offset correction (OFFSET_TRIM: –256 to 255)
The 280x ADC supports offset correction via a 9-bit value that it adds or subtracts
before the results are available in the ADC result registers. Timing for results is not
affected. The default value is 0.

VREFHIVREFLO
When you disable the Use external reference 2.048V or External reference
option, the ADC logic uses a fixed 0–3.3 volt input range, and VREFHI and VREFLO
are disabled. To interpret the ADC input as a ratiometric signal, select the External
reference option. Then, set values for the high voltage reference (VREFHI) and the
low voltage reference (VREFLO). VREFHI uses the external ADCINA0 pin, and
VREFLO uses the internal GND.

INT pulse control
Set the time when the ADC sets ADCINTFLG ADCINTx relative to the SOC and EOC
pulses.

SOC high priority
Enables SOC high priority mode. In all in round robin mode, the default
selection, the ADC services each SOC interrupt in a numerical sequence.

 C28x-ADC/C28x-ADC_A/C28x-ADC#

1-47

Choose one of the high priority selections to assign high priority to one or more
of the SOCs. In this mode, the ADC operates in round robin mode until it receives a
high priority SOC interrupt. The ADC finishes servicing the current SOC, services the
high priority SOCs, and then returns to the next SOC in the round robin sequence.

For example, the ADC is servicing SOC8 when it receives a high priority interrupt on
SOC1. The ADC completes servicing SOC8, services SOC1, and then services SOC9.

XINT2SOC external pin
The pin to which the ADC sends the XINT2SOC pulse.

ADCEXTSOC external pin
The pin to which the ADC sends the ADCEXTSOC pulse. This parameter is available
only for F2807x, F2837x processors.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-48

C28x-COMP
Assign COMP pins to GPIO pins.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 C28x-COMP

1-49

C28x-DAC
DACx reference voltage

Select the reference voltage for the DAC channel A, B, or C. In this case, x represents
the DAC channel A, B, or C.

• ADC reference voltage (VREFHIA/VREFHIB) — The reference voltage used for the
ADC. You can use this as reference voltage VREFHIA for DAC A, DAC B and
VREFHIB for DAC C.

• External reference voltage through ADCINB0 (VDAC) — A separate external
reference voltage for DAC. Ensure that you connect the ADCINB0 pin to the
supply voltage.

DACx synchronization signal
Select the synchronization signal to load the value from the writable shadow register
into the active register. In this case, x represents the DAC channel A, B, or C.

• SYSCLK — Loads the value from the writable shadow register DACVALS into the
active register DACVALA on the next clock cycle.

• PWMSYNC1–12 — Loads the value from the writable shadow register DACVALS
into the active register DACVALA on the next PWM synchronization event.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-50

C28x-eCAN_A, C28x-eCAN_B
You can set the following parameters for the eCAN module:

CAN module clock frequency (= SYSCLKOUT) in MHz
The clock to the enhanced CAN module. The CAN module clock frequency is equal to
SYSCLKOUT for processors such as c280x, c281x, c28044.

CAN module clock frequency (=SYSCLKOUT/2) in MHz
The clock to the enhanced CAN module. The CAN module clock frequency is equal to
SYSCLKOUT/2 for processors such as piccolo, c2834x, c28x3x.

Baud rate prescaler (BRP: 2 to 256)/Baud rate prescaler (BRP: 1 to 1024)
The value using which bit rate is scaled.

Time segment 1 (TSEG1):
Set the value of time segment 1. This value, with TSEG2 and Baud rate prescaler,
determines the length of a bit on the eCAN bus. Valid values for TSEG1 are from 1
through 16.

Time segment 2 (TSEG2):
Set the value of time segment 2. This value, with TSEG1 and Baud rate prescaler,
determines the length of a bit on the eCAN bus. Valid values for TSEG2 are from 1
through 8.

Baud rate (CAN Module Clock/BRP/(TSEG1 + TSEG2 +1)) in bits/sec:
CAN module communication speed represented in bits/sec.

SBG
Set the message resynchronization triggering.

SJW
Set the synchronization jump width, which determines how many units of TQ a bit can
be shortened or lengthened when resynchronizing. Where, TQ=Baud Rate Prescaler/
CAN_CLK.

SAM
Number of samples used by the CAN module to determine the CAN bus level.
Selecting Sample_one_time samples once at the sampling point. Selecting
Sample_three_times samples once at the sampling point and twice before at a
distance of TQ/2. The CAN module makes a majority decision from the three points.

 C28x-eCAN_A, C28x-eCAN_B

1-51

Enhanced CAN Mode
Enable time-stamping and usage of Mailbox Numbers 16 through 31 in the C2000
eCAN blocks. Texas Instruments documentation refers to this as “HECC mode”.

Self test mode
If you set this parameter to True, the eCAN module goes to loopback mode. The
loopback mode sends a “dummy” acknowledge message back. This mode does not
need an acknowledge bit. The default is False.

Pin assignment (Tx)
Assign the CAN transmit pin to use with the eCAN_B module.

Pin assignment (Rx)
Assign the CAN receive pin to use with the eCAN_B module.

For more information about setting the timing parameters for the eCAN modules, see
“Configuring Timing Parameters for CAN Blocks”.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-52

C28x-eCAP
Assign eCAP pins to GPIO pins.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 C28x-eCAP

1-53

C28x-ePWM
Assign ePWM signals to GPIO pins. You can set the following parameters for ePWM:

EPWM clock divider (EPWMCLKDIV)
Select the ePWM clock divider. This parameter is available only for F2807x, F2837x,
F2838x processors.

Select the 'EPWM clock divider (EPWMCLKDIV)' option used for CPU1
Available only for CPU2 of dual C28x core processors. Its value must be the same as
the value of the parameter EPWM clock divider (EPWMCLKDIV) selected in CPU1.

TZx pin assignment
Assign the trip-zone input x (TZx) to a GPIO pin.

For F2807x, F2837x and F2838x processors, select None or GPIO#.

Note To enter the GPIO numbers in theTZ# pin assignment parameters for
F2807x, F2837x and F2838x processors, select CPU1 in Build options >Select CPU.

Note The TZ# pin assignments are available only for TI F280x processors.

SYNCI pin assignment
Assign the ePWM external sync pulse input (SYNCI) to a GPIO pin.

For F2807x, F2837x and F2838x processors, select None or GPIO#.

Note To enter the GPIO numbers in SYNCI pin assignment for F2807x, F2837x and
F2838x processors, you must select CPU1 in Build options >Select CPU.

SYNCO pin assignment
Assign the ePWM external sync pulse output (SYNCO) to a GPIO pin.

Note SYNCI and SYNCO pin assignments are available for TI F28044, TI F280x, TI
Delfino F2833x, TI Delfino F2834x, TI Piccolo F2802x, TI Piccolo F2803x, TI Piccolo
F2806 processors.

1 Configuration Parameters

1-54

PWM#x pin assignment
Assign the GPIO pin to the PWM#x module.

GPTRIP#SEL pin assignment(GPIO0~63)
Assign the ePWM trip-zone input to a GPIO pin.

Note The GPTRIP#SEL pin assignment is available only for TI Concerto F28M35x/
F28M36x processors.

PWM1SYNCI/ GPTRIP6SEL pin assignment
Assign the ePWM sync pulse input (SYNCI) to a GPIO pin.

Note The PWM1SYNCI/GPTRIP#SEL pin assignments are available only for TI
Concerto F28M35x/F28M36x processors.

DCxHTRIPSEL (Enter Hex value between 0 and 0x6FFF) / DCBHTRIPSEL (Enter
Hex value between 0 and 0x6FFF)

Assign the Digital Compare A high trip input to a GPIO pin.

Note DCxHTRIPSel pin assignment is available only for TI Concerto F28M35x/
F28M36x processors.

DCxLTRIPSEL (Enter Hex value between 0 and 0x6FFF) / DCBLTRIPSEL (Enter
Hex value between 0 and 0x6FFF)

Assign the Digital Compare A low trip input to a GPIO pin.

Note The DCxLTRIPSEL pin assignment is available only for TI Concerto F28M35x/
F28M36x processors.

 C28x-ePWM

1-55

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-56

C28x-I2C
You can set the following parameters for I2C:

Mode
Configure the I2C module as Master or Slave.

If a module is an I2C master, it:

• Initiates communication with slave nodes by sending the slave address and
requesting data transfer to or from the slave.

• Outputs the Master clock frequency on the serial clock line (SCL) line.

If a module is an I2C slave, it:

• Synchronizes itself with the serial clock line (SCL) line.
• Responds to communication requests from the master.

In Slave mode, you can configure the Addressing format, Address register, and
Bit count parameters.

The Mode parameter corresponds to bit 10 (MST) of the I2C mode register
(I2CMDR).

Addressing format
In Slave mode, determines the addressing format of the I2C master and sets the I2C
module to the same mode:

• 7-Bit Addressing—the normal address mode.
• 10-Bit Addressing—the expanded address mode.
• Free Data Format—a mode that does not use addresses. (If you Enable

loopback, the Free data format is not supported.)

The Addressing format parameter corresponds to bit 3 (FDF) and bit 8 (XA) of the
I2C mode register (I2CMDR).

Own address register
In Slave mode, enter the 7-bit (0–127) or 10-bit (0–1023) address that the I2C
module uses while it is a slave.

 C28x-I2C

1-57

This parameter corresponds to bits 9–0 (OAR) of the I2C own address register
(I2COAR).

Bit count
In Slave mode, sets the number of bits in each data byte the I2C module transmits
and receives. This value must match that of the I2C master.

This parameter corresponds to bits 2–0 (BC) of the I2C mode register (I2CMDR).
Module clock prescaler (IPSC: 0 to 255)

In Master mode, configures the module clock frequency by entering a value 0–255,
inclusive.

Module clock frequency = I2C input clock frequency / (Module clock prescaler + 1)

The I2C specifications require a module clock frequency between 7 MHz and 12 MHz.

The I2C input clock frequency depends on the DSP input clock frequency and the
value of the PLL control register divider (PLLCR). For more information on setting the
PLLCR, see the documentation for your digital signal controller.

The Module clock prescaler (IPSC: 0 to 255) corresponds to bits 7–0 (IPSC) of the
I2C prescaler register (I2CPSC).

I2C Module clock frequency (SYSCLKOUT / (IPSC+1)) in Hz
Display the frequency the I2C module uses internally. To set this value, change the
Module clock prescaler.

For more information about this value, see the “Formula for the Master Clock Period”
section in the TMS320x280x Inter-Integrated Circuit Module Reference Guide,
Literature Number: SPRU721, on the Texas Instruments website.

I2C Master clock frequency (Module Clock Freq/(ICCL+ICCH+10)) in Hz
Display the master clock frequency.

For more information about this value, see the “Clock Generation” section in the
TMS320x280x/ TMS320F28M35x/ TMS320F28M36x Inter-Integrated Circuit Module
Reference Guide, Literature Number: SPRU721/ SPRUH22F/ SPRUHE8B, available
on the Texas Instruments website.

Master clock Low-time divider (ICCL: 1 to 65535)
In Master mode, the divider determines the duration of the low state of the serial
clock line (SCL) on the I2C bus.

1 Configuration Parameters

1-58

The low-time duration of the master clock = Tmod x (ICCL + d).

For more information, see the “Formula for the Master Clock Period” section in the
TMS320x280x/ TMS320F28M35x/ TMS320F28M36x Inter-Integrated Circuit Module
Reference Guide, Literature Number: SPRU721A/ SPRUH22F/ SPRUHE8B, available
on the Texas Instruments website.

This parameter corresponds to bits 15–0 (ICCL) of the clock low-time divider register
(I2CCLKL).

Master clock High-time divider (ICCH: 1 to 65535)
In Master mode, the divider determines the duration of the high state of the serial
clock line (SCL) on the I2C bus.

The high-time duration of the master clock = Tmod x (ICCL + d).

For more information about this value, see the “Formula for the Master Clock Period”
section in the TMS320x280x/ TMS320F28M35x/ TMS320F28M36x Inter-Integrated
Circuit Module Reference Guide, Literature Number: SPRU721A, SPRUH22f,
SPRUHE8B, available on the Texas Instruments website.

This parameter corresponds to bits 15–0 (ICCH) of the clock high-time divider
register (I2CCLKH).

Enable loopback
In Master mode, enables or disables digital loopback mode. In digital loopback mode,
I2CDXR transmits data over an internal path to I2CDRR, which receives the data after
a configurable delay.

The delay, measured in DSP cycles, equals (I2C input clock frequency/module clock
frequency) x 8.

While Enable loopback is enabled, free data format addressing is not supported.

This parameter corresponds to bit 6 (DLB) of the I2C mode register (I2CMDR).
SDA pin assignment

Select a GPIO pin as I2C data bidirectional port.

This parameter is not available for TI C2000 F280x, F28044, F2833x, and C2834x
processors.

SCL pin assignment
Select a GPIO pin as I2C clock bidirectional port.

 C28x-I2C

1-59

This parameter is not available for TI C2000 F280x, F28044, F2833x, and C2834x
processors.

Enable Tx interrupt
This parameter corresponds to bit 5 (TXFFIENA) of the I2C transmit FIFO register
(I2CFFTX).

Tx FIFO interrupt level
This parameter corresponds to bits 4–0 (TXFFIL4-0) of the I2C transmit FIFO register
(I2CFFTX).

Enable Rx interrupt
This parameter corresponds to bit 5 (RXFFIENA) of the I2C receive FIFO register
(I2CFFRX).

Rx FIFO interrupt level
This parameter corresponds to bit 4–0 (RXFFIL4-0) of the I2C receive FIFO register
(I2CFFRX).

Enable system interrupt
Select this parameter to configure the five basic I2C interrupt request parameters in
the interrupt enable register (I2CIER):

• Enable AAS interrupt
• Enable SCD interrupt
• Enable ARDY interrupt
• Enable NACK interrupt
• Enable AL interrupt

Enable AAS interrupt
Enable the addressed-as-slave interrupt.

When enabled, the I2C module generates an interrupt (AAS bit = 1) upon receiving
one of the following:

• Its Own address register value
• A general call (all zeros)
• A data byte in free data format

When enabled, the I2C module clears the interrupt (AAS = 0) upon receiving one of
the following:

1 Configuration Parameters

1-60

• Multiple START conditions (7-bit addressing mode only)
• A slave address that is different from Own address register (10-bit addressing

mode only)
• A NACK or a STOP condition

This parameter corresponds to bit 6 (AAS) of the interrupt enable register (I2CIER).
Enable SCD interrupt

Enable STOP condition detected interrupt.

When enabled, the I2C module generates an interrupt (SCD bit = 1) after the CPU
detects a stop condition on the I2C bus.

When enabled, the I2C module clears the interrupt (SCD = 0) upon one of the
following events:

• The CPU reads I2CISRC while it indicates a stop condition
• A reset of the I2C module
• Someone manually clears the interrupt

This parameter corresponds to bit 5 (SCD) of the interrupt enable register (I2CIER).
Enable ARDY interrupt

Enable register-access-ready interrupt enable bit.

When enabled, the I2C module generates an interrupt (ARDY bit = 1) after the
previous address, data, and command values in the I2C module registers have been
used. New values can be written to the I2C module registers.

This parameter corresponds to bit 2 (ARDY) of the interrupt enable register (I2CIER).
Enable NACK interrupt

Enable no acknowledgment interrupt enable bit.

When enabled, the I2C module generates an interrupt (NACK bit = 1) when the
module operates as a transmitter in master or slave mode and receives a NACK
condition.

This parameter corresponds to bit 1 (NACK) of the interrupt enable register (I2CIER).
Enable AL interrupt

Enable arbitration-lost interrupt.

 C28x-I2C

1-61

When enabled, the I2C module generates an interrupt (AL bit = 1) when the I2C
module operates as a master transmitter and looses an arbitration contest with
another master transmitter.

This parameter corresponds to bit 0 (AL) of the interrupt enable register (I2CIER).

For more information about the I2C parameters, see the TMS320x280x/
TMS320F28M35x/ TMS320F28M36x Inter-Integrated Circuit Module Reference Guide,
Literature Number: SPRU721A/ SPRUH22F/ SPRUHE8B available on the Texas
Instruments website.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-62

C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D
You can set the following parameters for serial communications interface (SCI):

Enable loopback
Enable the loopback function for self-test and diagnostics. When this function is
enabled, a C28x DSP Tx pin is internally connected to its Rx pin, and the DSP can
transmit data from its output port to its input port to check the integrity of the
transmission.

Suspension mode
The type of suspension to be used while debugging your program with Code
Composer Studio. When your program encounters a breakpoint, the suspension mode
determines whether to perform the program instruction. The available options are:

• Hard_abort—Stops the program immediately.
• Soft_abort—Stops when the current receive/transmit sequence is complete.
• Free_run—Continues running regardless of the breakpoint.

Number of stop bits
Specify the number of stop bits transmitted.

Parity mode
The type of parity to be used. The available options are:

• None—Disables parity.
• Odd—Sets the parity bit to one if you have an odd number of ones in your bytes,

such as 00110010.
• Even—Sets the parity bit to one if you have an even number of ones in your bytes,

such as 00110011.

Character length bits
Length in bits of each transmitted or received character. The default value is 8.

Desired baud rate in bits/sec
Specify the desired baud rate.

Baud rate prescaler (BRR = (SCIHBAUD << 8) | SCILBAUD))
The value using which SCI baud rate is scaled. This value is based on LSPCLK.

 C28x-SCI_A, C28x-SCI_B, C28x-SCI_C, C28x_SCI_D

1-63

Closest achievable baud rate (LSPCLK/(BRR+1)/8) in bits/sec
The closest achievable baud rate calculated based on LSPCLK and BRR.

Communication mode
Raw data is unformatted and sent whenever the transmitting side is ready to send,
regardless of whether the receiving side is ready or not. Without a wait state,
deadlock conditions do not occur and data transmission is asynchronous. With this
mode, the receiving side could miss data, but if the data is noncritical, using raw data
mode can avoid blocking processes.

When you select protocol mode, handshaking between the host and the processor
occurs. The transmitting side sends $SND to indicate it is ready to transmit. The
receiving side sends back $RDY to indicate it is ready to receive. The transmitting
side then sends data and, when the transmission is completed, it sends a checksum.

Advantages of using protocol mode are:

• Avoids deadlock
• Determines whether data is received without errors (checksum)
• Determines whether data is received by the processor
• Determines time consistency; each side waits for its turn to send or receive

Note Deadlocks can occur if an SCI Transmit block tries to communicate with
multiple SCI Receive blocks on different COM ports while both transmit and receive
blocks are in blocking mode. Deadlocks cannot occur on the same COM port.

Blocking mode
If this option is enabled, the system waits until data is available to read (when data
length is reached). If this option is disabled, the system checks FIFO periodically (in
polling mode) for data to read. If data is present, the block reads and outputs the
contents. If data is not present, the block outputs the last value and continues.

Data byte order
Select an option to match the endianness of the data being moved.

Pin assignment (Tx)
Assign the SCI transmit pin to be used with the SCI module.

Pin assignment (Rx)
Assign the SCI receive pin to be used with the SCI module.

1 Configuration Parameters

1-64

Note All SCI modules are not available for all TI C2000 processors.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 See Also

1-65

C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI_D
You can set the following parameters for the serial peripheral interface (SPI):

Mode
Configure the SPI module as Master or Slave.

Desired baud rate in bits/sec
Specify the desired baud.

Baud rate factor (SPIBRR: between 3 and 127)
The value used to calculate the baud. To set the Baud rate factor, search for “Baud
Rate Determination” and “SPI Baud Rate Register (SPIBRR) Bit Descriptions” in
TMS320x28xx, 28xxx DSP Serial Peripheral Interface (SPI) Reference Guide,
Literature Number: SPRU059, available on the Texas Instruments website.

Closest achievable baud rate (LSPCLK/(SPIBRR+1)) in bits/sec
The closest achievable baud rate calculated based on LSPCLK and SPIBRR.

Suspension mode
The type of suspension to be used while debugging your program with Code
Composer Studio. When your program encounters a breakpoint, the selected
suspension mode determines whether to perform the program instruction. The
available options are:

• Hard_abort—Stops the program immediately.
• Soft_abort—Stops when the current receive/transmit sequence is complete.
• Free_run—Continues running regardless of the breakpoint.

Enable loopback
Enable the loopback function for self-test and diagnostics. When this function is
enabled, the Tx pin on a C28x DSP is internally connected to its Rx pin, and the DSP
can transmit data from its output port to its input port to check the integrity of the
transmission.

Enable 3-wire mode
Enable SPI communication over three pins instead of the normal four pins.

Enable Tx interrupt
Enable SPI transmit interrupt operation.

1 Configuration Parameters

1-66

FIFO interrupt level (Tx)
Set level for transmit FIFO interrupt.

Enable Rx interrupt
Enable SPI receive interrupt operation.

FIFO interrupt level (Rx)
Set level for receive FIFO interrupt.

FIFO transmit delay
FIFO transmit delay (in processor clock cycles) to pause between data transmissions.
Enter an integer.

SIMO pin assignment
Assign the SPI (SIMO) to a GPIO pin.

SOMI pin assignment
Assign the SPI value (SOMI) to a GPIO pin.

CLK pin assignment
Assign the CLK pin to a GPIO pin.

CLK pin assignment is not available for TI Concerto F28M35x/F28M36x processors.
STE pin assignment

Assign the SPI value (STE) to a GPIO pin.

STE pin assignment is not available for TI Concerto F28M35x/ F28M36x processors.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 See Also

1-67

C28x-eQEP
Assign eQEP pins to GPIO pins.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-68

C28x-Watchdog
When enabled, if the software fails to reset the watchdog counter within a specified
interval, the watchdog resets the processor or generates an interrupt. This feature
enables the processor to recover from faults.

For more information, see the Data Manual or System Control and Interrupts Reference
Guide for your processor on the Texas Instruments website.

Enable watchdog
Enable the watchdog timer module.

This parameter corresponds to bit 6 (WDDIS) of the watchdog control register
(WDCR) and bit 0 (WDOVERRIDE) of the system control and status register (SCSR).

Counter clock
Set the watchdog timer period relative to OSCCLK/512.

This parameter corresponds to bits 2–0 (WDPS) of the watchdog control register
(WDCR).

Note Depending on the processor type, the default value of the watchdog clock
(WDCLK) can be based on the internal oscillator (INTOSC1) or external oscillator
(OSCCLK).

Timer period ((1/Counter clock)*256) in seconds
Display the timer period in seconds. This value automatically gets updated when you
change the Counter clock parameter.

Time out event
Configure the watchdog to reset the processor or generate an interrupt when the
software fails to reset the watchdog counter. The available options are:

• Chip reset—Generates a signal (WDRST) that resets the processor and disables
the watchdog interrupt signal (WDINT).

• Raise WD Interrupt—Generates a watchdog interrupt signal (WDINT) and
disables the reset processor signal (WDRST). The WDINT signal can be used to
wake the device from an idle or standby low-power mode.

 C28x-Watchdog

1-69

This parameter corresponds to bit 1 (WDENINT) of the system control and status
register (SCSR).

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-70

C28x-GPIO
Use the GPIO pins for digital input or output by connecting to one of the three peripheral
I/O ports.

The GPIO pins available for various processors are:

Processors GPIO Pin Values
C281x GPIOA, GPIOB, GPIOD, GPIOE, GPIOF, and GPIOG.
F2803x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,

and GPIO40_44.
F2805x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,

and GPIO40_42.
F2806x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,

GPIO40_44, GPIO50_55, and GPIO56_58.
F2823x, F2833x, and
C2834x

GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,
GPIO40_47, GPIO48_55, and GPIO56_63.

C2801x, F2802x, F28044,
F280x

GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, and
GPIO32_34.

F28M35x (C28x) GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,
GPIO40_47, GPIO48_55, GPIO56_63, GPIO68_71, and
GPIO128_135.

F28M36x (C28x) GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, and GPIO192_199.

F2807x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, and GPIO128_135.

F2837xD GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, GPIO136_143, GPIO144_151,
GPIO152_159, GPIO160_167, and GPIO168_175.

 C28x-GPIO

1-71

Processors GPIO Pin Values
F2837xS GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,

GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, GPIO136_143, GPIO144_151,
GPIO152_159, GPIO160_167, and GPIO168_175.

F2838x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO40_47,
GPIO48_55, GPIO56_63, GPIO64_71, GPIO72_79, GPIO80_87,
GPIO88_95, GPIO96_103, GPIO104_111, GPIO112_119,
GPIO120_127, GPIO128_135, GPIO136_143, GPIO144_151,
GPIO152_159, GPIO160_167, and GPIO168_175.

F28004x GPIO0_7, GPIO8_15, GPIO16_23, GPIO24_31, GPIO32_39,
GPIO40_47, GPIO48_55, and GPIO56_63.

Each pin selected for input offers four signal qualification types:

• Synchronize to SYSCLKOUT only—This setting is the default for all pins at reset.
Using this qualification type, the input signal is synchronized to the system clock,
SYSCLKOUT. The following figure shows the input signal measured on each tick of the
system clock, and the resulting output from the qualifier.

• Qualification using 3 samples—This setting requires three consecutive cycles
of the same value for the output value to change. The following figure shows that, in
the third cycle, the GPIO value changes to 0, but the qualifier output is still 1 because
it waits for three consecutive cycles of the same GPIO value. The next three cycles
have a value of 0, and the output from the qualifier changes to 0 immediately after the
third consecutive value is received.

1 Configuration Parameters

1-72

• Qualification using 6 samples—This setting requires six consecutive cycles of
the same GPIO input value for the output from the qualifier to change. In the following
figure, glitch A does not alter the output signal. When the glitch occurs, the counting
begins, but as the next measurement is low again, the count is ignored. The output
signal does not change until six consecutive samples of the high signal are measured.

Note These GPIO settings are supported for the F2837xD dual core processor only
when you select CPU1 in Build options >Select CPU.

Qualification sampling period

Visible only when the Qualification using # samples option is selected. The
qualification sampling period, with possible values of 0–255, inclusive, calculates the
frequency of the qualification samples or the number of system clock ticks per sample.
The formula for calculating the qualification sampling frequency is SYSCLKOUT/(2 *
Qualification sampling period), except for zero. When Qualification sampling
period=0, a sample is taken every SYSCLKOUT clock tick. For example, a setting of 0
means that a sample is taken on each SYSCLKOUT tick.

 C28x-GPIO

1-73

The following figure shows the SYSCLKOUT ticks, a sample taken every clock tick, and
the Qualification type set to Qualification using 3 samples. In this case, the
Qualification sampling period=0:

In the next figure Qualification sampling period=1. A sample is taken every two
clock ticks, and the Qualification type is set to Qualification using 3
samples. The output signal changes much later than if Qualification sampling
period=0.

In the following figure, Qualification sampling period=2. A sample is taken every
four clock ticks, and the Qualification type is set to Qualification using 3
samples.

1 Configuration Parameters

1-74

• Asynchronous—Using this qualification type, the signal is synchronized to an
asynchronous event initiated by the software (CPU) via control register bits.

GPIOA, GPIOB, GPIOD, GPIOE input qualification sampling period

GPIO# Pull Up Disabled

Select this check box to disable the GPIO pull-up register. This option is available only for
TI Concerto F28M35x/F28M36x processors.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 See Also

1-75

C28x-DMA_ch#
The Direct Memory Access (DMA) module transfers data directly between peripherals and
memory using a dedicated bus, increasing overall system performance. In this case, #
represents the DMA channel number.

You can individually enable and configure each DMA channel.

The DMA module services are event driven. Using the Interrupt source parameter, you
can configure a wide range of peripheral interrupt event triggers. For more information,
see the technical reference manual of your processor.

You can set the following parameters for DMA:

Enable DMA channel
Enable this parameter to edit the configuration of a specific DMA channel. This
parameter does not have a corresponding bit or register.

Data size
Select the size of the data bit transfer.

The DMA read/write data buses are 32 bits wide. 32-bit transfers have twice the data
throughput of a 16-bit transfer.

When providing DMA service to McBSP, set Data size to 16 bit.

The following parameters are based on a 16-bit word size. If you set Data size to 32
bit, double the value of the following parameters:

• Size: Burst
• Source: Burst step
• Source: Transfer step
• Source: Wrap step
• Destination: Burst step
• Destination: Transfer step
• Destination: Wrap step

Data size corresponds to bit 14 (DATASIZE) in the mode register (MODE).

1 Configuration Parameters

1-76

Interrupt source
Select the peripheral interrupt that triggers a DMA burst for the specified channel.

Different C2000 processors have different interrupt trigger options that can be
configured to trigger the DMA. Depending on the processor, the trigger sources
include peripheral interrupts from ePWM, ADC, SPI, timer, and external interrupt.
Some of these interrupt triggers such as TINT0 may require manual configuration.
For external interrupt using GPIO, the configuration is done in the External
Interrupt tab.

The Interrupt source parameter corresponds to bit 4–0 (PERINTSEL) in the mode
register (MODE).

Burst size
Specify the number of 16-bit words in a burst, from 1 to 32. The DMA module must
complete a burst before it can service the next channel.

Set the burst size for the peripheral DMA module services. For the ADC, the value
equals the number of ADC registers used, up to 16. For multichannel buffered serial
ports (McBSP), which lack FIFOs, the value is 1.

For RAM, the value can range from 1–32.

This parameter corresponds to bits 4–0 (BURSTSIZE) in the burst size register
(BURST_SIZE).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

Transfer size
Specify the number of bursts in a transfer, from 1–65536.

This parameter corresponds to bits 15–0 (TRANSFERSIZE) in the transfer size
register (TRANSFER_SIZE).

Source begin address
Set the starting address for the current source address pointer. The DMA module
points to this address at the beginning of a transfer and returns to it as specified by
the SRC wrap parameter.

 C28x-DMA_ch#

1-77

This parameter corresponds to bits 21–0 (BEGADDR) in the active source begin
register (SRC_BEG_ADDR).

Destination begin address
Set the starting address for the current destination address pointer. The DMA module
points to this address at the beginning of a transfer and returns to it as specified by
the DST wrap parameter.

This parameter corresponds to bits 21–0 (BEGADDR) in the active destination begin
register (DST_BEG_ADDR).

Source burst step
Set the number of 16-bit words using which the current address pointer is
incremented or decremented before the next burst. Enter a value from –4096
(decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Burst step to 0. For
example, because McBSP does not use FIFO, configure DMA to maintain the
sequence of the McBSP data by moving each word of the data individually.

Accordingly, when you use DMA to transmit or receive McBSP data, set Burst size to
1 word and Burst step to 0.

This parameter corresponds to bits 15-0 (SRCBURSTSTEP) in the source burst step
size register (SRC_BURST_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

Destination burst step
Set the number of 16-bit words using which the current address pointer is
incremented or decremented before the next burst. Enter a value from –4096
(decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Burst step to 0. For
example, because McBSP does not use FIFO, configure DMA to maintain the
sequence of the McBSP data by moving each word of the data individually.
Accordingly, when you use DMA to transmit or receive McBSP data, set Burst size to
1 word and Burst step to 0.

1 Configuration Parameters

1-78

This parameter corresponds to bits 15–0 (DSTBURSTSTEP) in the destination burst
step size register (DST_BURST_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

Source transfer step
Set the number of 16-bit words using which the current address pointer is
incremented or decremented before the next transfer. Enter a value from –4096
(decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Transfer step to 0.

This parameter corresponds to bits 15–0 (SRCTRANSFERSTEP) source transfer step
size register (SRC_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (SRC wrap enabled), the
corresponding source Transfer step does not alter the results.

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

Destination transfer step
Set the number of 16-bit words using which the current address pointer is
incremented or decremented before the next transfer. Enter a value from –4096
(decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Transfer step to 0.

This parameter corresponds to bits 15–0 (DSTTRANSFERSTEP) destination transfer
step size register (DST_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (DST wrap enabled), the
corresponding destination Transfer step does not alter the results.

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

 C28x-DMA_ch#

1-79

Source wrap size
Specify the number of bursts before returning the current source address pointer to
the Source Begin Address value. To disable wrapping, enter a value that is greater
than the Transfer value.

This parameter corresponds to bits 15-0 (SRC_WRAP_SIZE) in the source wrap size
register (SRC_WRAP_SIZE).

Destination wrap size
Specify the number of bursts before returning the current destination address pointer
to the Destination Begin Address value. To disable wrapping, enter a value that is
greater than the Transfer value.

This parameter corresponds to bits 15-0 (DST_WRAP_SIZE) in the destination wrap
size register (DST_WRAP_SIZE).

Source wrap step
Set the number of 16-bit words using which the SRC_BEG_ADDR address pointer is
incremented or decremented when a wrap event occurs. Enter a value from –4096
(decrement) to 4095 (increment).

This parameter corresponds to bits 15–0 (WRAPSTEP) in the source wrap step size
registers (SRC_WRAP_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

Destination wrap step
Set the number of 16-bit words using which the DST_BEG_ADDR address pointer is
incremented or decremented when a wrap event occurs. Enter a value from –4096
(decrement) to 4095 (increment).

This parameter corresponds to bits 15–0 (WRAPSTEP) in the destination wrap step
size registers (DST_WRAP_STEP).

Note This parameter is based on 16-bit word size. If you set Data size to 32 bit,
double the value of this parameter.

1 Configuration Parameters

1-80

Set channel 1 to highest priority
This parameter is available only for DMA_ch1.

Enable this option when DMA channel 1 is configured to handle high-bandwidth data,
such as ADC data, and the other DMA channels are configured to handle lower-
priority data. When enabled, the DMA module services each enabled channel
sequentially until it receives a trigger from channel 1. Upon receiving the trigger,
DMA interrupts its service to the current channel at the end of the current word,
services the channel 1 burst that generated the trigger, and then continues servicing
the current channel at the beginning of the next word.

Disable this channel to give each DMA channel equal priority, or if DMA channel 1 is
the only enabled channel. When disabled, the DMA module services each enabled
channel sequentially.

This parameter corresponds to bit 0 (CH1PRIORITY) in the priority control register 1
(PRIORITYCTRL1).

Enable first DMA event to trigger the full transfer (one shot mode)
Enable this parameter to have the DMA channel complete an entire transfer in
response to an interrupt event trigger.

This option allows a single DMA channel and peripheral to dominate resources, and
may streamline processing, but it also creates the potential for resource conflicts and
delays.

Disable this parameter to have DMA complete one burst per channel per interrupt.

This parameter appears only when Set channel 1 to highest priority is disabled.
Synchronize ADC interrupt event triggers to DMA wrap counter (sync mode)

Enable this parameter to reset the DMA wrap counter when the Interrupt source is
set to SEQ1INT and sends the ADCSYNC signal to the DMA wrap counter. This way,
the wrap counter and the ADC channels remain synchronized with each other.

If Interrupt source is not set to SEQ1INT, Sync enable does not alter the results.

This parameter corresponds to bit 12 (SYNCE) of the mode register (MODE).
Do not disable the DMA channel after the transfer is complete (continuous mode)

Select this parameter to leave the DMA channel enabled upon completing a transfer.
The channel waits for the next interrupt event trigger.

 C28x-DMA_ch#

1-81

Clear this parameter to disable the DMA channel upon completing a transfer. The
DMA module disables the DMA channel by clearing the RUNSTS bit in the control
register when it completes the transfer. To use the channel again, first reset the RUN
bit in the control register.

Enable destination sync mode
Enabling this parameter resets the destination wrap counter (DST_WRAP_COUNT)
when Sync enable is enabled and the DMA module receives the SEQ1INT interrupt/
ADCSYNC signal.

Disabling this parameter resets the source wrap counter (SCR_WRAP_COUNT) when
the DMA module receives the SEQ1INT interrupt/ADCSYNC signal.

This parameter is associated with bit 13 (SYNCSEL) in the mode register (MODE).

This parameter appears only when Synchronize ADC interrupt event triggers to
DMA wrap counter (sync mode) is selected.

Generate interrupt
Enable this parameter to have the DMA channel send an interrupt to the CPU via the
PIE at the beginning or end of a data transfer.

This parameter corresponds to bit 15 (CHINTE) and bit 9 (CHINTMODE) in the mode
register (MODE).

Enable overflow interrupt
Enable this parameter to have the DMA channel send an interrupt to the CPU via PIE
if the DMA module receives a peripheral interrupt while a previous interrupt from the
same peripheral is waiting to be serviced.

This parameter is used for debugging during the development phase of a project.

The Enable overflow interrupt parameter corresponds to bit 7 (OVRINTE) of the
mode register (MODE), and involves the overflow flag bit (OVRFLG) and peripheral
interrupt trigger flag bit (PERINTFLG).

1 Configuration Parameters

1-82

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 See Also

1-83

C28x-EMIF
Use the external memory interface (EMIF) to connect the C2000 processor to an external
synchronous or asynchronous memory.

For C2000 processors, the EMIF is supported for these memory devices:

• Synchronous memory interface — JESD21-C SDR SDRAM
• Asynchronous memory interface — SRAM, NOR Flash, or any external device

Based on the processors, the number of EMIF modules supported varies. When you
configure the EMIF interface based on the memory used, the GPIO pins required for
interacting with the memory through EMIF are also configured. You must ensure that
these GPIO pins are not used with other peripherals or as input/output because these pins
are not included in the existing conflict check.

The EMIF1 pin configuration for synchronous and asynchronous memory is:

• GPIO38 – GPIO52 (except GPIO42 and GPIO43) are configured as address pins A0 –
A12.

• GPIO86 and GPIO87 are configured as address pins A13 and A14 only when
asynchronous memory is selected. GPIO86 and GPIO87 are configured as row and
column address select (RAS and CAS) when synchronous memory is selected.

• GPIO69 – GPIO85 are configured as data pins D15 – D0. GPIO53 – GPIO68 are
configured as data pins D31 – D16 only for 32-bit memory configuration.

• GPIO88 – GPIO91 are configured as data mask pins DQM0 – DQM3. You can manually
configure these pins using custom code as address pins A15 – A18 when the EMIF is
configured only for 8-bit asynchronous memory.

• GPIO92 and GPIO93 are configured as banks BA1 and BA0.
• GPIO28 – GPIO37 are configured as chip select (CS2, CS3, and CS4), clock enable

(SDCKE), clock (CLK), write enable (WE), read and write control (RNW), wait pin
(WAIT), and enable pin (OE).

The EMIF2 pin configuration for synchronous and asynchronous memory is:

• GPIO98 – GPIO109 are configured as address pins A0 – A11.
• GPIO53 – GPIO68 are configured as data pins D15 – D0.

1 Configuration Parameters

1-84

An error message is displayed if the EMIF2 CS# is selected when the EMIF1 is
configured for 32-bit data width because the same GPIO pins are used as D31 – D16
for the EMIF1 in 32-bit configuration.

• GPIO96 – GPIO97 are configured as data mask pins DQM0 – DQM1.
• GPIO111 and GPIO112 are configured as banks BA1 and BA0.
• GPIO110 and GPIO113 – GPIO121 are configured as chip select (CS0 and CS2), row

and column address select (RAS and CAS), clock enable (SDCKE), clock (CLK), write
enable (WE), read and write control (RNW), wait pin (WAIT), and enable pin (OE).

You can set these parameters for the EMIF:

EMIF clock divider (EMIF#CLKDIV)
Select the clock divider for the EMIF# module clock generation. In this case, #
represents the number of the EMIF module. The EMIF clock frequency is based on
SYSCLKOUT.

Enable CS0 for Synchronous memory
Select the chip select (CS0) to interface with the synchronous dynamic RAM
(SDRAM). Synchronous memory supports the following memory sizes and addresses:

• EMIF1_CS0 — Data memory of size 256M × 16 with an address range of
0x80000000 to 0x8FFFFFFF

• EMIF2_CS0 — Data memory of size 3M × 16 with an address range of
0x90000000 to 0x91FFFFFF

Creation and usage of variables in SDRAM require the use of volatile qualifier and far
attribute. Use #pragma to place the variables in SDRAM memory sections. Custom
storage classes EM1_CS0_MEMORY and EM2_CS0_MEMORY are created in the
signal object class tic2000demospkg.Signal to handle these requirements. You
can use these custom storage classes to create variables using the Data Store
Memory blocks.

Enable CS# for Asynchronous memory
Select the chip select (CS2/CS3/CS4) to interface with the asynchronous memory
(SRAM / NOR Flash). Asynchronous memory supports the following memory sizes and
addresses:

• EMIF1_CS2 — Data memory of size 2M × 16 with an address range of
0x00100000 to 0x002FFFFF

• EMIF1_CS3 — Data memory of size 512k × 16 with an address range of
0x00300000 to 0x0037FFFF

 C28x-EMIF

1-85

• EMIF1_CS4 — Data memory of size 393k × 16 with an address range of
0x00380000 to 0x003DFFFF

• EMIF2_CS2 — Data memory of size 4k × 16 with an address range of 0x00002000
to 0x00002FFF

Use #pragma to place the variables in asynchronous memory sections. Custom
storage classes EM1_CS2_MEMORY, EM1_CS3_MEMORY, EM1_CS4_MEMORY, and
EM2_CS2_MEMORY are created in the signal object class
tic2000demospkg.Signal to handle these requirements. You can use these custom
storage classes to create variables using the Data Store Memory blocks.

SDRAM column address bits
Select the value of the column address bits, thereby selecting the required page size
of the connected SDRAM. Column address bits 8, 9, 10, and 11 corresponding to 256,
512, 1024, and 2048-word pages are supported.

The parameter Page size = (2^column address bits) is calculated based on the
SDRAM column address bits parameter value.

Number of internal SDRAM banks
Select the number of memory banks inside the connected SDRAM. SDRAM with 1, 2,
and 4 banks are supported.

SDRAM data bus width in bits
Select the data bus width of the connected SDRAM. Data bus widths of 16- and 32-bit
are supported.

Refresh to active command delay cycles (T_RFC)
The minimum number of EM#CLK cycles from the refresh or load mode command to
the refresh or activate command in the connected SDRAM. In this case, # represents
1 or 2. Some devices refer to this parameter as minimum auto refresh period.

The parameter t_rfc in ns = (T_RFC+1)/fEM#CLK is calculated based on the
Refresh to active command delay cycles (T_RFC) parameter value.

Row precharge to active command delay cycles (T_RP)
The minimum number of EM#CLK cycles required from the row precharge command
to the activate or refresh command in the connected SDRAM.

The parameter t_rp in ns = (T_RP+1)/fEM#CLK is calculated based on the Row
precharge to active command delay cycles (T_RP) parameter value.

1 Configuration Parameters

1-86

Active to read or write command delay cycles (T_RCD)
The minimum number of EM#CLK cycles from the activate command to the read or
write command in the connected SDRAM.

The parameter t_rcd in ns = (T_RCD+1)/fEM#CLK is calculated based on the
Active to read or write command delay cycles (T_RCD) parameter value.

Last write to row precharge command delay cycles (T_WR)
The minimum number of EM#CLK cycles from the last write transfer or last data in
command to the row precharge command in the connected SDRAM.

The parameter t_wr in ns = (T_WR+1)/fEM#CLK is calculated based on the Last
write to row precharge command delay cycles (T_WR) parameter value.

Active to precharge command delay cycles (T_RAS)
The minimum number of EM#CLK cycles from the activate command to the row
precharge command in the connected SDRAM.

The parameter t_ras in ns = (T_RAS+1)/fEM#CLK is calculated based on the
Active to precharge command delay cycles (T_RAS) parameter value.

Active to active command delay cycles (T_RC)
The minimum number of EM#CLK cycles from an activate command to the next
activate command in the same bank in the connected SDRAM. This is also known as
the minimum auto refresh period.

The parameter t_rc in ns = (T_RC+1)/fEM#CLK is calculated based on the Active
to active command delay cycles (T_RC) parameter value.

Active one bank to active another bank command delay cycles (T_RRD)
The minimum number of EM#CLK cycles from an activate command in one bank to
an activate command in a different bank in the connected SDRAM.

The parameter t_rrd in ns = (T_RRD+1)/fEM#CLK is calculated based on the
Active one bank to active another bank command delay cycles (T_RRD)
parameter value.

Self-refresh exit to other command delay cycles (T_XSR)
The minimum number of EM#CLK cycles from the self refresh exit command to any
other command in the connected SDRAM.

The parameter t_xsr in ns = (T_XSR+1)/fEM#CLK is calculated based on the Self-
refresh exit to other command delay cycles (T_XSR) parameter value.

 C28x-EMIF

1-87

SDRAM refresh period (tRefreshPeriod) in ms
REFRESH_RATE for SDRAM defines the rate at which the connected SDRAM
refreshes. SDRAM refresh rate depends on the values of SDRAM refresh period
(tRefreshPeriod) in ms and SDRAM refresh cycle (ncycles). Enter the SDRAM
refresh period and SDRAM refresh cycles from the SDRAM datasheet. The SDRAM
refresh rate is calculated based on the formula tRefreshPeriod * EMIF clock
frequency / ncycles.

SDRAM CAS Latency
Select the CAS latency required to access the connected SDRAM. SDRAM devices
with CAS latencies of 2 and 3 are supported.

Asynchronous mode
Select the asynchronous mode for the connected asynchronous memory. These are the
available modes:

• Normal — The byte enable will be active during the entire asynchronous cycle.
• Strobe — The byte enable will be active only during the strobe period of the access

cycle mode.

Asynchronous data bus width in bits
Select the data bus width of the connected asynchronous memory. Asynchronous
memory data bus width of 8-, 16-, and 32-bit are supported.

Read strobe setup cycles (R_SETUP)
The number of EM#CLK cycles from the EMIF chip select to the pin enable for
asynchronous memory assert.

The parameter t_r_setup in ns = (R_SETUP+1)/fEM#CLK is calculated based on
the Read strobe setup cycles (R_SETUP) parameter value.

Read strobe duration cycles (R_STROBE)
The number of EM#CLK cycles during which the pin enable for the asynchronous
memory is held active.

The parameter t_r_strobe in ns = (R_STROBE+1)/fEM#CLK is calculated based
on the Read strobe duration cycles (R_STROBE) parameter value.

Read strobe hold cycles (R_HOLD)
The number of EM#CLK cycles during which the EMIF chip select is held active after
pin enable for the asynchronous memory is deasserted.

1 Configuration Parameters

1-88

The parameter t_r_hold in ns = (R_HOLD+1)/fEM#CLK is calculated based on the
Read strobe hold cycles (R_HOLD) parameter value.

Write strobe setup cycles (W_SETUP)
The number of EM#CLK cycles from the EMIF chip select to the write enable for the
asynchronous memory assert.

The parameter t_w_setup in ns = (W_SETUP+1)/fEM#CLK is calculated based on
the Read strobe hold cycles (R_HOLD) parameter value.

Write strobe duration cycles (W_STROBE)
The number of EM#CLK cycles during which the write enable for the asynchronous
memory is held active.

The parameter t_w_strobe in ns = (W_STROBE+1)/fEM#CLK is calculated based
on the Write strobe duration cycles (W_STROBE) parameter value.

Write strobe hold cycles (W_HOLD)
The number of EM#CLK cycles during which the EMIF chip select is held active after
write enable for the asynchronous memory is deasserted.

The parameter t_w_hold in ns = (W_HOLD+1)/fEM#CLK is calculated based on
the Write strobe hold cycles (W_HOLD) parameter value.

Turn around cycles (TA)
The number of EM#CLK cycles between the end of one asynchronous memory access
and the start of another asynchronous memory access. This delay is not incurred
between a read followed by a read or a write followed by a write to the same chip
select.

Enable extended wait mode
Select this option to enable the extended wait option for the asynchronous memory.
This option can be used if extended asynchronous wait cycles are required based on
the EM#WAIT pin.

Maximum extended wait cycles for Asynchronous memory (MAX_EXT_WAIT) [0–
255]

This option is enabled if extended wait for any of the asynchronous memory CS# is
enabled. Based on the value entered, the EMIF waits for (MAX_EXT_WAIT+1) * 16
clock cycles before the asynchronous cycle is terminated.

 C28x-EMIF

1-89

Pin polarity of extended wait
Select the option to make the EMIF wait if the pin is low or high. This option is
enabled when the extended wait mode of any of the asynchronous memory
CS2/CS3/CS4 is enabled.

Enable wait rise interrupt
Select this option to get an interrupt based on the detection of a rising edge on the
EM#WAIT pin. This option is enabled when the extended wait mode of any of the
asynchronous memory CS2/CS3/CS4 is enabled.

Enable timeout interrupt
Select this option to get an interrupt when the EM#WAIT pin does not become
inactive within the number of cycles defined in Maximum extended wait cycles for
Asynchronous memory (MAX_EXT_WAIT) [0–255]. This option is enabled when
the extended wait mode of any of the asynchronous memory CS2/CS3/CS4 is enabled.

Enable line trap interrupt
Select this option to get an interrupt when there is an invalid cache line size or illegal
memory access.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-90

C28x-LIN
You can configure the LIN Transmit and LIN Receive blocks within a model.

For detailed information on LIN module, see TMS320F2803x Piccolo Local Interconnect
Network (LIN) Module, Literature Number SPRUGE2, available at the Texas Instruments
website.

LIN Module clock frequency (LM_CLK = SYSCLKOUT/2) in MHz
Display the frequency of the LIN module clock in MHz.

Enable loopback
Enables LIN loopback testing. When this option is enabled, the LIN module does the
following:

• Internally redirects the LINTX output to the LINRX input.
• Places the external LINTX pin in a high state.
• Places the external LINRX pin in a high impedance state.

The default is disabled.
Suspension mode

Use this option to configure how the LIN state machine behaves while you debug the
program on an emulator. The available options are:

• Hard_abort—Halts the transmissions and counters when you enter the LIN
debug mode. The transmissions and counters resume when you exit LIN debug
mode.

• Free_run—Allows completion of the current transmit and receive functions when
you enter the LIN debug mode.

Parity mode
Use this option to configure parity checking. The available options are:

• None—Disables parity.
• Odd—Sets the parity bit to one if you have an odd number of ones in your bytes,

such as 00110010.
• Even—Sets the parity bit to one if you have an even number of ones in your bytes,

such as 00110011.

 C28x-LIN

1-91

The default is None.

For ID parity error interrupt in the LIN Receive block to generate interrupts,
enable Parity mode.

Frame length bytes
Set the number of data bytes in the response field, from 1–8 bytes.

The default is 8 bytes.
Baud rate prescaler (P: 0-16777215)

To set the LIN baud rate manually, enter a prescaler value, from 0–16777215. Click
Apply to update the Baud rate display.

The default is 15.

For more information, see the “Baud Rate” topic in the Texas Instruments document,
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module, Literature
Number SPRUGE2.

Baud rate fractional divider (M: 0–15)
To set the LIN baud rate manually, enter a fractional divider value, from 0–15. Click
Apply to update the Baud rate display.

The default is 4.

For more information, see the “Baud Rate” topic in the Texas Instruments document,
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module, Literature
Number SPRUGE2.

Baud rate (FLINCLK = LM_CLK/(16*(P+1+M/16)) in bits/sec
Display the baud rate. For more information, see “Setting the LIN baud rate”.

Communication mode
Enable or disable the LIN module from using the ID-field bits ID4 and ID5 for length
control.

The default is ID4 and ID5 not used for length control.
Data byte order

Set the “endianness” of the LIN message data bytes.

The default is Little_Endian.

1 Configuration Parameters

1-92

Data swap width
Set the width for data swap. If you set Data byte order to Big_Endian, the only
available option for Data swap width is 8_bits.

Pin assignment (Tx)
Map the LINTX output to a specific GPIO pin.

The default is GPIO9.
Pin assignment (Rx)

Map the LINRX input to a specific GPIO pin.

The default is GPIO11.
LIN mode

Set the LIN module as a master or a slave. The default is Slave.

In master mode, the LIN node can transmit queries and commands to slaves. In slave
mode, the LIN module responds to queries or commands from a master.

This option corresponds to the CLK_MASTER field in the SCI Global Control Register
(SCIGCR1).

ID filtering
Select the type of mask filtering comparison the LIN module performs.

If you select ID byte, the module uses the RECID and ID-BYTE fields in the LINID
register to detect a match. If you select this option and enter 0xFF for LINMASK, the
LIN module does not report matches.

If you select ID slave task, the module uses the RECID an ID-SlaveTask byte to
detect a match. If you select this option and enter 0xFF for LINMASK, the LIN
module reports matches.

The default is ID slave task byte.
ID byte

If you set ID filtering as ID byte, use this option to set the ID BYTE, also known as
the “LIN mode message ID”.

In master mode, the CPU writes this value to initiate a header transmission. In slave
mode, the LIN module uses this value to perform message filtering.

 C28x-LIN

1-93

The default is 0x3A.
ID slave task byte

If you set ID filtering to ID slave task byte, use this option to set the ID-
SlaveTask BYTE. The LIN node compares this byte with the received ID and
determines whether to transmit or receive.

The default is 0x30.
Checksum type

If you select Classic, the LIN node generates the checksum field from the data
fields in the response.

If you select Enhance, the LIN node generates the checksum field from both the ID
field in the header and data fields in the response. LIN 1.3 supports classic
checksums only. LIN 2.0 supports both classic and enhanced checksums.

The default is Classic.
Enable multibuffer mode

When you select this check box, the LIN node uses transmit and receive buffers
instead of just one register. This setting affects various other LIN registers, such as:
checksums, framing errors, transmitter empty flags, receiver ready flags, and
transmitter ready flags.

The default is selected.
Enable baud rate adapt mode

This option is displayed when you set LIN mode to Slave.

If you enable this option, the slave node automatically adjusts its baud rate to match
that of the master node. For this feature to work, first set the Baud rate prescaler
and Baud rate fractional divider.

If you disable this option, the LIN module sets a static baud rate based on the Baud
rate prescaler and Baud rate fractional divider.

The default is not selected.
Inconsistent synch field error interrupt

This option is displayed when you set LIN mode to Slave.

1 Configuration Parameters

1-94

If you enable this option, the slave node generates interrupts when it detects
irregularities in the synch field. This option is only relevant if you enable Enable
adapt mode.

The default is Disabled.
No response error interrupt

This option is displayed when you set LIN mode to Slave.

If you enable this option, the LIN module generates an interrupt if it does not receive
a complete response from the master node within a timeout period.

The default is Disabled.
Timeout after 3 wakeup signals interrupt

This option is displayed when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt when it sends three wakeup
signals to the master node and does not receive a header in response. The slave waits
1.5 seconds before sending another series of wakeup signals.

This interrupt indicates that the master node is having a problem recovering from
low-power or sleep mode.

The default is Disabled.
Timeout after wakeup signal interrupt

This option is displayed when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt when it sends a wakeup signal
to the master node and does not receive a header in response. The slave waits 150
milliseconds before sending another series of wakeup signals.

This interrupt indicates that the master node is delayed recovering from low-power or
sleep mode.

The default is Disabled.
Timeout interrupt

This option is displayed when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt after 4 seconds of inactivity on
the LIN bus.

 C28x-LIN

1-95

The default is Disabled.
Wakeup interrupt

This option is displayed when you set LIN mode to Slave.

When you enable this option:

• In low-power mode, a LIN slave node generates a wakeup interrupt when it
detects the falling edge of a wake-up pulse or a low level on the LINRX pin.

• A LIN slave node that is “awake” generates a wakeup interrupt if it receives a
request to enter low-power mode while it receives data.

• A LIN slave node that is “awake” does not generate a wakeup interrupt if it
receives a wakeup pulse.

The default is Disabled.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-96

External Interrupt
External interrupts can be generated using GPIO pins.

XINT# GPIO
Select the GPIO pins for triggering external interrupts. In this case, # represents the
number of the external interrupt.

XINT# Polarity
Select the polarity of external interrupts. In this case, # represents the number of the
external interrupt.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 External Interrupt

1-97

External Mode
Allows you to do external mode settings for your model.

Communication interface
Use the serial option to run your model in external mode with serial
communication.

Serial port
Enter the COM port used by the target hardware.

To know the COM port used by the target hardware on your computer, see “Monitor
and Tune over Serial Communication”.

Verbose
Select this to view the external mode execution progress and updates in the
Diagnostic Viewer or in the MATLAB command window.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-98

Execution profiling
Number of profiling samples to collect

Enter the number of profiling samples to collect. Using execution profiling, you can
record the execution time, count the assembler instruction, and the high-level
statement in the generated code.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

 Execution profiling

1-99

SD Card Logging
Use the SD card logging to log signals to SD card mounted on C2000 hardware.

Enable MAT-file logging on SD card
Enables the MAT-file logging for SD card.

SPI module
Select the desired interface on which the SD card is connected to hardware board.

C2000 hardware boards allow SD card to be interfaced through SPI. The SPI module
will run in Master mode. For the SPI module, Clock polarity will be automatically
set to Falling_edge, Clock phase value will be automatically set to No_delay and
Data bits will be automatically set to 8. It is advisable not to use the SPI module
selected for SD card to perform any other operations through SPI master write, SPI
transmit and SPI receive blocks as these may create issues in data logging on SD
card.

Note For the selected SPI module, ensure that:

• Select the appropriate GPIO pins for SIMO pin assignment, SOMI pin
assignment, CLK pin assignment and STE pin assignment in the
corresponding SPI_x pane.

• GPIO pins are not used with other peripherals or as input/output because these
pins are not included in the existing conflict check.

SPI baud rate
Select the desired option for the SPI interface used by the SD card.

The default is Maximum achievable supported by the inserted SD Card.

See Also

More About
• “Hardware Implementation Pane: Texas Instruments C2000 Processors” on page 1-2

1 Configuration Parameters

1-100

Blocks — Alphabetical List

2

C2000 Absolute IQN
Absolute value

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block computes the absolute value of an IQ number input. The output is also an IQ
number.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks® code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
c2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part
IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN

2 Blocks — Alphabetical List

2-2

x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

 C2000 Absolute IQN

2-3

C2000 Arctangent IQN
Four-quadrant arc tangent

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
The Arctangent IQN block computes the four-quadrant arc tangent of the IQ number
inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The Texas Instruments function uses a global Q
setting and the MathWorks code used by this block dynamically adjusts the Q format
based on the block input. See “Using the IQmath Library” for more information.

Parameters
Function

Type of arc tangent to calculate:

• atan2 — Compute the four-quadrant arc tangent with output in radians with
values from -pi to +pi.

• atan2PU — Compute the four-quadrant arc tangent per unit. If atan2(B,A) is
greater than or equal to 0, atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise,
atan2PU(B,A) = atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2*pi radians.

2 Blocks — Alphabetical List

2-4

Note The order of the inputs to the Arctangent IQN block correspond to the Texas
Instruments convention, with argument 'A' at the top and 'B' at bottom.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000 Fractional part
IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN
x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

 C2000 Arctangent IQN

2-5

C280x/C2833x ADC
Analog-to-Digital Converter (ADC)

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C280x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2833x

Description
The ADC block configures the ADC to perform analog-to-digital conversion of signals
connected to the selected ADC input pins. The ADC block outputs digital values
representing the analog input signal and stores the converted values in the result register
of your digital signal processor. You use this block to capture and digitize analog signals
from external sources such as signal generators, frequency generators, or audio devices.
With the C2833x, you can configure the ADC to use the processor DMA module to move
data directly to memory without using the CPU. This frees the CPU to perform other tasks
and increases overall system capacity.

Output
The output of the ADC is a vector of uint16 values. The output values are in the range 0
to 4095 because the ADC is 12-bit converter.

Modes
The ADC block supports ADC operation in dual and cascaded modes. In dual mode, either
module A or module B can be used for the ADC block, and two ADC blocks are allowed in
the model. In cascaded mode, both module A and module B are used for a single ADC
block.

2 Blocks — Alphabetical List

2-6

Parameters

ADC Control Pane
Module

Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0 through ADCINA7).
• B — Displays the ADC channels in module B (ADCINB0 through ADCINB7).
• A and B — Displays the ADC channels in both modules A and B (ADCINA0

through ADCINA7 and ADCINB0 through ADCINB7).

Conversion mode
Type of sampling to use for the signals:

• Sequential — Samples the selected channels sequentially.
• Simultaneous — Samples the corresponding channels of modules A and B at the

same time.

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software. Conversion values are updated at each sample
time.

• ePWM#A / ePWM#B / ePWM#A_ePWM#B — Start of conversion is controlled by user-
defined PWM events.

• XINT2_ADCSOC — Start of conversion is controlled by the XINT2_ADCSOC external
signal pin.

The choices available in Start of conversion depend on the Module setting. The
following table summarizes the available choices. For each set of Start of
conversion choices, the default is given first.

Module Setting Start of Conversion Choices
A Software, ePWM#A, XINT2_ADCSOC
B ePWM#B, Software

 C280x/C2833x ADC

2-7

Module Setting Start of Conversion Choices
A and B Software, ePWM#A, ePWM#B, ePWM#A_ePWM#B,

XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are converted for the
selected ADC channel(s). This is the rate at which values are read from the result
registers. To execute this block asynchronously, set Sample Time to -1, check the
Post interrupt at the end of conversion box.

To set different sample times for different groups of ADC channels, you must add
separate ADC blocks to your model and set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the end of the set of
conversions. The interrupt is posted at the end of conversion. To execute this block
asynchronously, set Sample Time to -1.

Input Channels Pane
Number of conversions

Number of ADC channels to use for analog-to-digital conversions.
Conversion no

Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be sampled multiple times
during a single conversion sequence. To oversample, specify the same channel for
more than one conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use separate ports for
each output and show the output ports on the block. If you use more than one channel
and do not use multiple output ports, the data is output in a single vector.

2 Blocks — Alphabetical List

2-8

See Also
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x ePWM

“Configuring Acquisition Window Width for ADC Blocks”

 C280x/C2833x ADC

2-9

C280x/C2802x/C2803x/C2805x/C2806x/
C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x ePWM
Generate enhanced Pulse Width Modulated (ePWM) waveforms

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2805x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C280x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2833x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2834x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2807x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xD

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xS

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2838x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F28004x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

2 Blocks — Alphabetical List

2-10

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

Description
Use this block to generate ePWM waveforms. Multiple ePWM modules are available on
C28x devices. Each module has two outputs, ePWMA and ePWMB.

When you enable the High-Resolution Pulse Width Modulator (HRPWM), the ePWM block
uses the Scale Factor Optimizing (SFO) software library . The SFO library can
“dynamically determine the number of MEP steps per SYSCLKOUT period.” For more
information, consult TMS320x28xx, 28xxx High-Resolution Pulse Width Modulator
(HRPWM) Reference Guide, Literature Number SPRU924, available at the Texas
Instruments Web site.

This block is common to various C28x devices. Some parameters may appear or disappear
depending on which library the block is taken from. The blue label on the top right corner
of the block displays the family that will be used to show parameters. As the block is a
superset of functionalities available on different devices, some parameter selection maybe
meaningless.

Parameters

General Pane
Allow use of 16 HRPWMs (for C28044) instead of 6 PWMs

Enable all 16 High-Resolution PWM modules (HRPWM) on the C28044 digital signal
controller when the PWM resolution is too low.

For example, the Spectrum Digital eZdsp™ F28044 board has a system clock of 100
MHz (200-kHz switching). At these frequencies, conventional PWM resolution is too
low—approximately 9 bits or 10 bits. By comparison, the HRPWM resolution for the
same board is 14.8 bits.

All the ePWM blocks in your model become HRPWM blocks, Thus, when you enable
this parameter:

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-11

• Use the HRPWM parameters under the ePWMA tab to make additional
configuration changes.

• Most of the configuration parameters under the ePWMB tab are unavailable.
• Your model can contain up to 16 C280x/C2803x/C2833x ePWM blocks, provided

you configure each one for a separate module. (For example, Module is ePWM1,
ePWM2, and so on.)

For processors other than the C28044, deselect (disable) Allow use of 16 HRPWMs
(for C28044) instead of 6 PWMs. To enable HRPWM for other processors, first
determine how many HRPWM modules are available. Consult the Texas Instruments
documentation for your processor, and then use the HRPWM parameters under the
ePWMA tab to enable and configure HRPWM.

Module
Specify which ePWM module to use.

ePWMLink TBPRD
Select an ePWM module to which you want to link the current ePWM module for
timer period. When you link timer period of an ePWM module with another, the
Timer period value of the linked ePWM module is used in the current module. The
Timer period units, Specify timer period via and the Timer period parameters do
not appear when you select another ePWM module for linking.

However, the linking has no effect when you link an ePWM module to a module that
does not exist in your model. This parameter is available only with some of the TI’s
C2000™ processors.

Timer period units
Specify the units of the Timer period or Timer initial period as Clock cycles
(the default) or Seconds. When Timer period units is set to Seconds, the software
converts the Timer period or Timer initial period from a value in seconds to a
value in clock cycles. For best results, select Clock cycles. Doing so reduces
calculations and rounding errors.

Note If you set Timer period units to Seconds, enable support for floating-point
numbers. In the model window, select Simulation > Model Configuration
Parameters.

In the Configuration Parameters dialog box, select Code Generation > Interface.
Under Software Environment, enable floating-point numbers.

2 Blocks — Alphabetical List

2-12

Specify timer period via
Configure the source of the timer period value. When you set this parameter to the
Input port option, the Timer period parameter changes to Timer initial period
and creates a timer period input port, T, on the block.

Timer period
Set the period of the ePWM counter waveform. The resultant ePWM waveform period
depends on the settings of the Action when counter= parameters in the ePWMx
tab.

When you enable HRPWM, you can enter a high-precision floating point value. The
time-base period high resolution register (TBPRDHR) stores the high-resolution
portion of the timer period value.

The timer period is calculated based on the Counting mode selection and Timer
period units, as shown:

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-13

Count
Mode

Timer
period
units

Calculation Example

Up or
Down

Clock
cycles

The value entered in clock
cycles is used to calculate
time-base period (TBPRD) for
the ePWM timer register. The
period of the ePWM timer,
TCTR = (TBPRD + 1) * TBCLK.
Where, TCTR is the timer
period in seconds, and TBCLK
is the time-base clock.

For EPWMCLK frequency =
200 MHz, TBCLK = 5 ns.

Note EPWMCLK will be
equal to SYSCLKOUT or
SYSCLKOUT/2 depending on
the EPWM clock divider
(EPWMCLKDIV) parameter
setting.

When the timer period is
entered in clock cycles,
TBPRD = 9999, and the
ePWM timer period is
calculated as, TCTR = 50 µs.

For the default action settings
in the ePWMx tab, the ePWM
period = 50 µs.

2 Blocks — Alphabetical List

2-14

Count
Mode

Timer
period
units

Calculation Example

Seconds The value entered in seconds
is used to calculate the time-
base period (TBPRD) for the
ePWM timer register. The
TBPRD value entered in the
register, TBPRD = (TCTR /
TBCLK) – 1. Where, TCTR is
the timer period in seconds,
and TBCLK is the time-base
clock.

For the default action settings
in the ePWMx tab, the ePWM
period is the same as the
timer period (in seconds)
entered.

For EPWMCLK frequency =
200 MHz, TBCLK = 5 ns.

When the timer period is
entered in seconds, TBPRD =
9999, and the ePWM timer
period is calculated as, TCTR =
50 µs.

For the default action settings
in the ePWMx tab, the ePWM
period = 50 µs.

Up-Down Clock
cycles

The value entered in clock
cycles is used to calculate the
time-base period (TBPRD) for
the ePWM timer register. The
period of the ePWM timer,
TCTR = 2 * TBPRD * TBCLK.
Where, TCTR is the timer
period in seconds, and TBCLK
is the time-base clock.

For EPWMCLK frequency =
200 MHz, TBCLK = 5 ns.

When the timer period is
entered in clock cycles,
TBPRD = 10000, and the
ePWM timer period is
calculated as, TCTR = 100 µs.

For the default action settings
in the ePWMx tab, the ePWM
period = 100 µs.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-15

Count
Mode

Timer
period
units

Calculation Example

Seconds The value entered in seconds
is used to calculate the time-
base period (TBPRD) for the
ePWM timer register. The
TBPRD value entered in the
register, TBPRD = TCTR /
TBCLK. Where, TCTR is the
timer period in seconds, and
TBCLK is the time-base clock.

For the default action settings
in the ePWMx tab, the ePWM
period is two times the timer
period (in seconds) entered.

For EPWMCLK frequency =
200 MHz, TBCLK = 5 ns.

When the timer period is
entered in seconds, TBPRD =
10000, and the ePWM timer
period is calculated as, TCTR =
50 µs.

For the default action settings
in the ePWMx tab, the ePWM
period = 100 µs.

Timer initial period
The initial period of the waveform from the time the PWM peripheral starts operation
until the ePWM input port, T, receives a new value for the period. Use Timer period
units to measure the period in clock cycles or in seconds. The timer period is
calculated similar to the Timer period parameter.

This parameter appears only when you set the Specify timer period via parmeter to
the Input port option.

Reload for time base period register (PRDLD)
The time at which the counter period is reset.

• Counter equals to zero The counter period refreshes when the value of the
counter is 0.

• Immediate without using shadow The counter period refreshes immediately.

Counting mode
Specify the counting mode in which to operate. This PWM module can operate in
three distinct counting modes: Up, Down, and Up-Down. The Down option is not
compatible with HRPWM. To avoid an error when you build the model, do not set the
Counting mode parameter to Down and select the Enable HRPWM (Period)
parameter checkbox.

2 Blocks — Alphabetical List

2-16

The following illustration shows the waveforms that correspond to these three modes:

Synchronization action
Specify the source of a phase offset to apply to the Time-base synchronization input
signal, EPWMxSYNCI from the SYNC input port. Selecting Set counter to phase
value specified via dialog creates the Phase offset value parameter.
Selecting Set counter to phase value specified via input port creates

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-17

a phase input port, PHS, on the block. Selecting Disable, the default value prevents
the application of phase offsets to the TB module.

Counting direction after phase synchronization
This parameter appears when Counting mode is Up-Down and Synchronization
action is Set counter to phase value specified via dialog or Input
port. Configure the timer to count up or down, following synchronization. This
parameter corresponds to the PHSDIR field of the Time-base Control Register
(TBCTL).

Phase offset value (TBPHS)
This field appears when you select Set counter to phase value specified
via dialog in Synchronization action.

The offset value will be loaded in the Time Base Counter on a Synchronization event.

Note Enter the Phase offset value (TBPHS) in TBCLK cycles, from 0 to 65535.
While using HRPWM, you may enter decimal values.

This parameter corresponds to the Time-Base Phase Register (TBPHS).
Specify software synchronization via input port (SWFSYNC)

Create an input port, SYNC, for a Time-base synchronization input signal,
EPWMxSYNCI. You can use this option to achieve precise synchronization across
multiple ePWM modules by daisy-chaining multiple Time-base (TB) submodules.

Enable digital compare A event1 synchronization (DCAEVT1)
This parameter only appears for specific C28x devices.

Synchronize the ePWM time base to a DCAEVT1 digital compare event. Use this
feature to synchronize this PWM module to the time base of another PWM module.
Fine-tune the synchronization between the two modules using the Phase offset
value. This option is not compatible with HRPWM. Enabling HRPWM disables this
option.

Enable digital compare B event1 synchronization (DCBEVT1)
This parameter only appears for specific C28x devices.

Synchronize the ePWM time base to a DCBEVT1 digital compare event. Use this
feature to synchronize this PWM module to the time base of another PWM module.
Fine-tune the synchronization between the two modules using the Phase offset

2 Blocks — Alphabetical List

2-18

value. This option is not compatible with HRPWM. Enabling HRPWM disables this
option.

Synchronization output (SYNCO)
This parameter corresponds to the SYNCOSEL field in the Time-Base Control Register
(TBCTL).

Use this parameter to specify the event that generates a Time-base synchronization
output signal, EPWMxSYNCO, from the Time-base (TB) submodule.

The available choices are:

• Pass through (EPWMxSYNCI or SWFSYNC) — a Synchronization input pulse or
Software forced synchronization pulse, respectively. You can use this option to
achieve precise synchronization across multiple ePWM modules by daisy chaining
multiple Time-base (TB) submodules.

• Counter equals to zero (CTR=Zero) — Time-base counter equal to zero
(TBCTR = 0x0000)

• Counter equals to compare B (CTR=CMPB) — Time-base counter equal to
counter-compare B (TBCTR = CMPB)

• Disable — Disable the EPWMxSYNCO output (the default)

Time base clock (TBCLK) prescaler divider
Use the Time base clock (TBCLK) prescaler divider (CLKDIV) and the High
speed time base clock (HSPCLKDIV) prescaler divider (HSPCLKDIV) to
configure the Time-base clock speed (TBCLK) for the ePWM module. Calculate
TBCLK using the following equation:

TBCLK in Hz = PWM clock in Hz/(HSPCLKDIV * CLKDIV)

For example, the default values of both CLKDIV and HSPCLKDIV are 1, and the
default frequency of PWM clock is 100 MHz, so:

TBCLK in Hz = 100 MHz/(1 * 1) = 100 MHz

TBCLK in seconds = 1/TBCLK in Hz = 1/100 MHz = 0.01 µs

The choices for the Time base clock (TBCLK) prescaler divider are: 1, 2, 4, 8, 16,
32, 64, and 128.

The Time block clock (TBCLK) prescaler divider parameter corresponds to the
CLKDIV field of the Time-base Control Register (TBCTL).

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-19

Note The PWM clock is the SYSCLKOUT or a clock derived from SYSCLKOUT using
the PWM Clock divider. For a few TI C2000 processors, there may be a PWM clock
divider that divides the SYSCLKOUT to derive the PWM module clock. Check your
processor’s technical reference manual to know more details.

The frequency of SYSCLKOUT depends on the oscillator frequency and the
configuration of PLL-based clock module. Changing the value of SYSCLOCKOUT
affects the timing of all ePWM modules. If there is a PWM clock prescale available in
the processor, changing its value also affects the PWM timing.

High speed time base clock (HSPCLKDIV) prescaler divider
See the Time base clock (TBCLK) prescaler divider topic for an explanation of the
role of this value in setting the speed of the Time-base Clock. Choices are to divide by
1, 2, 4, 6, 8, 10, 12, and 14. Selecting Enable high resolution PWM (HRPWM –
period) forces this option to 1.

This parameter corresponds to the HSPCLKDIV field of the Time-base Control
Register (TBCTL).

Enable swap module A and B
This parameter only appears for specific C28x devices.

Swap the ePWMA and ePWMB outputs. This option outputs the ePWMA signals on the
ePWMB outputs and the ePWMB signals on the ePWMA outputs.

ePWMA and ePWMB panes
Each ePWM module has two outputs, ePWMA and ePWMB. The ePWMA output pane
and ePWMB output pane include the same settings, although the default values vary in
some cases, as noted.

Enable ePWM#x
Enables the ePWMA and/or ePWMB output signals for the ePWM module selected on
the General pane. In this case, # represents the ePWM module and x represents A or
B. By default, Enable ePWM#A is enabled, and Enable ePWM#B is disabled.

Note When you select Enable ePWM#A or Enable ePWM#B, enable support for
floating-point numbers by browsing to Configuration Parameters > Code
Generation > Interface > Software Environment.

2 Blocks — Alphabetical List

2-20

CMPx initial value
This field appears when you set CMPx source to Input port. In this case, x
represents A or B. Enter the initial pulse width of CMPA or CMPB that the PWM
peripheral uses when it starts operation. Subsequent inputs to the WA or WB ports
change the CMPA or CMPB pulse width.

Action when counter=ZEROAction when counter=period (PRD)Action when
counter=CMPA on up-count (CAU)Action when counter=CMPA on down-count
(CAD)Action when counter=CMPB on up-count (CBU)Action when
counter=CMPB on down-count (CBD)

These settings along with the other remaining settings in the ePWMA output and
ePWMB output panes, determine the behavior of the Action Qualifier (AQ)
submodule. The AQ module determines which events are converted into various
action types, producing the required switched waveforms of the ePWM#A and
ePWM#B output signals.

For each of these four fields, the available choices are Do nothing, Clear, Set, and
Toggle.

The default values for these fields vary between the ePWMA output and ePWMB
output panes.

The following table shows the defaults for each of these panes when you set
Counting mode to Up or Up-Down:

Action when counter
=...

ePWMA output pane ePWMB output pane

ZERO Set Clear
period (PRD) Clear Set
CMPA on up-count (CAU) Clear Set
CMPA on down-count
(CAD)

Set Do nothing

CMPB on up-count (CBU) Do nothing Clear
CMPB on down-count
(CBD)

Do nothing Set

The following table shows the defaults for each of these panes when you set
Counting mode to Down:

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-21

Action when counter
=...

ePWMA output pane ePWMB output pane

ZERO Do nothing Do nothing
period (PRD) Clear Clear
CMPA on down-count
(CAD)

Set Do nothing

CMPB on down-count
(CBD)

Do nothing Set

For a detailed discussion of the AQ submodule, consult the TMS320x280x Enhanced
Pulse Width Modulator (ePWM) Module Reference Guide (SPRU791), available on the
Texas Instruments Web site.

Compare value reload conditionAdd continuous software force input
portContinuous software force logicReload condition for software force

These four settings determine how the action-qualifier (AQ) submodule handles the
S/W force event, an asynchronous event initiated by software (CPU) via control
register bits.

Compare value reload condition determines if and when to reload the Action-
qualifier S/W Force Register from a shadow register. Choices are Load on counter
equals to zero (CTR=Zero) (the default), Load on counter equals to
period (CTR=PRD), Load on either, and Freeze.

Add continuous software force input port creates an input port, SFA, which you
can use to control the software force logic. Send one of the following values to SFA as
an unsigned integer data type:

• 0 = Forcing disable: Do nothing. The default option.
• 1 = Forcing low: Clear low
• 2 = Forcing high: Set high

If you did not create the SFA input port, you can use Continuous software force
logic to select which type of software force logic to apply. The choices are:

• Forcing disable: Do nothing. The default.
• Forcing low: Clear low
• Forcing high: Set high

2 Blocks — Alphabetical List

2-22

Reload condition for software force — Choices are Zero (the default), Period,
Either period or zero, and Immediate.

Inverted version of ePWM#A
This parameter only appears for specific C28x devices.

Invert the ePWM#A signal and output it on the ePWM#B outputs.

This parameter sets the SELOUTB field in the HRPWM Configuration Register
(HRCNFG).

Enable high resolution PWM (HRPWM)
This parameter appears at this position in the C280x and C2833x ePWM blocks.

Select to enable High Resolution PWM settings. When the effective resolution for
conventionally generated PWM is insufficient, consider High Resolution PWM
(HRPWM). The resolution of PWM is normally dependent upon the PWM frequency
and the underlying system clock frequency. To address this limitation, HRPWM uses
Micro Edge Positioner (MEP) technology to position edges more finely by dividing
each coarse system clock. The accuracy of the subdivision is on the order of 150ps.
The following figure shows the relationship between one system clock and edge
position in terms of MEP steps:

High resolution PWM (HRPWM) loading mode
This parameter appears at this position in the C280x and C2833x ePWM blocks.

Determine when to transfer the value of the CMPAHR shadow to the active register:

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-23

• Counter equals to zero (CTR=ZERO): Transfer the value when the time base
counter equals zero (TBCTR = 0x0000).

• Counter equals to period (CTR=PRD): Transfer the value when the time base
counter equals the period (TBCTR = TBPRD).

• CTR=Zero or CTR=PRD Transfer the value when either case is true.

High resolution PWM (HRPWM) control mode
This parameter appears at this position in the C280x and C2833x ePWM blocks.

Select which register controls the Micro Edge Positioner (MEP) step size. The High
resolution PWM (HRPWM) control mode option configures the CTLMODE
“Control Mode Bits”.

• Duty control mode uses the Extension Register for HRPWM Duty (CMPAHR) or
the Extension Register for HRPWM Period (TBPRDHR) to control the MEP edge
position.

• Select Phase control mode to use the Time Base Period High-Resolution
Register (TBPRDHR) to control the MEP edge position.

The High resolution PWM (HRPWM) control mode option configures the
CTLMODE “Control Mode Bits” in the HRPWM Configuration Register (HRCNFG).

High resolution (HRPWM) edge control mode
This parameter appears at this position in the C280x and C2833x ePWM blocks.

Swap the ePWMA and ePWMB outputs. This parameter sets the SWAPAB field in the
HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software
Enable scale factor optimizing (SFO) software with HRPWM. This software
dynamically determines the scaling factor for the Micro Edge Positioner (MEP) step
size. The step size varies depending on operating conditions such as temperature and
voltage. The SFO software reduces variability due to these conditions. For more
information, see the “Scale Factor Optimizing Software (SFO)” section of the
TMS320x2802x, 2803x Piccolo High Resolution Pulse Width Modulator (HRPWM)
Reference Guide, Literature Number: SPRUGE8.

Counter Compare Pane
The four compare registers—CMPA, CMPB, CMPC, and CMPD, are compared with the
time-base counter value to generate appropriate events. CMPA and CMPB events are

2 Blocks — Alphabetical List

2-24

used for controlling PWM duty cycle by selecting appropriate actions in ePWMA and
ePWMB panes. These events can also be used to generate an interrupt to the CPU and/or
a start of conversion pulse to the ADC. You can refer to the Event Trigger pane to select
the events to be triggered.

ePWMLink CMPx
Select an ePWM module to which you want to link the current ePWM module for
counter value. In this case, x represents A, B, C, or D. When you link counter value of
an ePWM module with another, the CMPx value value of the linked ePWM module is
used in the current module. The CMPx, Specify CMPx via, and CMPx value
parameters do not appear when you select another ePWM module for linking.

However, the linking has no effect when you link an ePWM module to a module that
does not exist in your model. This parameter is available only with some of the TI’s
C2000 processors.

CMPx units
Specify the units used by the compare register: Percentages (the default) or Clock
cycles. In this case, x represents A, B, C, or D.

Notes

• The term clock cycles refers to the time-base clock on the processor. See the TB
clock prescaler divider topic for an explanation of time-base clock speed
calculations.

• Percentages use additional computation time in generated code and can decrease
accuracy of the results.

• If you set CMPx units to Percentages, enable support for floating-point
numbers by browsing to Configuration Parameters > Code Generation >
Interface > Software Environment.

Specify CMPx via
Specify the source of the pulse width. If you select Specify via dialog (the
default), enter a value for the CMPx value parameter. If you select Input port, set
the value using the input port, Wx on the block. If you select Input port, make sure
to set the CMPx initial value parameter. In this case, x represents A, B, C, or D.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-25

CMPx value
This field appears when you set CMPx source to Specify via dialog. Enter a
value that specifies the pulse width, in the units specified in CMPx units. In this case,
x represents A, B, C, or D.

Reload for compare x Register (SHDWxMODE)
The time at which the counter period is reset. In this case, x represents A, B, C, or D.

• Counter equals to zero — refreshes the counter period when the value of the
counter is 0.

• Immediate without using shadow — refreshes the counter period
immediately.

Deadband Unit Pane
The Deadband unit pane lets you specify parameters for the Dead-Band Generator (DB)
submodule.

Use deadband for ePWM#AUse deadband for ePWM#B
Enables a deadband area of Rising Edge Delay or Falling Edge Delay cycles without
signal overlap between pairs of ePWM output signals. This check box is cleared by
default.

Enable half-cycle clocking
This parameter only appears for specific C28x devices.

To double the deadband resolution, enable half-cycle clocking. This option clocks the
deadband counters at TBCLK*2. When you disable this option, the deadband counters
use full-cycle clocking (TBCLK*1).

Deadband polarity
Configure the deadband polarity as Active high (AH) (the default option), Active
low (AL) , Active high complementary (AHC) or Active low
complementary (ALC). During the Deadband time, both the ePWMA and ePWMB
outputs have to set to an inactive state. Depending on your hardware settings, the
inactive states can correspond to a high or a low logic value. Active high means that
the system is active when the ePWM output is set to a high logic value. Active low
means that the system is active when the ePWM output is set to a low logic value. Use
the Complementary option when the B signal needs to be the inverse of A. For more
information, refer to the ePWM Technical Reference guide of your processor.

2 Blocks — Alphabetical List

2-26

Signal source for rising edge (RED)
Select the signal source to which rising edge delay (RED) has to be applied. By
default ePWM#A signal is selected.

Signal source for falling edge (FED)
Select the signal source to which falling edge delay (FED) has to be applied. By
default ePWM#A signal is selected.

Deadband period source
Specify the source of the control logic. Choose Specify via dialog (the default) to
enter explicit values, or Input port to use a value from the input port.

Deadband Rising edge (RED) deadband period (0~16383)
The value you enter in the field specifies the dead band delay in time-base clock
(TBCLK) cycles.

Deadband Falling edge (FED) deadband period (0~16383)
The value you enter in the field specifies the dead band delay in time-base clock
(TBCLK) cycles.

Event Trigger Pane
Configure ADC Start of Conversion (SOC) by one or both of the ePWMA and ePWMB
outputs.

Enable ADC start of conversion for module A
When you select this option, ADC Start of Conversion Event (ePWMSOCxA) is
generated when the event selected in the Start of conversion for module A event
selection parameter occurs.

Number of event for start of conversion for Module A (SOCA) to be generated
When you select Enable ADC start of conversion for module A, this field specifies
the number of the event that triggers ADC Start of Conversion for Module A (SOCA):
First event triggers ADC start of conversion with every event (the default).
Second event triggers ADC start of conversion with every second event. Third
event triggers ADC start of conversion with every third event.

Start of conversion for module A event selection
When you select Enable ADC start of conversion for module A, this field specifies
the counter match condition that triggers an ADC start of conversion event. The
choices are:

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-27

Digital Compare Module A Event 1 start of conversion (DCAEVT1.soc) and Digital
Compare Module B Event 1 start of conversion (DCBEVT1.soc) (For specific C28x devices
only)

When the ePWM asserts a DCAEVT1 or DCBEVT1 digital compare event. Use this
feature to synchronize the selected PWM module to the time base of another PWM
module. Fine-tune the synchronization between the two modules using the Phase
offset value.

Counter equals to zero (CTR=Zero)
When the ePWM counter reaches zero (the default).

Counter equals to period (CTR=PRD)
When the ePWM counter reaches the period value.

Counter equals to zero or period (CTR=Zero or CTR=PRD)
When the time base counter reaches zero (TBCTR = 0x0000) or when the time base
counter reaches the period (TBCTR = TBPRD).

Counter is incrementing and equals to the compare x register (CTRU=CMPx)
The ePWM counter reaches the compare value x on the way up. In this case, x
represents A, B, C, or D.

Counter is decrementing and equals to the compare x register (CTRD=CMPx)
The ePWM counter reaches the compare value x on the way down. In this case, x
represents A, B, C, or D.

Enable ADC start of conversion for module B
When you select this option, ADC Start of Conversion Event (ePWMSOCxB) is
generated when the event selected in the Start of conversion for module B event
selection parameter occurs.

Number of event for start of conversion for Module B (SOCB) to be generated
When you select Enable ADC start module B, this field specifies the number of the
event that triggers ADC start of conversion: First event triggers ADC start of
conversion with every event (the default), Second event triggers ADC start of
conversion with every second event, and Third event triggers ADC start of
conversion with every third event.

Start of conversion for module B event selection
When you select Enable ADC start of conversion for module B, this field specifies
the counter match condition that triggers an ADC start of conversion event. The
choices are the same as for Module A counter match event condition.

2 Blocks — Alphabetical List

2-28

Enable ePWM interrupt
Select this option to generate interrupts based on different events defined by
Number of event for interrupt to be generated and Interrupt counter match
event condition. By default, the software clears (disables) this option.

Number of event for interrupt to be generated
When you select Enable ePWM interrupt, this field specifies the number of the
event that triggers the ePWM interrupt: First event triggers ePWM interrupt with
every event (the default), Second event triggers ePWM interrupt with every second
event, and Third event triggers ePWM interrupt with every third event.

Interrupt counter match event condition
When you select Enable ePWM interrupt, this field specifies the counter match
condition that triggers ePWM interrupt. The choices are the same as for Module A
counter match event condition.

HRPWM Pane
Enable high resolution period on ePWM#A (HRPWM - period)Enable high
resolution period on ePWM#B (HRPWM - period)

This parameter only appears for specific C28x devices.

When the effective resolution for conventionally generated PWM is insufficient,
consider using High Resolution PWM (HRPWM). The resolution of PWM is normally
dependent upon the PWM frequency and the underlying system clock frequency. To
address this limitation, HRPWM uses Micro Edge Positioner (MEP) technology to
position edges more finely by dividing each coarse system clock. The accuracy of the
subdivision is on the order of 150ps. The following figure shows the relationship
between one system clock and edge position in terms of MEP steps:

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-29

When this parameter is enabled, decimal values will be accepted for the timer period
of the ePWM Module. The Extension Register for the HRPWM Period (TBPRDHR)
provides an 8 bit representation of the decimal part of the Timer period value. This
parameter enables the Enable high resolution PWM (HRPWM - duty) option, and
displays the HRPWM loading mode, HRPWM control mode, and HRPWM edge
control mode options. Also configure HRPWM control mode.

Selecting Enable HRPWM (Period) forces TB clock prescaler divider and High
Speed TB clock prescaler divider to 1. These settings match the HRPWM time
base clock with the SYSCLKOUT frequency.

The Down option in the Counting mode parameter is not compatible with HRPWM.
To avoid an error when you build the model, do not set the Counting mode
parameter to Down and select the Enable HRPWM (Period) parameter checkbox.

Enable HRPWM Duty on ePWM#A(HRPWM - duty)
This parameter only appears for specific C28x devices.

When this parameter is enabled, decimal values will be accepted for the Compare A
value (CMPA) of the ePWM Module. The Extension Register for the HRPWM Compare
A (CMPAHR) provides an 8 bit representation of the decimal part of the Compare
value.

This parameter also enables HRPWM control mode.
High resolution PWM (HRPWM) loading mode on ePWM#A

This parameter appears when Enable high resolution PWM (HRPWM - period) or
Enable high resolution PWM (HRPWM - duty) is selected. Determine when to
transfer the value of the CMPAHR shadow to the active register:

2 Blocks — Alphabetical List

2-30

• Counter equals to zero (CTR=ZERO) — transfers the value when the time
base counter equals zero (TBCTR = 0x0000).

• Counter equals to period (CTR=PRD) — transfers the value when the time
base counter equals the period (TBCTR = TBPRD).

• Counter equals to either zero or period (CTR=ZERO or CTR=PRD) —
transfers the value when either case is true.

This option configures the HRLOAD “Shadow Mode Bit” in the HRPWM Configuration
Register (HRCNFG).

High resolution PWM (HRPWM) control mode on ePWM#A
This parameter appears when Enable high resolution PWM (HRPWM - period) or
Enable high resolution PWM (HRPWM - duty) is selected. Select which register
controls the Micro Edge Positioner (MEP) step size. The High resolution PWM
(HRPWM) Control mode option configures the CTLMODE “Control Mode Bits”.

• Duty control mode — uses the Extension Register for HRPWM Duty (CMPAHR)
or the Extension Register for HRPWM Period (TBPRDHR) to control the MEP edge
position.

• Phase control mode — uses the Time Base Phase High Resolution Register
(TBPHSHR) to control the MEP edge position.

The High resolution PWM (HRPWM) control mode — configures the CTLMODE
“Control Mode Bits” in the HRPWM Configuration Register (HRCNFG).

High resolution PWM (HRPWM) edge control mode
This parameter appears when Enable high resolution PWM (HRPWM - period) or
Enable high resolution PWM (HRPWM - duty) is selected.

Select the register that controls the Micro Edge Positioner (MEP) step size.

• Rising Edge — MEP control of rising edge
• Falling Edge — MEP control of falling edge
• Both Edge — MEP control of both edges

The High resolution PWM (HRPWM) Edge Control mode option configures the
EDGMODE “Edge Mode Bits” in the HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software
This parameter is enabled, if the Enable high resolution PWM (HRPWM - period)
or Enable high resolution PWM (HRPWM - duty) is selected.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-31

Enable scale factor optimizing (SFO) software with HRPWM. This software
dynamically determines the scaling factor for the Micro Edge Positioner (MEP) step
size. The step size varies depending on operating conditions such as temperature and
voltage. The SFO software reduces variability due to these conditions. For more
information, see the “Scale Factor Optimizing Software (SFO)” section of the
TMS320x2802x, 2803x Piccolo High Resolution Pulse Width Modulator (HRPWM)
Reference Guide, Literature Number: SPRUGE8.

Enable auto convert
This parameter only appears for specific C28x devices and if Enable high resolution
PWM (HRPWM - period) or Enable high resolution PWM (HRPWM - duty) is
selected.

Apply the scaling factor calculated by the SFO software to the controlling period or
duty cycle. (Use the HRPWM duty mode to select controlling period or duty cycle.)
This parameter sets the AUTOCONV field in the HRPWM Configuration Register
(HRCNFG).

PWM Chopper Control Pane
The PWM chopper control pane lets you specify parameters for the PWM-Chopper (PC)
submodule. The PC submodule uses a high-frequency carrier signal to modulate the PWM
waveform generated by the AQ and DB modules.

Chopper module enable
Select to enable the chopper module. Use of the chopper module is optional, so this
check box is cleared by default.

Chopper frequency divider
Set the prescaler value that determines the frequency of the chopper clock. The
system clock speed is divided by this value to determine the chopper clock frequency.
Choose an integer value from 1 to 8.

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first pulse. This feature
provides a high-energy first pulse for a hard and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also programmable. The
duty cycle can be varied in steps of 12.5% from 12.5% to 87.5%.

2 Blocks — Alphabetical List

2-32

Trip Zone Unit Pane
The Trip Zone unit pane lets you specify parameters for the Trip-zone (TZ) submodule.
Each ePWM module receives TZ signals from the GPIO MUX. The number of Trip zone
signals are different for C28x processor families. These signals can be used to force the
ePWM output into a specific state based on an event like an external fault. Use the
settings in this pane to program the ePWM outputs to respond to external events.

Trip zone source
Specify the source of the control logic for the Trip Zone signals. Select Specify via
dialog (the default) to enable specific Trip-zone signals in the block dialog. Choose
Input port to enable specific Trip-zone signals using a block input port, TZSEL.

If you select Input port, use the following bit operation to determine the value of
the 16-bit integer to send to the TZSEL input port:

TZSEL INPUT VALUE = (OSHT6*213 + OSHT5*212 + OSHT4*211 + OSHT3*210 +
OSHT2*29 + OSHT1*28 + CBC6*25 + CBC5*24 + CBC4*23 + CBC3*22 +
CBC2*21 + CBC1*20)

The software uses the higher 8 bits for the One shot TZ1-TZ6 (OSHT1–6) and the
lower 8 bits for Cyclic TZ1-TZ6 (CBC1–6). You can set up a group of TZ sources
(1~6), use a bit operation to combine them into an integer, and then feed the integer
to TZSEL.

For example, to enable One Shot TZ6 (OSHT6) and One Shot TZ5 (OSHT5) as trip
zone sources, set OSHT6 and OSHT5 to “1” and leave the remaining values as “0”.

TZSEL INPUT VALUE = (1*213 + 1*212 + 0*211 …)

TZSEL INPUT VALUE = (8192 + 4096 + 0 …)

TZSEL INPUT VALUE = 12288

When the block receives this value, it applies it to the TZSEL register as a binary
value: 11000000000000.

For more information, see the ”Trip-Zone Submodule Control and Status Registers”
section of the TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide, Literature Number: SPRU791 on www.ti.com

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-33

Enable One-Shot Trip zone# (TZ#)
This option is only available when the Trip zone source is Specify via dialog.
Select this check box to enable the corresponding Trip-zone signal in One-Shot Mode.
In this mode, when the trip event is active, the Trip zone module performs the
corresponding action on the EPWM#A/B output immediately and latches the
condition. You can unlatch the condition using software control.

Enable one-shot digital compare A event 1 (DCAEVT1)Enable one-shot digital
compare B event 1 (DCBEVT1)

This option is only available when the Trip zone source is Specify via dialog.
Select these check boxes to enable the corresponding event signal as a OST trip
source for event 1. In this mode, if the digital compare A or digital compare B event 1
is active, the Trip zone module performs the corresponding action on the EPWM#A/B
output immediately and latches the condition. You can unlatch the condition using the
software control. This parameter is available only for specific C28x processors.

Enable Cyclic Trip zone# (TZ#)
This option is only available when the Trip zone source is Specify via dialog.
Select this check box to enable the corresponding Trip-zone signal in Cycle-by-Cycle
Mode. In this mode, when the trip event is active, the Trip zone module performs the
corresponding action on the EPWM#A/B output immediately and latches the
condition. In Cycle-by-Cycle Mode, the Trip zone module automatically clears
condition when the ePWM Counter reaches zero. Therefore, in Cycle-by-Cycle Mode,
every ePWM cycle resets or clears the trip event.

Enable cyclic digital compare A event 2 (DCAEVT2)Enable cyclic digital compare
B event 2 (DCBEVT2)

This option is only available when the Trip zone source is Specify via dialog.
Select these check boxes to enable the corresponding event signal as a cyclic trip
source for event 2. In this mode, if the digital compare A or digital compare B event 2
is active, the Trip zone module performs the corresponding action on the EPWM#A/B
output immediately and latches the condition. In Cycle-by-Cycle Mode, the Trip zone
module automatically clears condition when the ePWM Counter reaches zero.
Therefore, in Cycle-by-Cycle Mode, every ePWM cycle resets or clears the trip event.
This parameter is available only for specific C28x processors.

Enable Trip-zone One-Shot interrupt (OST)
Generate an interrupt when any of the enabled one shot (OST) triggering events
occur.

2 Blocks — Alphabetical List

2-34

Enable Trip-zone Cycle-by-Cycle interrupt (CBC)
Generate an interrupt when any of the enabled cyclic or cycle-by-cycle (CBC)
triggering events occur.

Digital comparator output A/B event 1/2 interrupt enable (DCAEVT1, DCAEVT2,
DCBEVT1, DCBEVT2)

These parameters are available only for specific C28x processors. Generate an
interrupt when Digital Comparator Output A or Digital Comparator Output B for
event 1 or 2 occurs.

ePWM#A forced (TZ) toePWM#B forced (TZ) toePWM#A forced (DCAEVT#)
toePWM#B forced (DCBEVT#) to

These parameters decide the actions to take on the ePWM outputs upon a trip-zone
condition. The Trip zone module overrides and forces the ePWM#A and/or ePWM#B
(TZ or DCAEVTx) output to one of the following states: No action (the default),
High, Low, or Hi-Z (High Impedance).

Digital Compare
This pane is available only for specific C28x processors.

Use the Digital Compare pane to configure the Digital Compare (DC) submodule
parameters.

Each digital compare (DC) submodule receives three TZ signals (TZ1 to TZ3) from the
GPIO MUX, and three COMP signals from the COMP (For specific C28x devices only).
These signals indicate fault or trip conditions that are external to the ePWM submodule.
Use the settings in this pane to output specific DC events in response to those external
signals. These DC events feed directly into the Time-base, Trip-zone, and Event-trigger
submodules.

For more information, see the “Digital Compare (DC) Submodule” section of the
TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide, Literature Number: SPRUGE9.

Source for digital compare A high signal (DCAH), Source for digital compare B
high signal (DCBH)

If the TZ or COMP signal selected is true, DCAH/DCBH will be set to a high logic
value. Use the DCAEVT# source select, DCBEVT# source select options to
determine the impact of DCAH/DCBH on DCAEVT# and DCBEVT#.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-35

Source for digital compare A low signal (DCAL), Source for digital compare B low
signal (DCBL)

If the TZ or COMP signal selected is true, DCAL/DCBL will be set to a high logic
value. Use the DCAEVT# source select, DCBEVT# source select options to
determine the impact of DCAL/DCBL on DCAEVT# and DCBEVT#.

Digital compare output A event # selection (DCAEVT#), Digital Compare output
B event # selection (DCBEVT#)

Qualify the signals that generate DC events, such as DCAEVT# or DCBEVT#. Select
the states of Source for digital compare A high signal DCAH, Source for digital
compare B high signal DCBH, Source for digital compare A low signal
(DCAL), and Source for digital compare B low signal (DCBL) that generate the
event. To disable this feature, choose the Event disabled option.

DCAEVT# source select, DCBEVT# source select
This parameter controls two separate aspects of triggering DC events:

• Triggering filtered or unfiltered DC event.

• Configures DCACTL[EVT1SRCSEL] or DCACTL[EVT2SRCSEL]
• Configures DCBCTL[EVT1SRCSEL] or DCBCTL[EVT2SRCSEL]

• Trigger the DC event synchronously or asynchronously.

• Configures DCACTL[EVT1FRCSYNCSEL] or DCACTL[EVT2FRCSYNCSEL]
• Configures DCBCTL[EVT1FRCSYNCSEL] or DCBCTL[EVT2FRCSYNCSEL]

Filtering

• Options that begin with DCAEVT# with sync or DCAEVT# with async do not
apply filtering to DC events. Qualified signals trigger DC events.

• Options that begin with DCEVTFILT sync apply filtering to DC events. Qualified
signals pass through filtering circuits before triggering DC events. This filtering is
not configurable in the ePWM block. For more information, refer to the “Event
Filtering” section of the TMS320x2802x, 2803x Piccolo Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide, Literature Number: SPRUGE9.

Synchronizing

• Options that end with async trigger DC events asynchronously. When the
qualified or filtered signals exist, the DC submodule triggers the DC event
immediately.

2 Blocks — Alphabetical List

2-36

• Options that end with sync trigger DC events synchronously. Once the qualified or
filtered signals exist, the DC submodule triggers the DC event in sync with the
TBCLK signal.

Note The following fields appear when you select DCEVTFILT with sync or
DCEVTFILT with async for the DCAEVTX source select or DCBEVTX source
select.

For more details about the following parameters, refer to the
sections:TMS320x2806x Piccolo processor: 3.2.9.3.2 (Event Filtering) and Table
56 of Technical Reference Manual (SPRUH18C). TMS320x2802x/03x Piccolo
processors : 2.9.3.2 (Event Filtering) and Table 56 of Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide (SPRUGE9E) for TMS320x2802x and
TMS320x2803x Piccolo processors.

Pulse select
The blanking window which filters out event occurrences on the signal while active, is
aligned to either a CTR = PRD pulse or a CTR = 0 pulse.

Blanking window inverted
The option that allows you to Enable or Disable the Inverted Blanking window.

Blanking window offset
The number of TBCLK cycles required from the blanking window reference to the
point when the blanking window is applied.

Blanking window width
The duration of the blanking window in terms of TBCLK.

Filter source select
The option that allows you to select a source for Filtering.

The available options are:

• Filtered version of DCAEVT1 (DCAEVT1FILT)
• Filtered version of DCAEVT2 (DCAEVT2FILT)
• Filtered version of DCBEVT1 (DCBEVT1FILT)
• Filtered version of DCBEVT2 (DCBEVT2FILT)

Enable counter capture
The option that allows you to Enable or Disable the time-base counter capture.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-37

References
For more information, consult the following references, available at the Texas Instruments
Web site:

• TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference
Guide, literature number SPRU791

• TMS320x280x, 2801x, 2804x High Resolution Pulse Width Modulator Reference
Guide, literature number SPRU924

• TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide, literature number SPRUGE9

• TMS320x2802x, 2803x Piccolo High Resolution Pulse Width Modulator (HRPWM)
Reference Guide, literature number SPRUGE8

• TMS320x2805x Piccolo Technical Reference Manual, literature number SPRUHE5
• TMS320x2806x Piccolo Technical Reference Manual, literature number SPRUH18
• TMS320x28M35x Concerto Technical Reference Manual, literature number SPRUH22
• TMS320x28M36x Concerto Technical Reference Manual, literature number SPRUHE8
• Using the ePWM Module for 0% - 100% Duty Cycle Control Application Report,

literature number SPRU791
• Configuring Source of Multiple ePWM Trip-Zone Events, literature number SPRAAR4
• TMS320F2809, TMS320F2808, TMS320F2806 TMS320F2802, TMS320F2801

TMS320C2802, TMS320C2801, and TMS320F2801x DSPs Data Manual, literature
number SPRS230

• TMS320F28044 Digital Signal Processor Data Manual, literature number SPRS357
• TMS320F28335/28334/28332 TMS320F28235/28234/28232 Digital Signal Controllers

(DSCs) Data Manual, literature number SPRS439

See Also
“ADC-PWM Synchronization Using ADC Interrupt”

“Modify Duty Cycle of ePWM Using DMA”

C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F28004x ADC

2 Blocks — Alphabetical List

2-38

“Photovoltaic Inverter with MPPT Using Solar Explorer Kit”

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ePWM

2-39

C28x Hardware Interrupt
Interrupt Service Routine to handle hardware interrupt on C28x processors

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ Scheduling

Description
Execution scheduling models based on timer interrupts do not meet the requirements of
some real-time applications to respond to external events. The C28x Hardware Interrupt
block addresses this problem by allowing asynchronous processing of interrupts triggered
by events managed by other blocks in the C280x/C2833x DSP Chip Support Library.

When the C28x Hardware Interrupt block has an external interrupt selection, the
selection enables interrupts on the selected general-purpose I/O pins. To configure these
pins, see the Configuration Parameters > Hardware Implementation > Hardware
board settings > Target hardware resources > External Interrupt pane. For more
information, see “Hardware Implementation Pane: Texas Instruments C2000 Processors”
on page 1-2.

Vectorized Output
The output of this block is a function call. The size of the function call line equals the
number of interrupts the block is set to handle. Each interrupt is represented by four
parameters shown on the dialog box of the block. These parameters are a set of four
vectors of equal length. Each interrupt is represented by one element from each
parameter (four elements total), one from the same position in each of these vectors.

Each interrupt is described by:

2 Blocks — Alphabetical List

2-40

• CPU interrupt numbers
• Peripheral Interrupts Expansion (PIE) interrupt numbers
• Task priorities
• Preemption flags

So, one interrupt is described by a CPU interrupt number, a PIE interrupt number, a task
priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single interrupt for a
single peripheral or peripheral module.

The following table lists the PIE and CPU interrupt numbers for the c28x processors
F280x, F2802x, F2803x, F2805x, F2806x, F2833x, F28M35x, and F28M36x that support
12×8 interrupts. The row headers 1–12 represent the CPU values, and the column
headers 1–8 represent the PIE values.

 C28x Hardware Interrupt

2-41

PIE and CPU Interrupt Numbers for F280x, F2802x, F2803x, F2805x, F2806x, F2833x,
F28M35x, and F28M36x Processors

PIE
⇒

1 2 3 4 5 6 7 8

CPU
⇓

1
SEQ1INT
(ADC) /
ADCINT1

SEQ2INT
(ADC) /
ADCINT2

Reserved XINT1 XINT2 ADCINT /
ADCINT9

TINT0
(TIMER 0)

WAKEINT
(LPM/WD)

2 EPWM1_T
ZINT

EPWM2_T
ZINT

EPWM3_T
ZINT

EPWM4_T
ZINT

EPWM5_T
ZINT

EPWM6_
TZINT

EPWM7_T
ZINT

EPWM8_T
ZINT

3 EPWM1_I
NT

EPWM2_I
NT

EPWM3_I
NT

EPWM4_I
NT

EPWM5_I
NT

EPWM6_
INT

EPWM7_I
NT

EPWM8_I
NT

4 ECAP1_IN
T

ECAP2_IN
T

ECAP3_IN
T

ECAP4_IN
T

ECAP5_IN
T

ECAP6_IN
T

EPWM10_
TZINT /
HRCAP1_I
NT

EPWM9_T
ZINT /
HRCAP2_I
NT

5 EQEP1_IN
T

EQEP2_IN
T

EQEP3_IN
T

HRCAP3_I
NT

HRCAP4_I
NT

Reserved EPWM10_I
NT

EPWM9_I
NT

6 SPIRXINT
A (SPI-A)

SPITXINT
A (SPI-A)

SPIRXINT
B
(SPIB_RX)
/ MRINTB
(McBSP-B)

SPITXINT
B
(SPIB_TX)
/ MXINTB
(McBSP-B)

SPIRXINT
C (SPI-C) /
MRINTA
(McBSP-
A_RX)

SPITXINT
C (SPI-C) /
MXINTA
(McBSP-
A_TX)

SPIRXINT
D (SPI-D) /
EPWM12_
TZINT

SPITXINT
D (SPI-D) /
EPWM11_
TZINT

7 DINTCH1
(DMA1)

DINTCH2
(DMA2)

DINTCH3
(DMA3)

DINTCH4
(DMA4)

DINTCH5
(DMA5)

DINTCH6
(DMA6)

EPWM12_I
NT

EPWM11_I
NT

8 I2CINT1A I2CINT2A Reserved Reserved SCIRXINT
C (SCI-C)

SCITXINT
C (SCI-C)

Reserved Reserved

9 SCIRXINT
A
(SCIA_RX)

SCITXINT
A
(SCIA_TX)

SCIRXINT
B
(SCIB_RX)
/
LINA_INT
0

SCITXINT
B
(SCIB_TX)
/
LINA_INT
1

ECAN0IN
TA
(CANA_1)

ECAN1IN
TA
(CANA_2)

ECAN0IN
TB
(CANB_1)

ECAN1IN
TB
(CANB_2)

2 Blocks — Alphabetical List

2-42

PIE
⇒

1 2 3 4 5 6 7 8

CPU
⇓

10 EPWM9_T
ZINT /
ADCINT1

EPWM10_
TZINT /
ADCINT2

EPWM11_
TZINT /
ADCINT3

EPWM12_
TZINT /
ADCINT4

EPWM13_
TZINT /
ADCINT5

EPWM14_
TZINT /
ADCINT6

EPWM15_
TZINT /
ADCINT7

EPWM16_
TZINT /
ADCINT8

11 CLA1_INT
1 /
EPWM9_I
NT7 /
MTOCIPCI
NT1

CLA1_INT
2 /
EPWM10_I
NT /
MTOCIPCI
NT2

CLA1_INT
3 /
EPWM11_I
NT /
MTOCIPCI
NT3

CLA1_INT
4 /
EPWM12_I
NT /
MTOCIPCI
NT4 /

CLA1_INT
5 /
EPWM13_I
NT

CLA1_INT
6 /
EPWM14_I
NT

CLA1_INT
7 /
EPWM15_I
NT

CLA1_INT
8 /
EPWM16_I
NT

12 XINT3 XINT4 /
C28FLSIN
GERR

XINT5 XINT6 /
C28RAMSI
NGERR

XINT7 /
C28RAMA
CCVIOL

Reserved LVF LUF

The PIE and CPU interrupt numbers for the c28x processors F2807x, F2837xS, F2837xD,
F2838x, and F28004x that support 12×16 interrupts are:

 C28x Hardware Interrupt

2-43

PIE and CPU Interrupt Numbers for F2807x, F2837xS, F2837xD, F2838x, and F28004x
Processors

PIE
⇒

1 2 3 4 5 6 7 8

CPU
⇓

1 ADCA1 ADCB1 ADCC1 XINT1 XINT2 ADCD1 TIMER 0 WAKE /
WDOG

2 EPWM1_T
Z

EPWM2_T
Z

EPWM3_T
Z

EPWM4_T
Z

EPWM5_T
Z

EPWM6_
TZ

EPWM7_T
Z

EPWM8_T
Z

3 EPWM1 EPWM2 EPWM3 EPWM4 EPWM5 EPWM6 EPWM7 EPWM8
4 ECAP1 ECAP2 ECAP3 ECAP4 ECAP5 ECAP6 ECAP7 Reserved
5 EQEP1 EQEP2 EQEP3 Reserved CLB1 CLB2 CLB3 CLB4
6 SPIA_RX SPIA_TX SPIB_RX SPIB_TX MCBSPA_

RX
MCBSPA_
TX

MCBSPB_
RX

MCBSPB_
TX

7 DMA_CH1 DMA_CH2 DMA_CH3 DMA_CH4 DMA_CH5 DMA_CH6 Reserved Reserved
8 I2CA I2CA_FIFO I2CB I2CB_FIFO SCIC_RX SCIC_TX SCID_RX SCID_TX
9 SCIA_RX SCIA_TX SCIB_RX SCIB_TX CANA_0 CANA_1 CANB_0 CANB_1

10 ADCA_EVT ADCA2 ADCA3 ADCA4 ADCB_EVT ADCB2 ADCB3 ADCB4
11 CLA1_1 CLA1_2 CLA1_3 CLA1_4 CLA1_5 CLA1_6 CLA1_7 CLA1_8
12 XINT3 XINT4 XINT5 MPOST FMC.DON

E
VCU FPU_OVE

RFLOW
FPU_UND
ERFLOW

PIE
⇒

9 10 11 12 13 14 15 16

CPU
⇓
1 I2CA SYS_ERR ECATSYN

C0 (CPU1
only)

ECATINTn
(CPU1
only)

IPC0/
CIPC0

IPC1/
CIPC1

IPC2/
CIPC2

IPC3/
CIPC3

2 EPWM9_T
Z

EPWM10_
TZ

EPWM11_
TZ

EPWM12_
TZ

EPWM13_
TZ

EPWM14_
TZ

EPWM15_
TZ

EPWM16_
TZ

2 Blocks — Alphabetical List

2-44

PIE
⇒

9 10 11 12 13 14 15 16

CPU
⇓
3 EPWM9 EPWM10 EPWM11 EPWM12 EPWM13 EPWM14 EPWM15 EPWM16
4 FSITXA_IN

T1
FSITXA_IN
T2

FSITXB_IN
T1

FSITXB_IN
T2

FSIRXA_I
NT1

FSIRXA_I
NT2

FSIRXB_I
NT1

FSIRXB_I
NT2

5 SD1 /
SDFM1

SD2/
SDFM1

ECATRSTI
NTn
(CPU1
only)

ECATSYN
C1 (CPU1
only)

SDFM1DR
1

SDFM1DR
2

SDFM1DR
3

SDFM1DR
4

6 SPIC_RX SPIC_TX SPID_RX SPID_TX SDFM2DR
1

SDFM2DR
2

SDFM2DR
3

SDFM2DR
4

7 FSIRXC_I
NT1

FSIRXC_I
NT2

FSIRXD_I
NT1

FSIRXD_I
NT2

FSIRXE_I
NT1

FSIRXE_I
NT2

FSIRXF_I
NT1

FSIRXF_I
NT2

8 LINA_0/
FSIRXG_I
NT1

LINA_1/
FSIRXG_I
NT2

FSIRXH_I
NT1

FSIRXH_I
NT2

PMBUSA/
CLB5

CLB6 UPPA
(CPU1
only)/CLB7

CLB8

9 MCANSS_I
NT0(CPU1
only)

MCANSS_I
NT1
(CPU1
only)

MCANSS_
ECC_COR
R_PUL_IN
T (CPU1
only)

MCANSS_
WAKE_AN
D_TS_PLS
_INT
(CPU1
only)

PMBUSA CM_STAT
US (CPU1
only)

USBA
(CPU1
only)

Reserved

10 ADCC_EV
T

ADCC2 ADCC3 ADCC4 ADCD_EV
T

ADCD2 ADCD3 ADCD4

11 CMTOCPU
xIPCINTR
0

CMTOCPU
xIPCINTR
1

CMTOCPU
xIPCINTR
2

CMTOCPU
xIPCINTR
3

CMTOCPU
xIPCINTR
4

CMTOCPU
xIPCINTR
5

CMTOCPU
xIPCINTR
6

CMTOCPU
xIPCINTR
7

12 EMIF_
ERROR

RAM_COR
RECTABL
E_ERROR/
ECAP6INT
2

FLASH_C
ORRECTA
BLE_ERR
OR/
ECAP7INT
2

RAM_ACC
ESS_VIOL
ATION

SYS_PLL_
SLIP/
CPUxCRC_
INT

AUX_PLL_
SLIP//
CLA1CRC_
INT

CLA OVER
FLOW

CLA
UNDERFL
OW

 C28x Hardware Interrupt

2-45

The PIE and CPU interrupt numbers for the c281x processors are:

PIE and CPU Interrupt Numbers for C281x Processors
PI
E
⇒

1 2 3 4 5 6 7 8

CP
U
⇓

1 PDPINTA
(EV-A)

PDPINTB
(EV-B)

Reserved XINT1 XINT2 ADCINT
(ADC)

TINT0
(TIMER 0)

WAKEINT
(LPM/WD)

2 CMP1INT
(EV-A)

CMP2INT
(EV-A)

CMP3INT
(EV-A)

T1PINT
(EV-A)

T1CINT
(EV-A)

T1UFINT
(EV-A)

T1OFINT
(EV-A)

Reserved

3 T2PINT
(EV-A)

T2CINT
(EV-A)

T2UFINT
(EV-A)

T2OFINT
(EV-A)

CAPINT1
(EV-A)

CAPINT2
(EV-A)

CAPINT3
(EV-A)

Reserved

4 CMP4INT
(EV-B)

CMP5INT
(EV-B)

CMP6INT
(EV-B)

T3PINT
(EV-B)

T3CINT
(EV-B)

T3UFINT
(EV-B)

T3OFINT
(EV-B)

Reserved

5 T4PINT
(EV-B)

T4CINT
(EV-B)

T4UFINT
(EV-B)

T4OFINT
(EV-B)

CAPINT4
(EV-B)

CAPINT5
(EV-B)

CAPINT6
(EV-B)

Reserved

6 SPIRXINT
A (SPI)

SPITXINT
A (SPI)

Reserved Reserved MRINT
(McBSP)

MXINT
(McBSP)

Reserved Reserved

7 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
8 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
9 SCIRXINT

A (SCI-A)
SCITXINT
A (SCI-A)

SCIRXINT
B (SCI-B)

SCITXINT
B (SCI-B)

ECAN0IN
T (CAN)

ECAN1IN
T (CAN)

Reserved Reserved

10 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
11 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
12 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

The task priority indicates the relative importance tasks associated with the asynchronous
interrupts. If an interrupt triggers a higher-priority task while a lower-priority task is
running, the execution of the lower-priority task is suspended while the higher-priority
task is executed. The lowest value represents the highest priority. The default priority
value of the base rate task is 40, so the priority value for each asynchronously triggered
task must be less than 40 for these tasks to suspend the base rate task.

2 Blocks — Alphabetical List

2-46

The preemption flag determines whether a given interrupt is pre-emptable. Preemption
overrides prioritization, such that a preemptable task of higher priority can be preempted
by a non-preemptable task of lower priority.

Parameters
CPU interrupt numbers

Enter a vector of CPU interrupt numbers for the interrupts you want to process
asynchronously.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you want to process
asynchronously.

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to process asynchronously.

See the discussion of this block's “Vectorized Output” on page 2-40 for an explanation
of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to process
asynchronously.

See the discussion of this block's “Vectorized Output” on page 2-40 for an explanation
of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous interrupt processing
in the context of your Simulink software model.

Note Select this check box to enable you to test asynchronous interrupt processing
behavior in Simulink software.

See Also
“ADC-PWM Synchronization Using ADC Interrupt”

“Asynchronous Scheduling”

 C28x Hardware Interrupt

2-47

“Permanent Magnet Synchronous Motor Field-Oriented Control”

“Schedule a Multi-Rate Controller for a Permanent Magnet Synchronous Machine”

“Photovoltaic Inverter with MPPT Using Solar Explorer Kit”

2 Blocks — Alphabetical List

2-48

C2802x/C2803x/C2806x/F28M3x COMP
Compare two input voltages on comparator pins

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

Description
Configure the comparator module to output the comparison result on the comparator pins
of the processor.

Parameters
Comparator module

Select the comparator module to configure. Use only one block per module.
Second input

Select COMPxB to compare the voltage of Input Pin A with Input Pin B

 C2802x/C2803x/C2806x/F28M3x COMP

2-49

Select Internal DAC to compare the voltage of Input Pin A with the output of a
DAC reference located in the comparator. For more information, see the “DAC
Reference” section of the TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter
(ADC) and Comparator.

The comparator source outputs 1, if Input Pin A has a value greater than Input Pin
B or the 10-bit DAC reference. Otherwise, it outputs 0.

Inverter comparator output
Select this check box to apply a logical NOT to the output of the comparator source.
For example, when the comparator source outputs 1, the inverter circuit changes it to
0.

Synchronization
Select Asynchronous to pass the asynchronous version of the comparator output.
Select Synchronous to pass the synchronous version of the comparator output.
Selecting Synchronous enables the Qualification period option.

Qualification period
Qualify changes in the comparator output before passing them along. The Passed
through setting passes changes in the comparator value along without qualifying
them. The consecutive clocks settings pass changes in the comparator value
along after receiving the specified number of consecutive samples with the same
value. Use this setting to prevent intermittent and spurious changes in the
comparator output.

Sample time
Specify the time interval between samples. To inherit sample time from the upstream
block, set this parameter to -1.

References
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator,
Literature Number: SPRUGE5, from the Texas Instruments Web site.

2 Blocks — Alphabetical List

2-50

C2802x/C2803x/C2805x/C2806x/F28M3x/
F2807x/F2837xD/F2837xS/F2838x/F28004x
ADC
Configure ADC to sample analog pins and output digital data

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2805x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2807x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xD

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xS

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2838x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F28004x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

 C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ADC

2-51

Description
Configures the ADC to output a constant stream of data collected from the ADC pins on
the DSP.

An ADC block allows for reading one ADC channel. Use multiple ADC blocks to read
multiple ADC channels.

Parameters
ADC Module

Select ADC Module 1 or ADC Module 2 for conversion.

Select ADC Module A through D for the processors that support Type 4 ADC.

Note The ADC Module parameter is available only for Texas Instruments C2000
processors that support Type 3, Type 4, or Type 5 ADC.

ADC Resolution
Select 12-bit (Single-ended input) or 16-bit (Differential inputs) ADC resolution
options.

In 12-bit mode, only single-ended input is supported. In 16-bit mode, the input voltage
to the converter is sampled through a pair of input pins, that means the differential
inputs between the two channels is converted.

This parameter appears only for Texas Instruments C2000 F2807x, Texas Instruments
C2000 F2837xD, Texas Instruments C2000 F2838x and Texas Instruments C2000
F2837xS processors.

Note The 16-bit (Differential inputs) ADC mode is not enabled by default in most of
the processors.

2 Blocks — Alphabetical List

2-52

Sampling mode
Select Single sample mode to sample signals sequentially. Select Simultaneous
sample mode to sample pairs of signals. The hardware allows each signal of a pair to
be sampled at the same time.

SOC trigger number
Identify the start-of-conversion trigger by number. In single sampling mode, you can
select an individual trigger. In simultaneous sampling mode, you can select triggers in
pairs.

SOCx acquisition window
Define the length of the acquisition period in ADC clock cycles. The value of this
parameter depends on the SYSCLK and the minimum ADC sample time. For more
information, see the ADC Acquisition (Sample and Hold) Window section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator
Reference Guide.

SOCx trigger source
Select the source that triggers the start of conversion. The following types of inputs
are available:

• Software
• CPU Timers 0/1/2 interrupts
• XINT2 SOC
• ePWM1-9 SOCA and SOCB

If you set SOCx trigger source to XINT2_XINT2SOC, use the XINT2SOC external
pin / ADCEXTSOC external pin parameter at Hardware Implementation >
Target hardware resources to define the external GPIO pin that triggers the start of
conversion.

ADCINT will trigger SOCx
At the end of conversion, use the ADCINT1 or ADCINT2 interrupt to trigger a start of
conversion (SOC). This loop creates a continuous sequence of conversions. The
default selection, No ADCINT disables this parameter. To set the interrupt, select the
Post interrupt at EOC trigger option, and choose the appropriate interrupt.

Sample time
Specify the time interval between samples. To inherit sample time from the upstream
block, set this parameter to -1.

 C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ADC

2-53

Data type
Select the data type of the digital output data. You can choose from the options
double, single, int8, uint8, int16, uint16, int32, and uint32.

Post interrupt at EOC trigger
Post interrupts when the ADC triggers EOC pulses. When you select this option, the
dialog box displays the Interrupt selection and ADCINT# continuous mode
options. For more information, see the EOC and Interrupt Operation section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator
Reference Guide.

Interrupt selection
Select which interrupt the ADC posts after triggering an EOC pulse.

ADCINT1 continuous modeADCINT2 continuous mode
When the ADC generates an end of conversion (EOC) signal, generate an ADCINT#
interrupt, whether the previous interrupt flag has been acknowledged or not.

Input Channels – Conversion channel
Select the input channel to which this ADC conversion applies. For Type 4 ADC, if you
select 16-bit (differential inputs) mode, the differential voltage between the two
channels is converted.

References
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator,
Literature Number: SPRUGE5, from the Texas Instruments Web site.

See Also
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x ePWM

“ADC-PWM Synchronization Using ADC Interrupt”

C28x Hardware Interrupt

“Configuring Acquisition Window Width for ADC Blocks”

2 Blocks — Alphabetical List

2-54

“Photovoltaic Inverter with MPPT Using Solar Explorer Kit”

 C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x ADC

2-55

C2803x LIN Receive
Receive data via local interconnect network (LIN) module on target

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Description

The Local Interconnect Network (LIN) bus implements a serial communications protocol
for distributed automotive and industrial applications. In particular, LIN serves low cost
applications that do not require the bandwidth or robustness provided by the CAN
protocol.

The LIN Receive block configures the target to receive scalar or vector data from the
LINRX or LINTX pins.

Each C2803x target has one LIN module. Your model can only contain one LIN Transmit
and one LIN Receive block per module.

The C2803x LIN Transmit block takes three inputs:

• ID: Set the value of the LIN ID for the LIN transmit node.
• Tx ID Mask: Set the value of the LIN ID mask for the LIN transmit node.
• Data: Connect this input to the data source.

For more information and examples, see:

• “Configuring LIN Communications”

2 Blocks — Alphabetical List

2-56

• “LIN-Based Control of PWM Duty Cycle”

Note Many LIN-specific settings are located under Peripherals > LIN in Hardware
Implementation -> Target Hardware Resources for your model. Verify that these settings
meet the requirements of your application.

Parameters
Data type

Select the data type the LIN block outputs to the model. Available options are
single, int8, uint8, int16, uint16, int32, or uint32. To interpret the data, the
data type and data length must match those of the data input to transmitting LIN
node.

The default value is int16.
Data length

Set the length of the data the LIN block outputs to the model. This value is measured
in multiples of the Data type. For example, if Data type is int16 and Data length is
int16, the LIN block outputs the data to the model in lengths of

1 x int16

If you set the Data length to a value greater than 1, the block outputs the data as
vectors.

To interpret the data, the data type and data length must match those of the data
input to transmitting LIN node.

The default value is 1.

Note In a loopback configuration, the maximum data length cannot exceed 8 bytes. If
the sum of the incoming and the outgoing data exceeds the hardware buffer length of
the LIN module, the module discards incoming bytes of data.

Initial output
Set the initial value the DATA port outputs to the model before the LIN node has
received data.

 C2803x LIN Receive

2-57

The default value is 0.
Action taken when connection times out

Specify what the LIN block outputs on the DATA port in response to a connection
time-out. The choices are:

• Output the last received value — the DATA port outputs the last data
value the LIN node received.

• Output custom value — the DATA port outputs the value defined by Output
value when connection times out.

The default value is Output the last received value.

If the LIN node has not received data, and you set this parameter to Output the
last received value, the DATA port outputs the Initial output value.

Output value when connection times out
Specify the custom value the DATA port outputs when Action taken when
connection times out is set to Output custom value and a connection timeout
occurs.

Enable blocking mode
If you enable (select) this checkbox, the target application stops and waits for the LIN
node to receive data before continuing. If you disable this option, the application
continues running and does not wait for data to arrive.

The default value is disabled (deselected).
Verify checksum

If you enable (select) this option, the LIN node verifies the checksum it receives.

The default value is disabled (deselected).
Output receiving status

Enabling (selecting) this checkbox adds a status output to the LIN Receive block, as
shown in the following figure.

The status output reports the following values for each message the LIN node
receives:

• 0: No error.
• -1: A time-out occurred while the block was waiting to receive data.

2 Blocks — Alphabetical List

2-58

• -2: Unable to receive.
• Other status values represent the highest 8 bits of the SCI Flags Register. Convert

these values from decimal to binary. Then determine the meaning of these values
by referring to Table 14. SCI Flags Register (SCIFLR) Field Descriptions in
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module, Literature
Number SPRUGE2, available at the Texas Instruments Web site.

Receive buffer interrupt
If you enable this option, the SCI node generates an interrupt after it receives a
complete frame. The default value is Disabled.

Checksum error interrupt
If you enable this option, the LIN block generates an interrupt when the incoming
message contains an invalid checksum.

The default value is Disabled.

The TXRX Error Detector Checksum Calculator verifies checksums for incoming
messages. With the classic LIN implementation, the checksum only covers the data
fields. For LIN 2.0–compliant messages, the checksum includes both the ID field and
the data fields. If you enable this option, the Checksum Calculator generates
interrupts when it detects checksum errors, such as those caused by LIN message
collisions.

Framing error interrupt
If you enable this option, the LIN module generates interrupts when framing errors
occur.

The default value is Disabled.
Overrun error interrupt

If you enable this option, the LIN module generates interrupt when overrun errors
occur.

The default value is Disabled.
ID parity error interrupt

If you enable this option, the LIN module generates an ID-Parity interrupt when it
receives an invalid ID.

The default value is Disabled.

 C2803x LIN Receive

2-59

If you enable this option, also enable Parity mode in Hardware Implementation ->
Target Hardware Resources.

ID match interrupt
If you enable this option, the LIN module generates an interrupt when the LIN node
validates the ID in messages it receives.

The default value is Disabled.
Sample time

Set the block's input sample time, Ts.

The default value is 0.1 seconds.

References
For detailed information on the LIN module, see TMS320F2803x Piccolo Local
Interconnect Network (LIN) Module, Literature Number SPRUGE2, available at the Texas
Instruments Web site.

See Also
C2803x LIN Transmit (block reference)

“Configuring LIN Communications”

“LIN-Based Control of PWM Duty Cycle”

2 Blocks — Alphabetical List

2-60

C2803x LIN Transmit
Transmit data from target via serial communications interface (SCI) to host

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Description
The Local Interconnect Network (LIN) bus implements a serial communications protocol
for distributed automotive and industrial applications. In particular, LIN serves low cost
applications that do not require the bandwidth or robustness provided by the CAN
protocol.

The C2803x LIN Transmit block takes three inputs:

• ID: Set the value of the LIN ID for the LIN transmit node.
• Tx ID Mask: Set the value of the LIN ID mask for the LIN transmit node.
• Data: Connect this input to the data source.

Note Many LIN-specific settings are located under Peripherals > LIN in Hardware
Implementation > Target hardware resources for your model. Verify that these
settings meet the requirements of your application.

Parameters
Send checksum

Select this checkbox to include a checksum in the last data field of the checkbyte. LIN
2.0 implementations require this checksum.

 C2803x LIN Transmit

2-61

The default value is unchecked (disabled).
Physical bus error interrupt

The LIN master node detects when the physical bus cannot convey a valid message.
For example, if the bus had a short circuit to ground or to VBAT. This raises a physical
bus error flag in all of the LIN nodes on the network. If you enable Physical bus
error interrupt, the LIN transmit node generates an interrupt in response to a
physical bus error flag.

Bit error interrupt
If you enable this option, the LIN node compares the data it transmits and the data on
the LIN bus.

The default value is Disabled.

The TXRX Error Detector Bit Monitor compares data bits on the LIN transmit (LINTX)
and receive (LINRX) pins. If the data do not match, the Bit Monitor raises a bit-error
flag. When you enable this option, the bit-error flag also produces a bit-error
interrupt.

Transmit buffer interrupt
If you enable this option, the LIN node generates an interrupt while it is generating a
checksum and setting the Transmitter buffer register ready flag.

The default value is Disabled.

References
For detailed information on the SCI module, see TMS320F2803x Piccolo Local
Interconnect Network (LIN) Module, Literature Number SPRUGE2, available at the Texas
Instruments Web site.

See Also
“Configuring LIN Communications”

“LIN-Based Control of PWM Duty Cycle”

2 Blocks — Alphabetical List

2-62

C281x ADC
Analog-to-digital converter (ADC)

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Description
The C281x ADC block configures the C281x ADC to perform analog-to-digital conversion
of signals connected to the selected ADC input pins. The ADC block outputs digital values
representing the analog input signal and stores the converted values in the result register
of your digital signal processor. You use this block to capture and digitize analog signals
from external sources such as signal generators, frequency generators, or audio devices.

Triggering
The C281x ADC trigger mode depends on the internal setting of the source start-of-
conversion (SOC) signal. In unsynchronized mode the ADC is usually triggered by
software at the sample time intervals specified in the ADC block. For more information on
configuring the specific parameters for this mode, see “Configuring Acquisition Window
Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the same module as the
ADC triggers the ADC. In this case, the ADC is synchronized with the pulse width
modulator (PWM) waveforms generated by the same EV unit via the ADC Start Event
signal setting. The ADC Start Event is set in the C281x PWM block. See that block for
information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in cascaded mode
(see below).

 C281x ADC

2-63

Output
The output of the C281x ADC is a vector of uint16 values. The output values are in the
range 0 to 4095 because the C281x ADC is 12-bit converter.

Modes
The C281x ADC block supports ADC operation in dual and cascaded modes. In dual mode,
either module A or module B can be used for the ADC block, and two ADC blocks are
allowed in the model. In cascaded mode, both module A and module B are used for a
single ADC block.

Parameters

ADC Control Pane
Module

Specify which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0 through ADCINA7).
• B — Displays the ADC channels in module B (ADCINB0 through ADCINB7).
• A and B — Displays the ADC channels in both modules A and B (ADCINA0

through ADCINA7 and ADCINB0 through ADCINB7)

Then, use the check boxes to select the desired ADC channels.
Conversion mode

Type of sampling to use for the signals:

• Sequential — Samples the selected channels sequentially
• Simultaneous — Samples the corresponding channels of modules A and B at the

same time

Start of conversion
Specify the type of signal that triggers the conversion:

• Software — Signal from software

2 Blocks — Alphabetical List

2-64

• EVA — Signal from Event Manager A (only for Module A)
• EVB — Signal from Event Manager B (only for Module B)
• External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are converted for the
selected ADC channel(s). This is the rate at which values are read from the result
registers. To execute this block asynchronously, set Sample Time to -1, check the
Post interrupt at the end of conversion box.

To set different sample times for different groups of ADC channels, you must add
separate C281x ADC blocks to your model and set the desired sample times for each
block.

Data type
Date type of the output data. Valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the end of each conversion.
The interrupt is posted at the end of conversion.

Input Channels Pane
Number of conversions

Number of ADC channels to use for analog-to-digital conversions.
Conversion no.

Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be sampled multiple times
during a single conversion sequence. To oversample, specify the same channel for
more than one conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use separate ports for
each output and show the output ports on the block. If you use more than one channel
and do not use multiple output ports, the data is output in a single vector.

 C281x ADC

2-65

See Also
C281x PWM

C28x Hardware Interrupt

2 Blocks — Alphabetical List

2-66

C281x CAP
Receive and log capture input pin transitions

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Description
The C281x CAP module provides input capture functionality for systems where precise
timing of external events is important. The C281x CAP block sets parameters for the
capture units (CAPs) of the Event Manager (EV) module. The capture units log transitions
detected on the capture unit pins by recording the times of the input signal transitions
into a two-level deep FIFO stack. You can set the capture unit pins to detect rising edge,
falling edge, either type of transition, or no transition. The cnt output of the block gives
the captured value of the EV running timer.

The C281x chip has six capture units — three associated with each EV module. Capture
units 1, 2, and 3 are associated with EVA and capture units 4, 5, and 6 are associated with
EVB. Each capture unit is associated with a capture input pin.

Each group of EV module capture units can use one of two general-purpose (GP) timers
on the target board. EVA capture units can use GP timer 1 or 2. EVB capture units can
use GP timer 3 or 4. When a transition occurs, the module stores the value of the selected
timer in the two-level deep FIFO stack.

The C281x CAP module shares GP Timers with other C281 blocks. For more information
and guidance on sharing timers, see “Sharing General Purpose Timers Between C281x
Peripherals”.

Note You can have up to two C281x CAP blocks in a model—one block for each EV
module.

 C281x CAP

2-67

Outputs
This block has up to two outputs: a cnt (count) output and an optional, FIFO status flag
output. The cnt output holds the value of the EV timer captured during the detected
transitions. The cnt output gives the captured values of the running counter based on the
value set in Output data format parameter. The status flag outputs are:

• 0 — The FIFO is empty. Either no captures have occurred or the previously stored
captures have been read from the stack. (The binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The binary version of this
flag is 01.)

• 2 — The FIFO has two entries in the stack registers. (The binary version of this flag is
10.)

• 3 — The FIFO has two entries in the stack registers and one or more captured values
have been lost. This occurs because another capture occurred before the FIFO stack
was read. This means that the FIFO stack is read when you execute the block as
specified by your scheduling scheme synchronously, if a sample time is used or
asynchronously, if triggered by an interrupt or an idle task. The new value is placed in
the bottom register. The bottom register value is pushed to the top of the stack and the
top value is pushed out of the stack. (The binary version of this flag is 11.)

Parameters

Data Format Pane
Module

Select the Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.
• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data type of the status
flag is uint16.

Output data format
The type of data to output:

2 Blocks — Alphabetical List

2-68

• Send 2 elements (FIFO Buffer) — Sends the latest two values. The output is
updated when there are two elements in the FIFO, which is indicated by bit 13 or
11 or 9 being sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP registers are read as
follows:

1 The CAP x FIFO status bits are read and the value is stored in the status flag.
2 The top value of the FIFO is read and stored in the output at index 0.
3 The new top value of the FIFO (the previously stored bottom stack value) is

read and stored in the output at index 1.

• Send 1 element (oldest) — Sends the older of the two most recent values.
The output is updated when there is at least one element in the FIFO, which is
indicated by the bits 13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

1 The CAP x FIFO status bits are read and the value is stored in the status flag.
2 The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value. The output is
updated when there is at least one element in the FIFO, which is indicated by the
bits 13:12, or 11:10, or 9:8 being sent. The CAP registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored in the status flag.
2 If the FIFO buffer contains two entries, the bottom value is read and stored in

the output. If the FIFO buffer contains one entry, the top value is read and
stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available, the previous data is
sent.

Data type
Data type of the output data. Available options are auto, double, single, int8,
uint8, int16, uint16, int32, uint32, and boolean. The auto option uses the
data type of a connected block that outputs data to this block. If this block does not
receive an input, auto sets the data type to double.

Note The output of the C281x CAP block can be vectorized.

 C281x CAP

2-69

CAP Panes
The CAP panes set parameters for individual CAPs. The particular CAP affected by a CAP
pane depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.
• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.
• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available types are Rising Edge,
Falling Edge, Both Edges, and No transition.

Time Base
Select which target board GP timer the CAP uses as a time base. CAPs 1, 2, and 3 can
use Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or Timer 4.

Clock source
This option is available only for the CAP 3 pane. You can select Internal to use the
internal time base. Also configure the Counting mode, Timer prescaler, and Timer
period source for the internal time base.

Select QEP circuit to generate the input clock from the quadrature encoder pulse
(QEP) submodule.

Counting mode
Select Up to generate an asymmetrical waveform output, or Up-down to generate a
symmetrical waveform output, as shown in the following illustration.

2 Blocks — Alphabetical List

2-70

The Counting mode is for the internal timer settings.

When you specify the Counting mode as Up (asymmetric) the waveform:

• Starts low
• Goes high when the rising period counter value matches the Compare value
• Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric) the waveform:

• Starts low
• Goes high when the increasing period counter value matches the Compare value
• Goes low when the decreasing period counter value matches the Compare value

Counting mode becomes unavailable when you set Clock source to QEP circuit.
Timer Prescaler

Clock divider factor by which to prescale the selected GP timer to produce the desired
timer counting rate. Available options are none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,

 C281x CAP

2-71

and 1/128. The following table shows the rates that result from selecting each
option.

Scaling Resulting Rate (µs)
none 0.01334
1/2 0.02668
1/4 0.05336
1/8 0.10672
1/16 0.21344
1/32 0.42688
1/64 0.85376
1/128 1.70752

Note These rates assume a 75 MHz input clock.

Timer period source
Select Specify via dialog to enable the Timer period parameter. Select Input
port to create a block input, T1, that accepts the timer period value.

Timer period
Set the length of the timer period in clock cycles. Enter a value from 0 to 65535. The
value defaults to 65535.

If you know the length of a clock cycle, you can easily calculate how many clock
cycles to set for the timer period. The following calculation determines the length of
one clock cycle:

Sysclk(150MHz) HISPCLK(1/2) InputClockPrescaler(1/128)

In this calculation, you divide the System clock frequency of 150 MHz by the high-
speed clock prescaler of 2. Then, you divide the resulting value by the timer control
input clock prescaler, 128. The resulting frequency is 0.586 MHz. Thus, one clock
cycle is 1/.586 MHz, which is 1.706 µs.

Post interrupt on CAP
Check this check box to post an asynchronous interrupt on CAP.

2 Blocks — Alphabetical List

2-72

See Also
C28x Hardware Interrupt

 C281x CAP

2-73

C281x GPIO Digital Input
General-purpose I/O pins for digital input

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F28004x

Description
This block configures the general-purpose I/O (GPIO) registers that control the GPIO
shared pins for digital input. Each I/O port has one MUX register, which is used to select
peripheral operation or digital I/O operation.

Note To avoid losing new settings, click Apply before changing the IO Port parameter.

Parameters
IO Port

Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD, GPIOPE, GPIOPF, or
GPIOPG and select the I/O Port bits to enable for digital input. (There is no GPIOPC
port on the C281x.) If you select multiple bits, vector input is expected. Cleared bits
are available for peripheral functionality. Multiple GPIO DI blocks cannot share the
same I/O port.

Note The input function of the digital I/O and the input path to the related peripheral
are enabled on the board. If you configure a pin as digital I/O, the corresponding
peripheral function cannot be used.

2 Blocks — Alphabetical List

2-74

The following tables show the shared pins.

GPIO A MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOA8
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

GPIO B MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0
1 PWM8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOB8
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the pins.

 C281x GPIO Digital Input

2-75

Data type
Data type of the data to obtain from the GPIO pins. The data is read as 16-bit integer
data and then cast to the selected data type. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, uint32 or boolean.

Note The width of the vectorized data output by this block is determined by the
number of bits selected in the Block Parameters dialog box.

See Also
C281x GPIO Digital Output

C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x GPIO Digital Input C280x/C2802x/C2803x/C2805x/C2806x/
C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x GPIO Digital
Output

2 Blocks — Alphabetical List

2-76

C281x GPIO Digital Output
General-purpose I/O pins for digital output

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Embedded Coder Support Package for Texas Instruments C2000 Processors/F28004x

Description
This block configures the general-purpose I/O (GPIO) registers that control the GPIO
shared pins for digital output. Each I/O port has one MUX register, which is used to select
peripheral operation or digital I/O operation.

Note Fixed-point inputs are not supported for this block.

Note To avoid losing new settings, click Apply before changing the IO Port parameter.

Parameters
IO Port

Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD, GPIOPE, GPIOPF, or
GPIOPG and select the I/O Port bits to enable for digital input. (There is no GPIOPC
port on the C281x.) If you select multiple bits, vector input is expected. Cleared bits
are available for peripheral functionality. Multiple GPIO DO blocks cannot share the
same I/O port.

 C281x GPIO Digital Output

2-77

Note The input function of the digital I/O and the input path to the related peripheral
are enabled on the board. If you configure a pin as digital I/O, the corresponding
peripheral function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOA8
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

GPIO B MUX

Bit Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0
1 PWM8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOB8
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

2 Blocks — Alphabetical List

2-78

See Also
C281x GPIO Digital Input

 C281x GPIO Digital Output

2-79

C281x PWM
Pulse width modulators (PWMs)

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Description
F2812 DSPs include a suite of pulse width modulators (PWMs) used to generate various
signals. This block provides options to set the A or B module Event Managers to generate
the waveforms you require. The twelve PWMs are configured in six pairs, with three pairs
in each module.

The C281x PWM module shares GP Timers with other C281 blocks. For more information
and guidance on sharing timers, see “Sharing General Purpose Timers Between C281x
Peripherals”.

Note All inputs to the C281x PWM block must be scalar values.

Parameters

Timer Pane
Module

Specify which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and PWM5/
PWM6).

2 Blocks — Alphabetical List

2-80

• B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and PWM11/
PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and PWMs in module B
use Event Manager B, Timer 3.

Waveform period source
Source from which the waveform period value is obtained. Select Specify via
dialog to enter the value in Waveform period or select Input port to use a value
from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Waveform period
Period of the PWM waveform measured in clock cycles or in seconds, as specified in
the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral clock on the F2812
chip. This clock is 75 MHz by default because the high-speed peripheral clock
prescaler is set to 2 (150 MHz/2).

Waveform type (counting mode)
Type of waveform to be generated by the PWM pair. The F2812 PWMs can generate
two types of waveforms: Asymmetric(Up) and Symmetric(Up-down). The
following illustration shows the difference between the two types of waveforms.

 C281x PWM

2-81

Waveform period units
Units in which to measure the waveform period. Options are Clock cycles, which
refer to the high-speed peripheral clock on the F2812 chip (75 MHz), or Seconds.
Changing these units changes the Waveform period value and the Duty cycle value
and Duty cycle units selection.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

2 Blocks — Alphabetical List

2-82

Outputs Pane
Enable PWM#/PWM#

Check to activate the PWM pair. PWM1/PWM2 are activated via the Output 1 pane,
PWM3/PWM4 are on Output 2, and PWM5/PWM6 are on Output 3.

Duty cycle source
Select Specify via dialog to use the dialog box to enter a Duty cycle value for
the pair of PWM outputs. Select Input port to use the input port, W#, to enter a
Duty cycle value for the pair of PWM outputs.

The input port W1 corresponds to PWM1/PWM2. W2 corresponds to PWM3/PWM4.
W3 corresponds to PWM5/6.

Note All inputs to the C281x PWM block must be scalar values.

Duty cycle
Set the ratio of the PWM waveform pulse duration to the PWM Waveform period.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and Percentages.
Changing these units changes the Duty cycle value, and the Waveform period value
and Waveform period units selection.

Note Using percentages can cause some additional computation time in generated
code. This may or may not be noticeable in your application.

Logic Pane
Control logic source

Configure the control logic for all PWMs enabled on the Outputs tab. Valid settings
are Specify via dialog (default setting) or to Input port.

Specify via Dialog enables PWM control logic settings for each PWM output:

• Forced high causes the pulse value to be high.

Active high causes the pulse value to go from low to high.

 C281x PWM

2-83

Active low causes the pulse value to go from high to low.

Forced low causes the pulse value to be low.

Input port adds an input port to the PWM block for setting the C2000 ACTRx
register. Each PWM uses 2 bits to set the following options:

• 00 Forced Low
• 01 Active Low
• 10 Active High
• 11 Forced High

Bits 11–0 of the 16–bit Compare Action Control Registers for module A control
PWM1-6

Bits 11–0 of the 16–bit Compare Action Control Registers for module B control
PWM1-6

For example: If a decimal value of 3222 is read at the input port while using PWM
module A, the following PWM settings will be honored:

3222 = 0C96h = 110010010110b

So that:

• PW1: Active High
• PW2: Active Low
• PW3: Active Low
• PW4: Active High
• PW5: Forced Low
• PW6: Forced High

For more information, see the section on Compare Action Control Registers (ACTRA
and ACTRB) in the Texas Instruments™ document “TMS320x281x DSP Event
Manager (EV) Reference Guide”, literature number SPRU065.

2 Blocks — Alphabetical List

2-84

Deadband Pane
Use deadband for PWM#/PWM#

Enables a deadband area without signal overlap at the beginning of particular PWM
pair signals. The following figure shows the deadband area.

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband period, determines
the size of the deadband. Selectable values are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select Specify via dialog to
enter the values in the Deadband period field or select Input port to use a value,
in clock cycles, from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Deadband period
Value that, when multiplied by the Deadband prescaler, determines the size of the
deadband. Selectable values are from 1 to 15.

 C281x PWM

2-85

ADC Control Pane
ADC start event

Controls whether this PWM and ADC associated with the same EV module are
synchronized. Select None to disable synchronization or select an event to generate
the source start-of-conversion (SOC) signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV does not generate an
SOC signal and the ADC is triggered by software (that is, the A/D conversion
occurs when the ADC block is executed in the software).

• Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the board's general-purpose (GP) timer
counter reaches a hexadecimal value of FFFF.

• Period interrupt — The EV generates an SOC signal for the ADC associated
with the same EV module when the value in GP timer matches the value in the
period register. The value set in Waveform period above determines the value in
the register.

Note If you select Period interrupt and specify a sampling time less than the
specified (Waveform period)/(Event timer clock speed), zero-order hold
interpolation will occur. (For example, if you enter 64000 as the waveform period,
the period for the timer is 64000/75 MHz = 8.5333e-004. If you enter a Sample
time in the C281x ADC dialog box that is less than this result, it will cause zero-
order hold interpolation.)

• Compare interrupt — The EV generates an SOC signal for the ADC associated
with the same EV module when the value in the GP timer matches the value in the
compare register. The value set in Duty cycle above determines the value in the
register.

2 Blocks — Alphabetical List

2-86

C281x QEP
Quadrature encoder pulse circuit

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Description
Each F2812 Event Manager has three capture units, which can log transitions on its
capture unit pins. Event Manager A (EVA) uses capture units 1, 2, and 3. Event Manager
B (EVB) uses capture units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature encoded
input pulses on these capture unit pins. QEP pulses are two sequences of pulses with
varying frequency and a fixed phase shift of 90 degrees (or one-quarter of a period). The
circuit counts both edges of the QEP pulses, so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is useful for obtaining speed and
position information from a rotating machine. Logic in the QEP circuit determines the
direction of rotation by which sequence is leading. For module A, if the QEP1 sequence
leads, the general-purpose (GP) Timer counts up and if the QEP2 sequence leads, the
timer counts down. The pulse count and frequency determine the angular position and
speed.

The C281x QEP module shares GP Timers with other C281 blocks. For more information
and guidance on sharing timers, see “Sharing General Purpose Timers Between C281x
Peripherals”.

 C281x QEP

2-87

Parameters
Module

Specify which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.
• B — Uses QEP3 and QEP4 pins.

Counting mode
Specify how to count the QEP pulses:

• Counter — Count the pulses based on GP Timer 2 (or GP Timer 4 for EVB).
• RPM — Count the rotations per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the direction to use as
positive rotation. This field appears only if you select RPM.

Initial count
Initial value for the counter. The value defaults to 0.

Encoder resolution (pulse/revolution)
Number of QEP pulses per revolution. This field appears only if you select RPM.

Enable QEP index
Reset the QEP counter to zero when the QEP index input on CAP3_QEPI1 transitions
from low to high.

Enable index qualification mode
Qualify the QEP index input on CAP3_QEPI1. Check that the levels on CAP1_QEP1
and CAP2_QEP2 are high before asserting the index signal as valid.

Timer period
Set the length of the timer period in clock cycles. Enter a value from 0 to 65535. The
value defaults to 65535.

If you know the length of a clock cycle, you can easily calculate how many clock
cycles to set for the timer period. The following calculation determines the length of
one clock cycle:

Sysclk(150MHz) HISPCLK(1/2) InputClockPrescaler(1/128)

2 Blocks — Alphabetical List

2-88

In this calculation, you divide the System clock frequency of 150 MHz by the high-
speed clock prescaler of 2. Then, you divide the resulting value by the timer control
input clock prescaler, 128. The resulting frequency is 0.586 MHz. Thus, one clock
cycle is 1/.586 MHz, which is 1.706 µs.

Sample time
Time interval, in seconds, between consecutive reads from the QEP pins.

Data type
Data type of the QEP pin data. The circuit reads the data as 16-bit data and then casts
it to the selected data type. Valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, uint32 or boolean.

References
For more information on the QEP module, consult the following documents, available at
the Texas Instruments Web site:

• TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse (eQEP) Module
Reference Guide, Literature Number SPRU790

• Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in TMS320x280x,
28xxx as a Dedicated Capture Application Report, Literature Number SPRAAH1

 C281x QEP

2-89

C281x Timer
Configure general-purpose timer in Event Manager module

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C281x

Description
The C281x contains two event-manager (EV) modules. Each module contains two general-
purpose (GP) timers. You can use these timers as independent time bases for various
applications.

Use the C281x Timer block to set the periodicity of one GP timer and the conditions under
which it posts interrupts. Each model can contain up to four C281x Timer blocks.

The C281x Timer module configures GP Timers that other C281 blocks share. For more
information and guidance on sharing timers, see “Sharing General Purpose Timers
Between C281x Peripherals”.

Parameters
ModuleTimer no

Select which of four possible timers to configure. Setting Module to A lets you select
Timer 1 or Timer 2 in Timer no. Setting Module to B lets you select Timer 3 or
Timer 4 in Timer no.

Clock source
When Timer no has a value of Timer 2 or Timer 4, use this parameter to select the
clock source for the event timer. You can choose either Internal or QEP circuit.

2 Blocks — Alphabetical List

2-90

When you select Internal, you can configure other options such as Timer period
source, Counting mode, and Timer prescaler.

Timer period source
Select the source of the event timer period. Use Specify via dialog to set the
period using Timer period. Select Input port to create an input, T, that accepts
the value of the timer period in clock cycles, from 0 to 65535. Timer period source
becomes unavailable when Clock source is set to QEP circuit.

Timer period
Set the length of the timer period in clock cycles. Enter a value from 0 to 65535. The
value defaults to 10000.

If you know the length of a clock cycle, you can easily calculate how many clock
cycles to set for the timer period. The following calculation determines the length of
one clock cycle:

Sysclk(150MHz) HISPCLK(1/2) InputClockPrescaler(1/128)

In this calculation, you divide the System clock frequency of 150 MHz by the high-
speed clock prescaler of 2. Then, you divide the resulting value by the timer control
input clock prescaler, 128. The resulting frequency is 0.586 MHz. Thus, one clock
cycle is 1/.586 MHz, which is 1.706 µs.

Compare value source
Select the source of the compare value. Use Specify via dialog to set the period
using the Compare value parameter. Select Input port to create a block input, W,
that accepts the value of the compare value, from 0 to 65535.

Compare value
Enter a constant value for comparison to the running timer value for generating
interrupts. Enter a value from 0 to 65535. The value defaults to 5000. The timer only
generates interrupts if you enable Post interrupt on compare match.

Counting mode
Select Up to generate an asymmetrical waveform output, or Up-down to generate a
symmetrical waveform output, as shown in the following illustration.

 C281x Timer

2-91

When you specify the Counting mode as Up (asymmetric) the waveform:

• Starts low
• Goes high when the rising period counter value matches the Compare value
• Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric) the waveform:

• Starts low
• Goes high when the increasing period counter value matches the Compare value
• Goes low when the decreasing period counter value matches the Compare value

Counting mode becomes unavailable when Clock source is set to QEP circuit.
Timer prescaler

Divide the clock input to produce the desired timer counting rate.

Timer prescaler becomes unavailable when Clock source is set to QEP circuit.

2 Blocks — Alphabetical List

2-92

Post interrupt on period match
Generate an interrupt when the value of the timer reaches its maximum value as
specified in Timer period.

Post interrupt on underflow
Generate an interrupt when the value of the timer cycles back to 0.

Post interrupt on overflow
Generate an interrupt when the value of the timer reaches its maximum, 65535. Also
set Timer period to 65535 for this parameter to work.

Post interrupt on compare match
Generate an interrupt when the value of the timer equals Compare value.

References
TMS320x281x DSP Event Manager (EV) Reference Guide, Literature Number: SPRU065,
available from the Texas Instruments Web site.

See Also
C28x Hardware Interrupt

 C281x Timer

2-93

C2000 Clarke Transformation
Convert balanced three-phase quantities to balanced two-phase quadrature quantities

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block converts balanced three-phase quantities into balanced two-phase quadrature
quantities. The transformation implements these equations

Id = Ia
Iq = (2Ib + Ia)/ 3

and is illustrated in the following figure.

2 Blocks — Alphabetical List

2-94

The inputs to this block are the phase a (As) and phase b (Bs) components of the
balanced three-phase quantities and the outputs are the direct axis (Alpha) component
and the quadrature axis (Beta) of the transformed signal.

The instantaneous outputs are defined by the following equations and are shown in the
following figure:

ia = I * sin(ωt)
ib = I * sin(ωt + 2π/3)
ic = I * sin(ωt − 2π/3)
id = I * sin(ωt)
iq = I * sin(ωt + π/2)

The variables used in the preceding equations and figures correspond to the variables on
the block as shown in the following table:

 Equation Variables Block Variables
Inputs ia As
 ib Bs
Outputs id Alpha
 iq Beta

Note

• To generate optimized code from this block, enable the TI C28x or TI C28x (ISO)
CRL.

 C2000 Clarke Transformation

2-95

• The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and
the MathWorks code used by this block dynamically adjusts the Q format based on the
block input. See “Using the IQmath Library” for more information.

References
For detailed information on the DMC library, see C/F 28xx Digital Motor Control Library,
Literature Number SPRC080, available at the Texas Instruments Web site.

See Also
C2000 Inverse Park Transformation, C2000 Park Transformation, C2000 PID Controller,
C2000 Space Vector Generator, C2000 Speed Measurement

2 Blocks — Alphabetical List

2-96

C2000 Division IQN
Divide IQ numbers

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block divides two numbers that use the same Q format, using the Newton-Raphson
technique. The resulting quotient uses the same Q format at the inputs.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code code used by this block dynamically adjusts the Q format based on the
block input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, c2000 Arctangent IQN, C2000 Float to IQN, C2000 Fractional part
IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN

 C2000 Division IQN

2-97

x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-98

C2000 Float to IQN
Convert floating-point number to IQ number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block converts a floating-point number to an IQ number. The Q value of the output is
specified in the dialog.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Q value

Q value from 1 to 30 that specifies the precision of the output

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the

 C2000 Float to IQN

2-99

Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Fractional part
IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN
x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-100

C2000 Fractional part IQN
Fractional part of IQ number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block returns the fractional portion of an IQ number. The returned value is an IQ
number in the same IQ format.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x

 C2000 Fractional part IQN

2-101

int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-102

C2000 Fractional part IQN x int32
Fractional part of result of multiplying IQ number and long integer

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block multiplies an IQ input and a long integer input and returns the fractional
portion of the resulting IQ number.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

 C2000 Fractional part IQN x int32

2-103

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN,
C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-104

C2000 Integer part IQN
Integer part of IQ number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block returns the integer portion of an IQ number. The returned value is a long
integer.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN x

 C2000 Integer part IQN

2-105

int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-106

C2000 Integer part IQN x int32
Integer part of result of multiplying IQ number and long integer

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block multiplies an IQ input and a long integer input and returns the integer portion
of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

 C2000 Integer part IQN x int32

2-107

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN,
C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-108

C2000 Inverse Park Transformation
Convert rotating reference frame vectors to two-phase stationary reference frame

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block converts vectors in an orthogonal rotating reference frame to a two-phase
orthogonal stationary reference frame. The transformation implements these equations:

Id = ID * cosθ− IQ * sinθ
Iq = ID * sinθ + IQ * cosθ

and is illustrated in the following figure.

 C2000 Inverse Park Transformation

2-109

The inputs to this block are the direct axis (Ds) and quadrature axis (Qs) components of
the transformed signal in the rotating frame and the phase angle (Angle) between the
stationary and rotating frames.

The outputs are the direct axis (Alpha) and the quadrature axis (Beta) components of
the transformed signal.

The variables used in the preceding figure and equations correspond to the block
variables as shown in the following table:

 Equation Variables Block Variables
Inputs ID Ds
 IQ Qs
 θ Angle
Outputs id Alpha
 iq Beta

Note

• To generate optimized code from this block, enable the TI C28x or TI C28x (ISO)
Code Replacement Library.

• The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and
the MathWorks code used by this block dynamically adjusts the Q format based on the
block input. See “Using the IQmath Library” for more information.

References
For detailed information on the DMC library, see C/F 28xx Digital Motor Control Library,
Literature Number SPRC080, available at the Texas Instruments Web site.

2 Blocks — Alphabetical List

2-110

See Also
C2000 Clarke Transformation, C2000 Park Transformation, C2000 PID Controller, C2000
Space Vector Generator, C2000 Speed Measurement

 C2000 Inverse Park Transformation

2-111

C2000 IQN to Float
Convert IQ number to floating-point number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block converts an IQ input to an equivalent floating-point number. The output is a
single floating-point number.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,

2 Blocks — Alphabetical List

2-112

C2000 Integer part IQN x int32, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to
IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square
Root IQN, C2000 Trig Fcn IQN

 C2000 IQN to Float

2-113

C2000 IQN x int32
Multiply IQ number with long integer

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block multiplies an IQ input and a long integer input and produces an IQ output of
the same Q value as the IQ input.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,

2 Blocks — Alphabetical List

2-114

C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x IQN, C2000 IQN1 to
IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square
Root IQN, C2000 Trig Fcn IQN

 C2000 IQN x int32

2-115

C2000 IQN x IQN
Multiply IQ numbers with same Q format

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block multiplies two IQ numbers. Optionally, it can also round and saturate the
result.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Multiply option

Type of multiplication to perform:

• Multiply — Multiply the numbers.
• Multiply with Rounding — Multiply the numbers and round the result.
• Multiply with Rounding and Saturation — Multiply the numbers and

round and saturate the result to the maximum value.

2 Blocks — Alphabetical List

2-116

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN1 to
IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square
Root IQN, C2000 Trig Fcn IQN

 C2000 IQN x IQN

2-117

C2000 IQN1 to IQN2
Convert IQ number to different Q format

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block converts an IQ number in a particular Q format to a different Q format.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Q value

Q value from 1 to 30 that specifies the precision of the output

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

2 Blocks — Alphabetical List

2-118

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN1 to
IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square
Root IQN, C2000 Trig Fcn IQN

 C2000 IQN1 to IQN2

2-119

C2000 IQN1 x IQN2
Multiply IQ numbers with different Q formats

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block multiples two IQ numbers when the numbers are represented in different Q
formats. The format of the result is specified in the dialog box.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Q value

Q value from 1 to 30 that specifies the precision of the output

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the

2 Blocks — Alphabetical List

2-120

Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x
IQN, C2000 IQN1 to IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square
Root IQN, C2000 Trig Fcn IQN

 C2000 IQN1 x IQN2

2-121

C2000 Magnitude IQN
Magnitude of two orthogonal IQ numbers

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block calculates the magnitude of two IQ numbers using

a2 + b2

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

2 Blocks — Alphabetical List

2-122

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x
IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

 C2000 Magnitude IQN

2-123

C2000 Park Transformation
Convert two-phase stationary system vectors to rotating system vectors

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block converts vectors in balanced two-phase orthogonal stationary systems into an
orthogonal rotating reference frame. The transformation implements these equations

ID = Id * cosθ + Iq * sinθ
IQ = − Id * sinθ + Iq * cosθ

and is illustrated in the following figure.

2 Blocks — Alphabetical List

2-124

The variables used in the preceding figure and equations correspond to the block
variables as shown in the following table:

 Equation Variables Block Variables
Inputs id Alpha
 iq Beta
 θ Angle
Outputs ID Ds
 IQ Qs

The inputs to this block are the direct axis (Alpha) and the quadrature axis (Beta)
components of the transformed signal and the phase angle (Angle) between the
stationary and rotating frames.

The outputs are the direct axis (Ds) and quadrature axis (Qs) components of the
transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations:

id = I * sin(ωt)
iq = I * sin(ωt + π/2)

Note

• To generate optimized code from this block, enable the TI C28x or TI C28x (ISO)
Code Replacement Library.

• The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and
the MathWorks code used by this block dynamically adjusts the Q format based on the
block input. See “Using the IQmath Library” for more information.

References
For detailed information on the DMC library, see C/F 28xx Digital Motor Control Library,
Literature Number SPRC080, available at the Texas Instruments Web site.

 C2000 Park Transformation

2-125

See Also
C2000 Clarke Transformation, C2000 Inverse Park Transformation, C2000 PID Controller,
C2000 Space Vector Generator, C2000 Speed Measurement

2 Blocks — Alphabetical List

2-126

C2000 PID Controller
Digital PID controller

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block implements a 32-bit digital PID controller with antiwindup correction. The
inputs are a reference input (ref) and a feedback input (fdb) and the output (out) is the
saturated PID output. The following diagram shows a PID controller with antiwindup.

 C2000 PID Controller

2-127

The differential equation describing the PID controller before saturation that is
implemented in this block is

upresat(t) = up(t) + ui(t) + ud(t)

where upresat is the PID output before saturation, up is the proportional term, ui is the
integral term with saturation correction, and ud is the derivative term.

The proportional term is

up(t) = Kpe(t)

where Kp is the proportional gain of the PID controller and e(t) is the error between the
reference and feedback inputs.

The integral term with saturation correction is

ui(t) = ∫
0

t Kp
Ti

e(τ) + Kc u(τ)− upresat(τ) dτ

where Kc is the integral correction gain of the PID controller.

The derivative term is

ud(t) = KpTd
de(t)

dt

where Td is the derivative time of the PID controller. In discrete terms, the derivative gain
is defined as Kd = Td/T, and the integral gain is defined as Ki = T/Ti, where T is the
sampling period and Ti is the integral time of the PID controller.

Using backward approximation, the preceding differential equations can be transformed
into the following discrete equations.

up[n] = Kpe[n]
ui[n] = ui[n− 1] + KiKpe[n] + Kc u[n− 1]− upresat[n− 1]
ud[n] = KdKp e[n]− e[n− 1]
upresat[n] = up[n] + ui[n] + ud[n]
u[n] = SAT upresat[n]

2 Blocks — Alphabetical List

2-128

Note

• To generate optimized code from this block, enable the TI C28x or TI C28x (ISO)
Code Replacement Library.

The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and
the MathWorks code used by this block dynamically adjusts the Q format based on the
block input. See “Using the IQmath Library” for more information.

This block implements a 32-bit digital PID controller with antiwindup correction. The
inputs are a reference input (ref) and a feedback input (fdb) and the output (out) is the
saturated PID output. The following diagram shows a PID controller with antiwindup.

The differential equation describing the PID controller before saturation that is
implemented in this block is

upresat(t) = up(t) + ui(t) + ud(t)

where upresat is the PID output before saturation, up is the proportional term, ui is the
integral term with saturation correction, and ud is the derivative term.

 C2000 PID Controller

2-129

The proportional term is

up(t) = Kpe(t)

where Kp is the proportional gain of the PID controller and e(t) is the error between the
reference and feedback inputs

ui(t) = ∫
0

t Kp
Ti

e(τ) + Kc u(τ)− upresat(τ) dτ

where Kc is the integral correction gain of the PID controller.

The derivative term is

ud(t) = KpTd
de(t)

dt

where Td is the derivative time of the PID controller. In discrete terms, the derivative gain
is defined as Kd = Td/T, and the integral gain is defined as Ki = T/Ti, where T is the
sampling period and Ti is the integral time of the PID controller.

Using backward approximation, the preceding differential equations can be transformed
into the following discrete equations.

up[n] = Kpe[n]
ui[n] = ui[n− 1] + KiKpe[n] + Kc u[n− 1]− upresat[n− 1]
ud[n] = KdKp e[n]− e[n− 1]
upresat[n] = up[n] + ui[n] + ud[n]
u[n] = SAT upresat[n]

Note

• To generate optimized code from this block, enable the TI C28x or TI C28x (ISO)
Code Replacement Library.

The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and
the MathWorks code used by this block dynamically adjusts the Q format based on the
block input. See “Using the IQmath Library” for more information.

2 Blocks — Alphabetical List

2-130

Parameters
Proportional gain

Amount of proportional gain (Kp) to apply to the PID
Integral gain

Amount of gain (Ki) to apply to the integration equation
Integral correction gain

Amount of correction gain (Kc) to apply to the integration equation
Derivative gain

Amount of gain (Kd) to apply to the derivative equation.
Minimum output

Minimum allowable value of the PID output
Maximum output

Maximum allowable value of the PID output

References
For detailed information on the DMC library, see C/F 28xx Digital Motor Control Library,
Literature Number SPRC080, available at the Texas Instruments Web site.

See Also
C2000 Clarke Transformation, C2000 Inverse Park Transformation, C2000 Park
Transformation, C2000 Space Vector Generator, C2000 Speed Measurement, “Simulation
of FOC Using PMSM Model”, “Permanent Magnet Synchronous Motor Field-Oriented
Control”

 C2000 PID Controller

2-131

C2000 Ramp Control
Create ramp-up and ramp-down function

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block implements a ramp-up and ramp-down function. The input is a target value
and the outputs are the set point value (setpt) and a flag. The flag output is set to
7FFFFFFFh when the output setpt value reaches the input target value. The target
and setpt values are signed 32-bit fixed-point numbers with Q values between 16 and
29. The flag is a long number.

The target value is compared with the setpt value. If they are not equal, the output
setpt is adjusted up or down by a fixed step size (0.0000305).

If the fixed step size is relatively large compared to the target value, the output may
oscillate around the target value.

Parameters
Maximum delay rate

Value that is multiplied by the sampling loop time period to determine the time delay
for each ramp step. Valid values are integers greater than 0.

Minimum limit
Minimum allowable ramp value. If the input falls below this value, it will be saturated
to this minimum. The smallest value you can enter is the minimum value that can be

2 Blocks — Alphabetical List

2-132

represented in fixed-point data format by the input and output blocks to which this
Ramp Control block is connected in your model. If you enter a value below this
minimum, an error occurs at the start of code generation or simulation. For example,
if your input is in Q29 format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this value, it will be reduced
to this maximum. The largest value you can enter is the maximum value that can be
represented in fixed-point data format by the input and output blocks to which this
Ramp Control block is connected in your model. If you enter a value above this
maximum, an error occurs at the start of code generation or simulation. For example,
if your input is in Q29 format, its maximum value is 3.9999....

See Also
C2000 Ramp Generator

 C2000 Ramp Control

2-133

C2000 Ramp Generator
Generate ramp output

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block generates ramp output (out) from the slope of the ramp signal (gain), DC
offset in the ramp signal (offset), and frequency of the ramp signal (freq) inputs. All of
the inputs and output are 32-bit fixed-point numbers with Q values between 1 and 29.

Algorithm
The block's output (out) at the sampling instant k is governed by the following algorithm:

out(k) = angle(k) * gain(k) + offset(k)

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1.

Angle(k) is defined as follows:

angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1

2 Blocks — Alphabetical List

2-134

The frequency of the ramp output is controlled by a precision frequency generation
algorithm that relies on the modulo nature of the finite length variables. The frequency of
the output ramp signal is equal to

f = (Maximum step angle * sampling rate) / 2m

where m represents the fractional length of the data type of the inputs.

All math operations are carried out in fixed-point arithmetic, where the fixed-point
fractional length is determined by the block's inputs.

Note To generate optimized code from this block, enable the TI C28x or TI C28x
(ISO) Code Replacement Library.

Parameters
Maximum step angle

The maximum step size, which determines the rate of change of the output (i.e., the
minimum period of the ramp signal).

When you enter double-precision floating-point values for parameters in the IQ Math
blocks, the software converts them to single-precision values that are compatible with
the behavior on c28x processor.

Examples
The following model demonstrates the Ramp Generator block. The Constant and Scope
blocks are available in Simulink Commonly Used Blocks.

 C2000 Ramp Generator

2-135

In your model, select Simulation > Model Configuration Parameters. On the Solver
pane, set Type to Fixed-step and Solver to Discrete (no continuous states).
Set the parameter values for the blocks as shown in the following table.

Block Connects to Parameter Value
Constant Ramp Generator - gain Constant value

Sample time

Output data type

Output scalig value

1

0.001

sfix(32)

2^-9
Constant Ramp Generator - offset Constant value

Sample time

Output data type

Output scalig value

0

inf

sfix(32)

2^-9
Constant Ramp Generator - freq Constant value

Sample time

Output data type

Output scalig value

0.001

inf

sfix(32)

2^-9
C2000 Ramp
Generator

Scope and Floating Scope
(Simulink block)

Maximum step angle 1

When you run the model, the Scope block generates the following output (drag a zoom
box around a portion of the output to change the display).

2 Blocks — Alphabetical List

2-136

With fixed point calculations in IQMath, for a given frequency input on the block, f_input,
the equation is:

f = (Maximum step angle * f_input * sampling rate) / 2m

For example, if f_input = 0.001, the real value, 1, counts as fixed point with a fractional
length of 9:

f = (1 * 1 * (1/0.001)) / 29 = 1.9531 Hz

Where 0.001 is the block sample time.

If we use normal math, and f_input is a non-fixed point real value, then:

f = (Maximum step angle * f_input * sampling rate) / 1

For example, if we are using floating point calculation:

f = (1 * 0.001 * (1/0.001)) / 1 = 1 Hz

 C2000 Ramp Generator

2-137

When using fixed point with fractional length 9, the expected period becomes:

T = 1/f = 1/1.9531 Hz = 0.5120 s

This result is what the above Scope output shows.

Note If you use different fractional lengths for the fixed point calculations, the output
frequency varies depending on the precision.

See Also
C2000 Ramp Control

2 Blocks — Alphabetical List

2-138

C2000 Saturate IQN
Saturate IQ number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block saturates an input IQ number to the specified upper and lower limits. The
returned value is an IQ number of the same Q value as the input.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Upper Limit

Maximum real-world value to which to saturate
Lower Limit

Minimum real-world value to which to saturate

 C2000 Saturate IQN

2-139

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x
IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Square
Root IQN, C2000 Trig Fcn IQN

2 Blocks — Alphabetical List

2-140

C2000 Space Vector Generator
Duty ratios for stator reference voltage

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block calculates duty ratios that generate a given stator reference voltage using
space vector PWM technique. Space vector pulse width modulation is a switching
sequence of the upper three power devices of a three-phase voltage source inverter and is
used in applications such as AC induction and permanent magnet synchronous motor
drives. The switching scheme results in three pseudosinusoidal currents in the stator
phases. This technique approximates a given stator reference voltage vector by
combining the switching pattern corresponding to the basic space vectors.

The inputs to this block are

• Alpha component — the reference stator voltage vector on the direct axis stationary
reference frame (Ua)

• Beta component — the reference stator voltage vector on the direct axis quadrature
reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke equation and
projected into reference phase voltages. These voltages are represented in the outputs as
the duty ratios of the PWM1 (Ta), PWM3 (Tb), and PWM5 (Tc).

 C2000 Space Vector Generator

2-141

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

References
For detailed information on the DMC library, see C/F 28xx Digital Motor Control Library,
Literature Number SPRC080, available at the Texas Instruments Web site.

See Also
C2000 Clarke Transformation, C2000 Inverse Park Transformation, C2000 Park
Transformation, C2000 PID Controller, C2000 Speed Measurement

2 Blocks — Alphabetical List

2-142

C2000 Speed Measurement
Calculate motor speed

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x DMC

Description
This block calculates the motor speed based on the rotor position when the direction
information is available. The inputs are the electrical angle (theta) and the direction of
rotation (dir) from the encoder. The outputs are the speed normalized from 0 to 1 in the
Q format (freq) and the speed in revolutions per minute (rpm).

Note

• To generate optimized code from this block, enable the TI C28x or TI C28x (ISO)
Code Replacement Library.

• This block does not call the corresponding Texas Instruments library function during
code generation. Instead, the MathWorks code uses the TI functions global Q setting
to adjust dynamically the Q format based on the block input. See “Using the IQmath
Library” for more information.

Understanding the Theta Input to the Block
To indicate the rotational position of your motor, the block expects a 32-bit, fixed-point
value that varies from 0 to 1.

 C2000 Speed Measurement

2-143

Block input theta is defined by the following relations:

• A theta input signal equal to 0 indicates 0 degrees of rotation.
• A theta input signal equal to 1 indicates 360 degrees of rotation (one full rotation).

When the motor spins at a constant speed, theta (in counts) from your position sensor
(encoder) should increase linearly from 0 to 1 and then abruptly return to 0, like a saw-
shaped signal. Adjust the theta signal output from your encoder to get the input signal
range for the Speed Measurement block. Then, convert your encoder signal to 32-bit
fixed-point Q format that meets your resolution needs.

For example, if you are using a position sensor that generates 8000 counts for one full
revolution of the motor, (0.0450 degrees per count), you need to reset your counter to 0
after your counter reaches 8000. Each time you read your encoder position, you need to
convert the position to a 32-bit, fixed-point Q format value knowing that 8000 is
represented as a 1.0. In this example your format could be Q31.

The Base Speed Parameter
Base speed is the maximum motor rotation rate to measure. This value is probably not the
maximum speed the motor can achieve.

The Speed Measurement block calculates motor speed from two successive theta
readings of the motor position, thetanew and thetaold (the base speed of the motor; and the
time between readings). The maximum speed the block can calculate occurs when the
difference between two successive samples [abs(thetanew-thetaold)] is 1.0—one full motor
revolution occurs between theta samples.

Therefore, the value you provide for the Base speed (in revolutions per minute) parameter
is the speed, in revolutions per minute, at which your motor position signal reports one
full revolution during one sample time. While the motor may spin faster than the base
speed, the block cannot calculate the rotation rate in that case. If the motor completes
more than one revolution in one sample time, the calculated speed may be wrong. The
block does not know that between samples thetanew and thetaold, theta wrapped from 1
back to 0 and started counting up again.

The time difference between the two theta readings is the sample time. The Speed
Measurement block inherits the sample time from the upstream block in your model. You
set the sample time in the upstream block and then the Speed Measurement block uses
that sample time to calculate the rotation rate of the motor.

2 Blocks — Alphabetical List

2-144

The Sample Time Calculation
Motor speed measurements depend on the sample time you set in the model. Your sample
time must be short enough to measure the full speed of the motor.

Two parameters drive your sample time—motor base speed and encoder counts per
revolution. To be able to measure the maximum rotation rate, you must take at least one
sample for each revolution. For a motor with base speed equal to 1000 rpm, which is
16.67 rps, you need to sample at 1/16.67 s, which is 0.06 s/sample. This sample rate of
16.67 samples per second is the maximum sample time (lowest sample rate) so that you
can measure the full speed of the motor.

Using the same sample rate assumption, the minimum speed the block can measure
depends on the encoder counts per revolution. At the minimum measurable motor speed,
the encoder generates one count per sample period—16.67 counts per second. For an
encoder that generates 8000 counts per revolution, this results in being able to measure a
speed of [(16.67 counts/s) * (0.045 degrees/count)] = 0.752 degrees per second, or about
45 degrees per minute—one-eighth RPM.

The Differentiator Constant
The differentiator constant is a scalar value applied to the block output. For example,
setting it to 1 does not alter the output. Setting the constant to 1/4 multiplies the
frequency and revolutions per minute outputs by 0.25. This setting can be useful when
your motor has multiple pole pairs, and one electrical revolution is not equal to one
mechanical revolution. The constant lets you account for the difference between electrical
and mechanical rotation rates.

The Low-Pass Filter Constant
This block includes filtering capability if your position signal is noisy. Setting the filter
constant to 0 disables the filter. Setting the filter constant to 1 filters out the entire signal
and results in a block output equal to 0. Use a simulation to determine the best filter
constant for your system. Your goal is to filter enough to remove the noise on your signal
but not so much that the speed measurements cannot react to abrupt speed changes.

 C2000 Speed Measurement

2-145

Parameters
Base speed

Maximum speed of the motor to measure in revolutions per minute.
Differentiator constant

Constant used in the differentiator equation that describes the rotor position.
Low-pass filter constant

Constant to apply to the lowpass filter. This constant is 1/(1+T*(2πfc)), where T is the
sampling period and fc is the cutoff frequency. The 1/(2πfc) term is the lowpass filter
time constant. This block uses a lowpass filter to reduce noise generated by the
differentiator.

Example
The following example demonstrates how you configure the Speed Measurement block.

Configuring the Speed Measurement Block to Measure Motor
Speed
Use the following process to set up the Speed Measurement block parameters.

1 Add the block to your model.
2 Open the block dialog box to view the block parameters.
3 Set the value for Base Speed to the maximum speed to measure, in revolutions per

minute.
4 Enter values for Differentiator and Low-Pass Filter Constant.
5 Click OK to close the dialog box.

Setting the Sample Time to Measure Motor Speed
Use the following process to set the sample time for measuring the motor speed.

1 Open the block dialog box for the block before the Speed Measurement block in your
model (the upstream or driving block).

2 Blocks — Alphabetical List

2-146

2 Set the sample time parameter in the upstream block according to the sample time
guidelines described in “The Sample Time Calculation” on page 2-145.

3 Click OK to close the dialog box.

References
For detailed information on the DMC library, see C/F 28xx Digital Motor Control Library,
SPRC080, available at the Texas Instruments Web site.

See Also
C2000 Clarke Transformation, C2000 Inverse Park Transformation, C2000 Park
Transformation, C2000 PID Controller, C2000 Space Vector Generator

 C2000 Speed Measurement

2-147

C2000 Square Root IQN
Square root or inverse square root of IQ number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block calculates the square root or inverse square root of an IQ number and returns
an IQ number of the same Q format. The block uses table lookup and a Newton-Raphson
approximation.

Negative inputs to this block return a value of zero.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Function

Whether to calculate the square root or inverse square root

• Square root (_sqrt) — Compute the square root.
• Inverse square root (_isqrt) — Compute the inverse square root.

2 Blocks — Alphabetical List

2-148

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, Fractional part IQN x int32, C2000 Integer part IQN, Integer
part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1
to IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Trig
Fcn IQN

 C2000 Square Root IQN

2-149

C2000 Trig Fcn IQN
Sine, cosine, or arc tangent of IQ number

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/
Optimization/ C28x IQmath

Description
This block calculates basic trigonometric functions and returns the result as an IQ
number. Valid Q values for _IQsinPU and _IQcosPU are 1 to 30. For all others, valid Q
values are from 1 to 29.

Note The implementation of this block does not call the corresponding Texas Instruments
library function during code generation. The TI function uses a global Q setting and the
MathWorks code used by this block dynamically adjusts the Q format based on the block
input. See “Using the IQmath Library” for more information.

Parameters
Function

Type of trigonometric function to calculate:

• _IQsin — Compute the sine (sin(A)), where A is in radians.
• _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where A is in per-unit

radians.
• _IQcos — Compute the cosine (cos(A)), where A is in radians.

2 Blocks — Alphabetical List

2-150

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)), where A is in per-unit
radians.

References
For detailed information on the IQmath library, see the user's guide for the C28x IQmath
Library - A Virtual Floating Point Engine, Literature Number SPRC087, available at the
Texas Instruments Web site. The user's guide is included in the zip file download that also
contains the IQmath library (registration required).

See Also
C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer part IQN,
C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x
IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate
IQN, C2000 Square Root IQN

 C2000 Trig Fcn IQN

2-151

C2837x/07x DAC
Configures the DAC to generate an analog output on the specified DAC channel A/B/C
(12-bit) of F2837x/F2807x processor
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors/ F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors/ F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors/ F2837xS

Description
Generate an analog output on the specified DAC channel A, B, or C for F2837x/F2807x
processors. The block accepts a 12–bit value as an input in the range 0 to 4095. You can
saturate a value higher than 4095 to 4095 with the Saturate on input outflow option.

The output pins of this block are multiplexed with the ADC block input. When you use a
DAC block in your model, the corresponding channels of the ADC cannot be used as input.
If used, the ADC samples the DAC output.

The pins that are shared between ADC and DAC are DACOUTA/ADCINA0, DACOUTB/
ADCINA1, and DACOUTC/ADCINB1. The input to the DAC block can be double, float, int,
and uint. The block typecasts the input to uint16.

Ports

Input
Port_1 — Input signal
real, scalar

2 Blocks — Alphabetical List

2-152

Parameters
DAC channel — The DAC channel to generate analog output
12 (default)

Enter the DAC channel on which to generate the analog signal. The DAC channels that
you can select are A, B, or C.

Saturate on input overflow (>4095) — The option to saturate the input
value on input overflow

Select this check box to saturate the input value to 4095 when there is an input value is
higher than 4095.

See Also

Topics
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x ePWM
C2802x/C2803x/C2805x/C2806x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x
ADC

Introduced in R2016b

 C2837x/07x DAC

2-153

F2837xD IPC Receive
Receive data from either CPU
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / F2837xD

Description
The IPC Receive block receives and outputs data sent from one CPU to the other.

CPU1 transmits data to its allocated memory (CPU1-to-CPU2 Message RAM) and receives
data from the allocated memory of CPU2 (CPU2-to-CPU1 Message RAM). CPU2 transmits
data to CPU2-to-CPU1 Message RAM and receives data from CPU1-to-CPU2 Message
RAM.

A hardware interrupt block can be used along with the IPC Receive block for receiving
data based on hardware interrupts. Channels 0, 1, 2, and 3 are configured for hardware
interrupts — IPC0, IPC1, IPC2, and IPC3. These hardware interrupts can be set in the
hardware interrupt block using these parameters: CPU interrupt number 1 and PIE
interrupt numbers 13, 14, 15, and 16 respectively.

2 Blocks — Alphabetical List

2-154

Ports

Output
Out — IPC receive
vector | scalar

Data read from the other CPU.

Status — IPC receive status
0 | 1 | 2 | 3

The status port outputs one of these values:

• 0 — No errors
• 1 — Data not available
• 2 — Data type mismatch
• 3 — Data length mismatch

Parameters
Channel — Channel selected to receive data
0 (default) | 0–31

The channel at which you want to receive data. Each channel is a separate memory
location in the shared memory.

Note The transmitter and receiver have 32 channels each to transmit and receive data.
For data transmission and reception, the transmitter and receiver must be set to the same
channel number.

Data type — Type of data to be received
uint16 (default) | single | int8 | uint8 | int16 | int32 | uint32 | boolean

The type of data the block receives.

 F2837xD IPC Receive

2-155

Vector data is stored in the global shared RAM, and the address of the data is stored in
the MSGRAM.

Data length — Size of data to be received
1 (default) | positive integer

The number of data units received at each sample time. If the data length is 1, the block
interprets each incoming piece of data as a scalar value; if the data length is greater than
1, the block interprets each incoming piece of data as a vector with length equal to Data
length. The maximum size for scalar and vector data is 32 bits.

Enable blocking — Specify if CPU must wait to read data
off (default) | on

When enabled, the CPU waits until data is available from the other CPU.

Sample time — Interval at which block reads data
0.001 (default) | –1 | positive scalar

The time between data samples, measured in seconds. When you set this parameter to
-1, Simulink determines the best sample time for the block based on the block context
within the model.

See Also
F2837xD IPC Transmit

Introduced in R2018a

2 Blocks — Alphabetical List

2-156

F2837xD IPC Transmit
Transmit data to either CPU
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / F2837xD

Description
The IPC Transmit block transmits data from one CPU to the other.

CPU1 transmits data to its allocated memory (CPU1-to-CPU2 Message RAM) and receives
data from the allocated memory of CPU2 (CPU2-to-CPU1 Message RAM). CPU2 transmits
data to CPU2-to-CPU1 Message RAM and receives data from CPU1-to-CPU2 Message
RAM.

 F2837xD IPC Transmit

2-157

Ports

Input
Input — Data to be send to the other CPU
uint16 | single | int8 | uint8 | int16 | int32 | uint32 | boolean

The port accepts data to be transmitted to the other CPU as a vector or scalar.

Parameters
Channel — Channel selected to transmit data
0 (default) | 0–31

The channel from which you want to transmit data. Each channel is a separate memory
location in the shared memory.

Note The transmitter and receiver have 32 channels each to transmit and receive data.
For data transmission and reception, the transmitter and receiver must be set to the same
channel number.

Enable blocking — Specify if CPU must wait until sent data is read
off (default) | on

When enabled, after sending data, the CPU waits until the other CPU reads the data.

See Also
F2837xD IPC Receive

Introduced in R2018a

2 Blocks — Alphabetical List

2-158

C28x eCAP
Receive and log transitions on capture input pin or configure auxiliary pulse width
modulator
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

Description
The eCAP block captures the timing of important external events, such as Hall sensor
signals in speed measurements of rotating machinery. When not used in capture mode,

 C28x eCAP

2-159

the block can be used in APWM mode, which is a single-channel, asymmetric pulse width
modulator (APWM). You can add one eCAP block to your model for each capture pin. You
cannot assign the same eCAP pin to two eCAP blocks in a model. eCAP and APWM modes
use the same pins. In eCAP mode, the pins are used as input to capture the transitions. In
APWM mode, the pins are used to output a PWM waveform.

Input/Output Ports

Input
SI — Synchronization input from software
scalar

The input from the software used to synchronize the eCAP counter. The synchronization
occurs when the synchronization input value is 1.

Dependencies

The port appears only when:

• On the General tab, you select Operating mode > eCAP or APWM.
• On the General tab, you select Enable counter Sync-In mode and Enable

software-forced counter synchronizing input.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

RA — One-Shot capture sequence
scalar

Starts a One-Shot capture sequence.

A 2-bit stop register is used to compare the Mod4 counter output, and when the register
and counter values are equal the Mod4 counter is stopped.

Dependencies

The port appears only when:

• On the General tab, you select Operating mode > eCAP.

2 Blocks — Alphabetical List

2-160

• On the eCAP tab, you set Select mode control > One-Shot and select Enable One-
Shot re-arming control input.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

T — APWM period
scalar

Period of the APWM.

Dependencies

The port appears only when:

• On the General tab, you select Operating mode > APWM.
• On the APWM tab, you select Waveform period source > Input port.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

W — APWM width
scalar

Width of the APWM.

Dependencies

The port appears only when:

• On the General tab, you select Operating mode > APWM.
• On the APWM tab, you select Duty cycle source > Input port.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

Output
The output ports appear only in eCAP mode.

TS — Output timestamps of capture events
vector

 C28x eCAP

2-161

The signal width can take a value of 1, 2, 3, or 4 depending on the capture event selected
in Stop value after on the eCAP tab. Use the Enable reset counter after capture
event # time-stamp option to reset the counter after an event. This option is useful for
finding the time difference between the events.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

CF — Status of capture event
vector

The status of the capture event. 0 indicates that no event has occurred. 1 indicates that
the event specified by the Stop value after parameter has occurred at the eCAP pin.
Dependencies

The port appears only when you select Enable capture event status flag output on the
General tab.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

OF — Status of overflow
scalar

The status of overflow. 0 indicates that no event has occurred. 1 indicates that the
counter has overflowed from the highest value to 0.
Dependencies

The port appears only when you select Enable overflow status flag output on the
General tab.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

Parameters

General
Operating mode — Select eCAP or APWM mode
eCAP (default) | APWM

2 Blocks — Alphabetical List

2-162

When you select eCAP, the block captures and logs pin transitions for each capture unit to
a FIFO buffer. When you select APWM, the block generates asymmetric pulse width
modulation (APWM) waveforms for driving downstream systems.

eCAPx pin — Select capture unit pin
eCAP1 (default) | eCAP2 | eCAP3 | eCAP4 | eCAP5 | eCAP6 | eCAP7

Select the required eCAP module to have a dedicated eCAP pin for capturing the external
events.

The pin selection for the eCAP module can be done by browsing to Hardware
Implementation > Target hardware resources. The selection option is provided only if
the module has more than one pin that can be configured for an eCAP module.

Counter phase offset value (0 ~ 4294967295) — Time base for event
captures
0 (default) | integer in [0 4294967295]

This value provides the time base for event captures, clocked by the system clock. A
phase register is used to synchronize with other counters via software- or hardware-
forced synchronization. For information about software- or hardware-forced
synchronization, see the Enable counter Sync-In mode parameter. This value is useful
in APWM mode when you need a phase offset between capture modules. Set the phase
offset to an integer from 0 to 42949667295 (232) counts.

Enable counter Sync-In mode — Enable TSCTR counter to load from TSCTR
register
off (default) | on

Synchronization can be done using the SYNCI event or the software. When
synchronization occurs, the shadow register CTRPHS is loaded into the active counter
TSCTR in the current eCAP module and the eCAP modules downstream.

Enable software-forced counter synchronizing input — Synchronize one or
more eCAP time bases
off (default) | on

A software method for synchronizing one or more eCAP time bases. The synchronization
occurs when the synchronization input value is 1.
Dependencies

This parameter appears only when Enable counter Sync-In mode is selected.

 C28x eCAP

2-163

Sync output selection — Synchronize eCAP counter with other eCAP counters
CTR=PRD (default) | Pass through | Disabled

Synchronizes an eCAP counter with other eCAP counters. The options are:

• CTR=PRD — Triggers the sync-out signal when the counter value equals the period.

• Pass through — The sync-in event is passed through as the sync-out signal.
• Disabled — Disables the sync-out signal.

Sample time — Frequency at which block reads input pin value
0.001 (default)

Sample time for the block in seconds.

eCAP
To enable configuration parameters on the eCAP tab, set Operating mode to eCAP on
the General tab.

Event prescaler (integer from 0 to 31) — Prescales input signal in
mutiples of 2
0 (default) | scalar integer in [0 31]

The input signal is prescaled by twice the value of this parameter. For example, if you
enter 1, the input is prescaled by 2, and for 31, the input is prescaled by 62. Entering 0
bypasses the input prescaler, leaving the input capture signal unchanged.

Select mode control — Mode of capture
Continuous (default) | One-Shot

The Continuous option performs continuous timestamp captures (events 1 through 4)
using a circular buffer.

The One-Shot option enables the Enable One-Shot rearming control via input port
option.

Enable One-Shot rearming control via input port — Re-arms a One-Shot
capture sequence
off (default) | on

When this parameter is selected, a One-Shot capture sequence is re-armed as follows:

2 Blocks — Alphabetical List

2-164

1 Mod4 counter is reset to zero.
2 Mod4 counter is unfrozen.
3 Capture register loading is enabled.

Dependencies

This parameter appears only when you select One-Shot for Select mode control.

Stop value after — Number of capture events after which capture stops
Capture Event 1 (default) | Capture Event 2 | Capture Event 3 | Capture
Event 4

The number of capture events after which you want to stop the capture sequence.

Enable reset counter after capture event # time-stamp — Resets counter
after capture event
off (default) | on

The eCAP process resets the counter after receiving a capture event timestamp. In this
case, # represents the number of the capture event set in the Stop value after
parameter.

Select capture event # polarity — Start capture event on rising edge or
falling edge
Rising Edge (default) | Falling Edge

The option that starts a capture event. In this case, # represents the number of the
capture event set in the Stop value after parameter.

Time-Stamp counter data type — Data type of counter
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

The data type of the timestamp counter.

Enable capture event status flag output — Output capture event status
off (default) | on

Outputs the capture event status flag at the output port CF. The block outputs 0 until the
event is captured. After the event, the flag value is 1.

Capture flag data type — Data type of output port CF
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

 C28x eCAP

2-165

The data type of the output port CF.
Dependencies

This parameter appears only when you select Enable capture event status flag output.

Enable overflow status flag output — Output status of elements of FIFO
buffer
off (default) | on

Outputs the status of the elements of the FIFO buffer at the output port OF.

Overflow flag data type — Data type of output port OF
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

The data type of the output port OF.
Dependencies

This parameter appears only when you select Enable overflow status flag output.

APWM
To enable configuration parameters on the APWM tab, set Operating mode to APWM in
the General tab.

Waveform period units — Units for measuring waveform period
Seconds (default) | Clock cycles

Clock cycles uses the high-speed peripheral clock cycles of the processor.

Waveform period source — Source from which waveform period value is
obtained
Specify via dialog (default) | Input port

Select Specify via dialog to enter the value in Waveform period, or select Input
port to use a value from the T input port.

Waveform period — Period of PWM waveform
0.001 (default)

Period of the PWM waveform measured in clock cycles or seconds, as specified in
Waveform period units.

2 Blocks — Alphabetical List

2-166

Note The term clock cycles refers to the high-speed peripheral clock on the F2812 chip.
This high-speed peripheral clock is 75 MHz by default because the high-speed peripheral
clock prescaler is set to 2 (150 MHz/2).

Dependencies

This parameter appears only when Waveform period source is set to Specify via
dialog.

Duty cycle units — Units for measuring duty cycle
Percentages (default) | Clock cycles

The units used for measuring the duty cycle.

Duty cycle source — Source from which duty cycle for PWM waveform is
obtained
Specify via dialog (default) | Input port

Select Specify via dialog to enter the value in Duty cycle, or select Input port to
use a value from the W input port.

Duty cycle — Ratio of PWM waveform pulse duration to PWM waveform period
50 (default)

The ratio of PWM waveform pulse duration to PWM waveform period. This ratio is
expressed in Duty cycle units.

Output polarity select — Set active level for output
Active High (default) | Active Low

When you select Active High, the compare value (duty cycle) defines the high time.
Selecting Active Low directs the compare value to define the low time.

Interrupt
Post interrupt on capture event # — Set interrupt source to capture event
off (default) | on

You can use the C28x Hardware Interrupt block to respond to this interrupt. In this case,
represents the number of the capture event set in the Stop value after parameter.

 C28x eCAP

2-167

Dependencies

This parameter appears only when you set Operating mode to eCAP in the General tab.

Post interrupt on counter overflow — Trigger interrupt on counter overflow
off (default) | on

Triggers an interrupt when the counter overflows.

Dependencies

This parameter appears only when you set Operating mode to eCAP in the General tab.

Post interrupt on counter equal period match — Post interrupt when
counter equals period register
off (default) | on

Posts interrupt when the value of counter is same as the value of the period register (CTR
= PRD).

Dependencies

This parameter appears only when you set Operating mode to APWM in the General tab.

Post interrupt on counter equal compare match — Post interrupt when
counter equals compare register
off (default) | on

Posts interrupt when the value of the counter is same as the value of the compare register
(CTR = CMP).

Dependencies

This parameter appears only when you set Operating mode to APWM in the General tab.

See Also
C28x Hardware Interrupt

2 Blocks — Alphabetical List

2-168

C28x I2C Receive
Configure inter-integrated circuit (I2C) module to receive data from I2C bus
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

Description
The I2C Receive block configures the inter-integrated circuit (I2C) module to receive data
from the two-wire I2C serial bus. The I2C Receive block supports I2C bus communication

 C28x I2C Receive

2-169

between the processor and external peripherals or other controllers. The block can run in
either slave or master mode.

When the I2C module is configured as master, the module receives data from a slave.
When the I2C module is configured as a slave, the module receives data from the master.
Configure the I2C module by navigating to Configuration Parameters > Hardware
Implementation > Target hardware resources.

To read data from a slave, send the address of the register to be read using the I2C
Transmit block to the slave. Ensure that the data is sent from the Tx FIFO to the slave
before the data is read from the slave using the I2C Receive block. For more information,
see “Using the I2C Bus to Access Sensors”.

Input/Output Ports

Input
SAR — Slave address register value
scalar

The slave address register value.

Dependencies

This port appears only when Slave address source is set to Input port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

Output
RD — Received data from I2C bus
scalar | vector

The data read from the I2C bus.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

status — I2C communication status
scalar

2 Blocks — Alphabetical List

2-170

Status values from the I2C status register (I2CSTR).

Dependencies

This port appears only when Output receiving status is selected.
Data Types: uint16

Parameters
Module — Module for communication
I2C_A (default) | I2C_B

The I2C module to be used for communication. The number of I2C modules supported
varies across different C2000 processors.

Addressing format — Address format for communication
7–Bit addressing (default) | 10–Bit addressing | Free data format

The address format for communication. The diagram shows the format for each option.
The I2C Receive block sets the R/W bit to 0.

 C28x I2C Receive

2-171

S — Start bit

R/W — Read/Write

ACK — Acknowledge

P — Stop bit

MSB — Most significant bit

LSB — Least significant bit

Slave address source — Slave address source of I2C slave
Specify via dialog (default) | Input port

The method for setting the slave address register of the I2C slave.

Slave address register — Slave address register value
80 (default) | scalar

Enter a 7- or 10-bit slave address according to the addressing format selected.

Dependencies

This parameter appears only when Slave address source is set to Specify via
dialog.

Bit count — Bit count for communication
8 (default) | integer in [1 8]

The number of bits in the data byte received by the I2C module.

Read data length — Length of received data
1 (default) | scalar

2 Blocks — Alphabetical List

2-172

The number of Data type the block receives (not bytes). If this parameter is set to more
than 1, the output will be a vector.

Initial output — Value of I2C node output to model
0 (default) | scalar | vector

The value the I2C node outputs to the model before it has received data. By default, the
block outputs 0 if the I2C value is not received.

Set NACK bit — NACK bit during I2C acknowledge cycle
off (default) | on

Generates a no-acknowledge bit (NACK) during the I2C acknowledge cycle and ignores
new bits from the transmitting I2C node.

Enable stop condition — Stop message to I2C Transmit block
off (default) | on

Enables the I2C Receive block (master) to send a stop message to the I2C Transmit block
(slave).

Output receiving status — Indicates when I2C Receive block receives
message
off (default) | on

Enables the status output port, which indicates when the I2C Receive block receives a
message.

Sample time — Frequency at which data is read from I2C device
0.001 (default) | –1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this
parameter to -1.

Data type — Type of data in data vector
int8 (default) | uint8 | int16 | uint16 | int32 | uint32

Sets the data type of the data received. If the size of the received data is less than 8 bits,
then the data is right-justified.

 C28x I2C Receive

2-173

See Also
C28x I2C Transmit

2 Blocks — Alphabetical List

2-174

C28x I2C Transmit
Configure inter-integrated circuit (I2C) module to transmit data to I2C bus
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

Description
The I2C Transmit block configures the inter-integrated circuit (I2C) module to transmit
data to the two-wire I2C serial bus. The I2C Transmit block supports I2C bus

 C28x I2C Transmit

2-175

communication between the processor and external peripherals or other controllers. The
block can run in either slave or master mode.

When the I2C module is configured as master, the module receives data from a slave.
When the I2C module is configured as a slave, the module receives data from the master.
Configure the I2C module by navigating to Configuration Parameters > Hardware
Implementation > Target hardware resources.

To read data from a slave, send the address of the register to be read using the I2C
Transmit block to the slave. Ensure that the data is sent from the Tx FIFO to the slave
before the data is read from the slave using the I2C Receive block. For more information,
see “Using the I2C Bus to Access Sensors”.

Input/Output Ports

Input
SAR — Slave address register value
scalar

The slave address register value.

Dependencies

This port appears only when Slave address source is set to Input port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

WD — Data written to I2C bus
scalar | vector

The data written to the I2C bus.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Output
status — I2C communication status
scalar

2 Blocks — Alphabetical List

2-176

Status values from the I2C status register (I2CSTR).

Dependencies

This port appears only when Output transmitting status is selected.
Data Types: uint16

Parameters
Module — Module for communication
I2C_A (default) | I2C_B

The I2C module to be used for communication. The number of I2C modules supported
varies across different C2000 processors.

Addressing format — Address format for communication
7–Bit addressing (default) | 10–Bit addressing | Free data format

The address format for communication. The diagram shows the format for each option.
The I2C Transmit block sets the R/W bit to 1.

 C28x I2C Transmit

2-177

S — Start bit

R/W — Read/Write

ACK — Acknowledge

P — Stop bit

MSB — Most significant bit

LSB — Least significant bit

Slave address source — Slave address source of I2C slave
Specify via dialog (default) | Input port

The method for setting the slave address register of the I2C slave.

Slave address register — Slave address register value
80 (default) | scalar

Enter a 7- or 10-bit slave address according to the addressing format selected.
Dependencies

This parameter appears only when Slave address source is set to Specify via
dialog.

Bit count — Bit count for communication
8 (default) | integer in [1 8]

The number of bits in the data byte received by the I2C module.

Enable stop condition — Send stop bit to indicate that data transmission is
complete
off (default) | on

2 Blocks — Alphabetical List

2-178

When the I2C module is configured as master, the I2C module sends out a stop bit to the
I2C bus to indicate that the data transmission is complete. The I2C bus is free for any
other I2C module to initiate a read/write operation.

Enable repeat mode — Retransmit data until stop or start condition is detected
off (default) | on

When you enable repeat mode, the I2C module transmits data continuously until it
detects a stop or start condition. If you use this mode, also consider selecting Enable
stop condition to ensure that data transmit stops after the stop condition.

If you disable repeat mode, the I2C module operates in standard mode, sending a specific
number of data values once.

Output transmitting status — Indicates when I2C transmit block transmits
message
off (default) | on

Enables the status output port, which indicates when the I2C transmit block transmits a
message.

See Also
C28x I2C Receive

 C28x I2C Transmit

2-179

C28x SCI Receive
Receive data on target via serial communication interface (SCI) from host
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2838x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

2 Blocks — Alphabetical List

2-180

Description
The SCI Receive block supports asynchronous serial digital communication between the
processor and other asynchronous peripherals. This block receives scalar or vector data
using the specified SCI hardware module.

A model can only contain one SCI Receive block for each module. The C28x processor has
three SCI modules — A, B, and C. You can configure the SCI modules by navigating to
Hardware Implementation > Target hardware resources. Verify that these settings
meet the requirements of your application.

Input/Output Ports

Output
Data — Data received from serial bus
scalar | vector

The data received from the serial communication bus.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single

status — Status of serial communication
scalar

Indicates the status of the received serial data:

• 0 — No errors.
• 1 — A time-out occurred while the block was waiting to receive data.
• 2 — The received data contains an error (checksum error).
• 3 — SCI parity error flag: occurs when a character is received with a mismatch.
• 4 — SCI framing error flag: occurs when an expected stop bit is not found.
• 5 — SCI overrun error flag: occurs when a character is transferred to the receive

registers before reading the previous character.
• 6 — SCI break-detect flag: occurs when SCI receiver data line (SCIRXD) remains

continuously low for at least ten bits.

 C28x SCI Receive

2-181

Dependencies

This port appears only when you select Output receiving status.
Data Types: uint16

Parameters
SCI module — SCI module for communication
A (default) | B | C | D

The SCI module used for communication. The number of SCI modules supported varies
across different C2000 processors.

Additional package header — Indicates start of data
'S' (default) | string | char | number from 0 to 255

The data located at the front of the received data package, which is not part of the data
being received, and indicates the start of data. The additional package header must be
represented using ASCII characters. You can use a string or a number (0–255). You must
add single quotes around strings entered for this parameter, but the quotes are not
received or included in the total byte count. To specify a null value (no package header),
enter two single quotes only.

Note Match additional package headers or terminators with those specified in the host
SCI Transmit block.

Additional package terminator — Indicates end of data
'E' (default) | string | char | number from 0 to 255

The data located at the end of the received data package, which is not part of the data
being received, and indicates the end of data. The additional package terminator must be
represented using ASCII characters. Use a string or a number (0–255). You must add
single quotes around strings entered for this parameter, but the quotes are not received
or included in the total byte count. To specify a null value (no package terminator), enter
two single quotes only.

Data type — Data type of output data
uint8 (default) | single | int8 | int16 | uint16 | int32 | uint32

2 Blocks — Alphabetical List

2-182

The data type of the output data.

Data length — Number of data types the block receives
1 (default) | positive integer, finite

The number of Data type the block receives (not bytes). If this parameter is set to more
than 1, the output will be a vector. Ensure that the data length specified is same as that of
the SCI Transmit block from which data is received.

Initial output — Default value output from block
0 (default)

The default value output from the SCI Receive block. This value is output, for
example,when the Action taken when connection timeout parameter is set to Output
the last received value and a connection time-out occurs before data is received.

Action taken when connection times out — Output when connection time
out occurs
Output the last received value (default) | Output custom value

Specifies what to output when a connection time out occurs. If Output the last
received value is selected, the block outputs the last received value. If a value has not
been received, the block outputs the Initial output value.

If you select Output custom value, use the Output value when connection times
out parameter to set the custom value.

Output value when connection times out — Set custom time out value
0 (default) | scalar | vector

Set the custom time out value.

Sample time — Frequency at which data is read from SCI device
0.1 (default) | -1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this
parameter to -1.

Output receiving status — Status of serial communication
off (default) | on

Creates a Status block output that provides the status of serial communication.

 C28x SCI Receive

2-183

Enable receive FIFO interrupt — Posts interrupt when FIFO is full
off (default) | on

If this option is selected, an interrupt is posted when the FIFO is full, allowing the
subsystem to perform any action. For example, you can use the C28x Hardware Interrupt
block for triggering the SCI Receive block to read the data as soon as it is received.

If the option is not selected, the SCI Receive block is in polling mode and checks the FIFO
for data. If data is present, the block reads and outputs the data. If data is not present, in
blocking mode, the block waits until data is available. In non-blocking mode, the block
continues with the execution of the algorithm without waiting for data.

Receive FIFO interrupt level (maximum 4 for Piccolo devices) — Level
for triggering interrupt
1 (default) | integer in the range of [1 16]

The receive FIFO generates an interrupt when the number of data bytes in the receive
FIFO is greater than or equal to the value selected for this parameter.

Dependencies

This parameter appears only when you select the Enable receive FIFO interrupt option.

See Also
C28x SCI Transmit | C28x Hardware Interrupt

2 Blocks — Alphabetical List

2-184

C28x SCI Transmit
Transmit data from target via serial communication interface (SCI) to host
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2838x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

 C28x SCI Transmit

2-185

Description
The SCI Transmit block transmits scalar or vector data using the specified SCI hardware
module. The sampling rate and data type are inherited from the input port.

A model can only contain one SCI Receive block for each module. The C28x processor has
three SCI modules — A, B, and C. You can configure the SCI modules by navigating to
Hardware Implementation > Target hardware resources. Verify that these settings
meet the requirements of your application.

Note Fixed-point inputs are not supported by this block, but you can use a Data Type
Conversion block to convert the fixed-point format to native data type. In the Data Type
Conversion block, set the Input and output to have equal parameter to Stored
Integer (SI).

Input/Output Ports
Input
Data — Data written to serial bus
scalar | vector

Input data written to the serial communication bus.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single

Parameters
SCI module — SCI module for communication
A (default) | B | C | D

The SCI module used for communication.

Additional package header — Indicates start of data
'S' (default) | string | char | number from 0 to 255

The data located at the beginning of the sent data package, which is not part of the data
being transmitted, and indicates the start of data. The additional package header must be

2 Blocks — Alphabetical List

2-186

represented using ASCII characters. Use a string or a number (0–255). You must add
single quotes around strings entered for this parameter, but the quotes are not sent or
included in the total byte count. To specify a null value (no package header), enter two
single quotes only.

Note Match additional package headers or terminators with those specified in the host
SCI Receive block.

Additional package terminator — Indicates end of data
'E' (default) | string | char | number from 0 to 255

The data located at the end of the sent data package, which is not part of the data being
transmitted, and indicates the end of data. The additional package terminator must be
represented using ASCII characters. Use a string or a number (0–255). You must put
single quotes around strings entered in this field, but the quotes are not sent or included
in the total byte count. To specify a null value (no package terminator), enter two single
quotes only.

Enable transmit FIFO interrupt — Posts interrupt when FIFO is full
off (default) | on

If this option is selected, an interrupt is posted when the FIFO is full, allowing the
subsystem to perform any action. For example, you can use the C28x Hardware Interrupt
block for triggering the SCI Transmit block to write data as soon as the FIFO is available
for transmitting data.

If the option is not selected, the SCI Transmit block is in polling mode and checks if the
FIFO is available. If the FIFO is not full, the block writes data into the FIFO. If the FIFO is
full, in blocking mode, the block waits until the FIFO is available. In non-blocking mode,
the block continues with the execution of the algorithm without waiting for the availabitiy
of the FIFO.

Receive FIFO interrupt level (maximum 4 for Piccolo devices) — Level
for triggering interrupt
1 (default) | integer in the range [1 16]

The receive FIFO generates an interrupt when the number of data bytes in the receive
FIFO is less than or equal to the value selected for this parameter.

 C28x SCI Transmit

2-187

Dependencies

This parameter appears only when the Enable transmit FIFO interrupt option is
selected.

See Also
C28x SCI Receive | C28x Hardware Interrupt

2 Blocks — Alphabetical List

2-188

C28x Software Interrupt Trigger
Generate software-triggered nonmaskable interrupt
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2838x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

 C28x Software Interrupt Trigger

2-189

Description
When you add the Software Interrupt Trigger block to a model, the block polls the values
on the input port. When the input value is greater than the value in the Trigger software
interrupt when input value is greater than parameter, the block posts the interrupt
corresponding to the selected CPU and Peripheral Interrupt Expansion (PIE) numbers to
the Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model. The Hardware Interrupt
block processes the software-triggered interrupt from this block into an interrupt service
routine on the processor. Set the interrupt number in the Hardware Interrupt block to the
value you set in the Software Interrupt Trigger block.

The CPU and PIE interrupt numbers together specify a single interrupt for a single
peripheral module. For information about the mapping of CPU and PIE interrupt numbers
to these peripheral interrupts, see C28x Hardware Interrupt.

Note Fixed-point inputs are not supported by the Software Interrupt Trigger block.

Input/Output Ports

Input
PIEIFRx.INTy — Triggers software interrupt
scalar

The Software Interrupt Trigger block triggers the software interrupt based on the CUP
interrupt number and PIE interrupt number parameters when the input value is
greater than the value in the Trigger software interrupt when input value is greater
than parameter.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

2 Blocks — Alphabetical List

2-190

Parameters
CPU interrupt number — CPU interrupt number corresponding to hardware
interrupt
7 (default) | scalar

Enter an integer value to set the CPU interrupt number corresponding to the hardware
interrupt. For information about CPU numbers of C2000 processors, see C28x Hardware
Interrupt.

PIE interrupt number — PIE interrupt number corresponding to hardware
interrupt
8 (default) | scalar

Enter an integer value to set the PIE number corresponding to the hardware interrupt.
For information about PIE numbers of C2000 processors, see C28x Hardware Interrupt.

Trigger software interrupt when input value is greater than — Sets
value above which block posts an interrupt
0 (default) | scalar

Enter the value for the level that indicates that the interrupt is asserted by a requesting
routine.

See Also
C28x Hardware Interrupt

 C28x Software Interrupt Trigger

2-191

C28x SPI Master Transfer
Write data to and read data from SPI slave device
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

2 Blocks — Alphabetical List

2-192

Description
The C28x SPI Master Transfer block writes data to and reads data from a slave device
over the Serial Peripheral Interface (SPI). The block runs in master mode. The block
outputs an array of the same size and data type as the input values. You can use this block
with the Byte Pack and Byte Unpack blocks for heterogeneous data type transfers.

Configure the SPI modules for the specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the
requirements of your application.

Using this block, you can access an SPI device to measure quantities such as temperature
and pressure.

Ports

Input
Tx — Data written to registers of SPI slave device (MOSI)
vector

The data written by the block to the registers of a slave device over the SPI interface.
Data Types: uint16

Output
Rx — Data read from registers of SPI slave device (MISO)
vector

The data read by the block from the registers of a slave device over the SPI interface.
Data Types: uint16

 C28x SPI Master Transfer

2-193

Parameters
Main
SPI module — SPI module to write and read data
SPI_A (default) | SPI_B | SPI_C | SPI_D

The SPI peripheral module to which the SPI slave device is connected. Each processor
has a different number of modules.

Clock polarity — SPI clock polarity
Rising_edge (default) | Falling_edge

The clock polarity (CPOL) for SPI communication mode.

Clock phase — SPI clock phase
No_delay (default) | Delay_half_cycle

The clock phase (CPHA) for SPI communication mode.

Enable register address — Enables SPI register address
on (default) | off

Enables the Register address parameter.

Register address — SPI register address
0 (default) | postive integer scalar | postive integer vector

The slave register address from which the block reads data.
Dependencies

This parameter appears only when you select Enable register address.

Advanced
Data bits — Number of bits in SPI transfer
8 (default) | integer in the range [1 16]

Length in bits of each transmitted or received character, specified as an integer in [1 16].
For example, if you select 8, the maximum value that can be transmitted using SPI is 28 –
1. If you send data values greater than this value, the buffer overflows.

2 Blocks — Alphabetical List

2-194

Slave select calling method — Method to select SPI slave device
Provided by the SPI peripheral (default) | Explicit GPIO calls

The SPI master uses these methods to select SPI slave devices.

• Provided by the SPI peripheral — The SPI master uses the STE pin
assignment parameter in Hardware Implementation > Target Hardware
Resources > SPI to select the slave device. Slave select and deselect are handled by
the SPI peripheral.

• Explicit GPIO calls — The SPI master uses the general purpose input/output
pins explicitly to select/deselect SPI slave devices. The SPI Master Transfer block
selects the slave before data is transmitted and deselects the slave after data is
received using GPIO pins.

Slave select pin polarity — SPI slave select pin polarity
Active low (default) | Active high

The logic levels supported by the slave select pin to select the SPI slave device.

• Active low — The device is enabled on logic low. The SPI slave device is enabled
when its slave select pin is set to low.

• Active high — The device is enabled on logic high. The SPI slave device is enabled
when its slave select pin is set to high.

Dependencies

This parameter appears only when Slave select calling method is set to Explicit
GPIO calls.

Slave select pin — SPI slave select pin
1 (default) | postive integer scalar

The general purpose input/output pin that serves as slave select for SPI.
Dependencies

This parameter appears only when Slave select calling method is set to Explicit
GPIO calls.

See Also
C28x SPI Receive | C28x SPI Transmit | C28x Hardware Interrupt

 C28x SPI Master Transfer

2-195

Introduced in R2017b

2 Blocks — Alphabetical List

2-196

C28x SPI Receive
Receive data through Serial Peripheral Interface (SPI) on target
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

 C28x SPI Receive

2-197

Description
The SPI Receive block supports synchronous, serial peripheral input/output port
communications between the processor and external peripherals or other controllers. The
block can run in either slave or master mode. In master mode, the SPISIMO pin transmits
data, and the SPISOMI pin receives the data. When master mode is selected, the SPI
initiates the data transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to this SPICLK, which
enables both master and slave to send and receive data simultaneously. The maximum
frequency for the clock is one quarter of the processor clock frequency.

The SPI device receives data and places the data in the receive buffer. The SPI Receive
block reads the data from the receive buffer. In master mode, the C28x SPI Transmit
block initiates SPI transmission by writing data to the transmit buffer. Then, the data
received in the receive buffer is read by the SPI Receive block. In slave mode, the SPI
Receive block is used to read the data in the receive buffer, which is received from the
master. Then, the data is written into the transmit buffer using the SPI Transmit block.
From the transmit buffer, the data is sent to the master.

Configure the SPI modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the
requirements of your application.

Ports

Output
Rx — SPI receive data
vector

The data read from the device over the SPI interface.
Data Types: uint16

Status — SPI receive status
0 | 1 | 2

Status of receipt of data. Error status values indicate:

2 Blocks — Alphabetical List

2-198

• 0 — No errors.
• 1 — Data loss occurred because of overflow.
• 2 — Data not ready. A time out occurred while the block was waiting to receive data.

Dependencies

This port appears only when Enable blocking mode is not selected.
Data Types: uint16

Parameters

Main
SPI module — SPI module to read data
SPI_A (default) | SPI_B | SPI_C | SPI_D

The SPI module to which the SPI slave device is connected. Each processor has a
different number of modules.

Clock polarity — SPI clock polarity
Rising_edge (default) | Falling_edge

The clock polarity used for SPI communication mode. This parameter must be the same
for both transmit and receive blocks.

Clock phase — SPI clock phase
No_delay (default) | Delay_half_cycle

The clock phase used for SPI communication mode. This parameter must be the same for
both transmit and receive blocks.

Output data length — SPI output data length
1 (default) | positive integer

The received data is a vector of type uint16 and the data length is as specified in this
parameter (not bytes).

Enable blocking mode — Enable SPI blocking mode
off (default) | on

 C28x SPI Receive

2-199

When this option is selected, the algorithm waits until data is received before continuing
processing.

Sample time — SPI sample time selection
0.1 (default) | –1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this
parameter to -1.

Advanced
Data bits — Number of bits in SPI transfer
8 (default) | integer in [1 16]

Length in bits of each transmitted or received character. For example, if you select 8, the
maximum value that can be transmitted using SPI is 28–1. If you send data greater than
this value, the buffer overflows. This parameter must be the same for both transmit and
receive blocks.

Slave select calling method — Method to select SPI slave device
Provided by the SPI peripheral (default) | Explicit GPIO calls

The SPI master uses these methods to select SPI slave devices:

• Provided by the SPI peripheral — The SPI master uses the STE pin
assignment provided in Hardware Implementation > Target hardware resources
> SPI to select the slave device. Slave select and deselect are handled by the SPI
peripheral.

• Explicit GPIO calls — The SPI master uses the general purpose input/output
pins instead of the STE pin of the SPI peripheral to select/deselect SPI slave devices.
The SPI Receive block deselects the slave using GPIO pins after receiving data. To
select the slave, the C28x SPI Transmit block must be used along with the SPI Receive
block. Use this option only in master mode. Select the Enable blocking mode option
to ensure that the SPI transmission is complete before the slave is deselected.

Slave select pin polarity — SPI slave select pin polarity
Active low (default) | Active high

The logic levels supported by the slave select pin to select the SPI slave device.

• Active low — The device is enabled on logic low. The SPI slave device is enabled
when its slave select pin is set to low.

2 Blocks — Alphabetical List

2-200

• Active high — The device is enabled on logic high. The SPI slave device is enabled
when its slave select pin is set to high.

Dependencies

This option appears only when Slave select calling method is set to Explicit GPIO
calls.

Slave select pin — SPI slave select pin
0 (default) | postive integer scalar

The general purpose input/output pin that serves as the slave select for SPI.

Dependencies

This option appears only when Slave select calling method is set to Explicit GPIO
calls.

See Also
C28x SPI Transmit | C28x SPI Master Transfer | C28x Hardware Interrupt

Introduced in R2017b

 C28x SPI Receive

2-201

C28x SPI Transmit
Transmit data through Serial Peripheral Interface (SPI) on target
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

2 Blocks — Alphabetical List

2-202

Description
The SPI Transmit block supports synchronous, serial peripheral input/output port
communications between the processor and external peripherals or other controllers. The
block can run in either slave or master mode. In master mode, the SPISIMO pin transmits
data, and the SPISOMI pin receives the data. When master mode is selected, the SPI
initiates the data transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to this SPICLK, which
enables both master and slave to send and receive data simultaneously. The maximum
frequency for the clock is one quarter of the processor clock frequency.

The SPI Transmit block writes data to the transmit buffer, and the data is transmitted to
the SPI device. In master mode, the SPI Transmit block initiates SPI transmission by
writing the data to the SPI transmit buffer. The C28x SPI Receive block must be used
along with the SPI Transmit block to read the data received in the receive buffer. In slave
mode, the SPI Receive block is used to read the data in the receive buffer, which is
received from the master. Then, the data is written into the transmit buffer using the SPI
Transmit block. From the transmit buffer, the data is sent to the master.

The sampling rate is inherited from the input port. The supported data type is uint16.

When the SPI transmit interrupt is configured, the transmit FIFO interrupt flags are
cleared in the step function instead of the interrupt service routine. After the data is
placed in the transmit buffer, the transmit FIFO interrupt is set and the previous transmit
interrupt FIFO flags are cleared. Configure the SPI modules for a specific hardware board
by navigating to Hardware Implementation > Target hardware resources. Verify that
these settings meet the requirements of your application.

Ports

Input
Tx — SPI Transmit data
vector

The data written to the device over the SPI interface.
Data Types: uint16

 C28x SPI Transmit

2-203

Output
Status — SPI transmit status
0 | 1 | 2

Status of SPI data transmission. Error status values indicate:

• 0 — No errors.
• 1 — A time-out occurred while the block was transmitting data.
• 2 — The transmitted data contains an error.

Dependencies

This port appears only when Enable blocking mode is not selected.
Data Types: uint16

Parameters

Main
SPI module — SPI module to write data
SPI_A (default) | SPI_B | SPI_C | SPI_D

The SPI module to which the SPI slave device is connected. Each processor has a
different number of modules.

Clock polarity — SPI clock polarity
Rising_edge (default) | Falling_edge

The clock polarity used for SPI communication mode. This parameter must be the same
for both transmit and receive blocks.

Clock phase — SPI clock phase
No_delay (default) | Delay_half_cycle

The clock phase used for SPI communication mode. This parameter must be the same for
both transmit and receive blocks.

2 Blocks — Alphabetical List

2-204

Enable blocking mode — SPI blocking mode enable
off (default) | on

When this option is selected, the algorithm waits until data is sent before continuing
processing.

Advanced
Data bits — Number of bits in SPI transfer
8 (default) | integer in [1 16]

Length in bits of each transmitted or received character. For example, if you select 8, the
maximum value that can be transmitted using SPI is 28–1. If you send data greater than
this value, the buffer overflows. This parameter must be the same for both transmit and
receive blocks.

Slave select calling method — Method to select SPI slave device
Provided by the SPI peripheral (default) | Explicit GPIO calls

The SPI master uses these methods to select SPI slave devices:

• Provided by the SPI peripheral — The SPI master uses the STE pin
assignment provided in Hardware Implementation > Target hardware resources
> SPI to select the slave device. Slave select and deselect are handled by the SPI
peripheral.

• Explicit GPIO calls — The SPI master uses the general purpose input/output
pins instead of the STE pin of the SPI peripheral to select/deselect SPI slave devices.
The SPI Transmit block selects the slave using GPIO pins before transmitting data. To
deselect the slave, you must use the C28x SPI Receive block along with the SPI
Transmit block. Use this option only in master mode. Select the Enable blocking
mode option to ensure that the SPI transmission is complete before the slave is
deselected.

Slave select pin polarity — SPI slave select pin polarity
Active low (default) | Active high

The logic levels supported by slave select pin to select the SPI slave device.

• Active low — The device is enabled on logic low. The SPI slave device is enabled
when its slave select pin is set to low.

 C28x SPI Transmit

2-205

• Active high — The device is enabled on logic high. The SPI slave device is enabled
when its slave select pin is set to high.

Dependencies

This option appears only when Slave select calling method is set to Explicit GPIO
calls.

Slave select pin — SPI slave select pin
0 (default) | postive integer scalar

The general purpose input/output pin that serves as the slave select for SPI.

Dependencies

This option appears only when Slave select calling method is set to Explicit GPIO
calls.

See Also
C28x SPI Receive | C28x SPI Master Transfer | C28x Hardware Interrupt

Introduced in R2017b

2 Blocks — Alphabetical List

2-206

C28x Watchdog
Configure counter reset source of processor watchdog module
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2802x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x

Description
This block configures the counter reset source of the watchdog module on the processor.
The watchdog module, after configuration, resets the system if not serviced periodically.

 C28x Watchdog

2-207

Ports

Input
Input — Resets watchdog counter
scalar

When the input signal is 1, the counter is reset.

Dependencies

This parameter appears only when Watchdog counter reset source is set to Input
port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

Parameters
Watchdog counter reset source — Watchdog counter reset source
Specify via dialog (default) | Input port

The watchdog counter reset source.

• Input — Create an input port on the watchdog block. When the input signal is 1, the
counter is reset.

• Specify via dialog — The watchdog timer is reset based on the Sample time
value.

Sample time — Frequency at which processor resets Watchdog timer
–1 (default) | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this
parameter to -1.

Dependencies

This parameter appears only when Watchdog counter reset source is set to Specify
via dialog.

2 Blocks — Alphabetical List

2-208

See Also
C28x Hardware Interrupt

 C28x Watchdog

2-209

C28x CAN Calibration Protocol
Implement CAN Calibration Protocol (CCP)
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x

Description
The CAN Calibration Protocol block provides an implementation of a subset of the
Controller Area Network (CAN) calibration protocol (CCP) version 2.1. CCP is a protocol
for communicating between the target processor and the host machine over a CAN. A
calibration tool (see “Compatibility with Calibration Packages” on page 2-214) running on
the host can communicate with the target, allowing remote signal monitoring and
parameter tuning.

This block processes a command receive object (CRO) and outputs the resulting data
transmission object (DTO) and data acquisition (DAQ) messages.

For more information about CCP, refer to ASAM Standards: ASAM MCD: MCD 1a at the
Association for Standardization of Automation and Measuring Systems (ASAM) website:
https://www.asam.net.

2 Blocks — Alphabetical List

2-210

https://www.asam.net/

Using the DAQ Output

Note The CCP DAQ list mode of operation is only supported with Embedded Coder. If
Embedded Coder is not available, then custom storage classes canlib.signal are
ignored during code generation, which means that the CCP DAQ list mode of operation
cannot be used.

You can use the CCP polling mode of operation with or without Embedded Coder.

The DAQ output is the output for CCP DAQ lists that have been set up. You can use the
ASAP2 file generation feature of the real-time target to:

• Set up signals to be transmitted using CCP DAQ lists.
• Assign signals in your model to a CCP event channel automatically (see “Generate an

ASAP2 File” (Simulink Coder)).

After these signals are set up, event channels periodically fire events that trigger the
transmission of DAQ data to the host. When this occurs, CAN messages with the
CCP/DAQ data appear in the DAQ output, along with an associated function call trigger.

The calibration tool (see “Compatibility with Calibration Packages” on page 2-214) must
use CCP commands to assign an event channel and data to the available DAQ lists. Based
on the assignment, the calibration tool interprets the synchronous response.

Using DAQ lists for signal monitoring has these advantages over the polling method:

• The host does not need to poll for the data. Network traffic is halved.
• The data is transmitted at the update rate that matches the signal, reducing network
traffic.

• Data is consistent. The transmission takes place after the signals have been updated,
reducing interruptions while sampling the signal.

Parameters
CCP station address (16-bit integer) — Station address of target
hex2dec('1') (default) | 16-bit integer

 C28x CAN Calibration Protocol

2-211

The station address is interpreted as a uint16 data type. It is used to distinguish
between different targets. By assigning unique station addresses to targets sharing the
same CAN bus, a single host can communicate with multiple targets.

CAN module — CAN module the block configures
eCAN_A (default) | eCAN_B

If your processor has more than one module, select the module this block configures.

CAN message identifier (CRO) — CAN message identifier of command receive
object
hex2dec('6FA') (default) | 11-bit integer | 29-bit integer

The CAN message identifier of the command receive object (CRO) message you want to
process.

CAN message type (CRO) — Incoming message type of command receive object
Extended(29-bit identifier) (default) | Standard(11-bit identifier)

The incoming message type of the command receive object.

CAN message identifier (DTO/DAQ) — CAN message ID used for DTO and DAQ
hex2dec('6FB') (default) | 11-bit integer | 29-bit integer

The CAN message ID used for DTO and DAQ message outputs.

CAN message type (DTO/DAQ) — Message type to be transmitted by DTO and
DAQ
Extended(29-bit identifier) (default) | Standard(11-bit identifier)

The message type to be transmitted by DTO and DAQ outputs.

Total Number of Object Descriptor Tables (ODTs) — Number of ODTs based
on number of signals logged
8 (default) | integer in the range [0, 254]

ODTs are shared equally between all available DAQ lists. You can choose a value in the
range of 0 to 254, depending on the number of signals you log simultaneously. You must
allocate at least one ODT per DAQ list, or your build may fail. The calibration tool gives an
error message if there are too few ODTs for the number of signals you specify for
monitoring. However, too many ODTs can make the sample time overrun. If you choose
more than the maximum number of ODTs (254), the build fails.

2 Blocks — Alphabetical List

2-212

A single ODT uses 7 bytes of memory. Using all 254 ODTs requires 1778 bytes or more of
memory, a large proportion of the available memory on the target. To conserve memory
on the target, the default number is low, allowing DAQ list signal monitoring with reduced
memory overhead and processing power.

As an example, if you have five different rates in a model, and you are using three rates
for DAQ, this creates three DAQ lists. You must ensure that you have at least three ODTs.
ODTs are shared equally among DAQ lists, and therefore, you end up with one ODT per
DAQ list. With less than three ODTs for three DAQ lists, the behavior is undefined.

Taking this example further, say you have three DAQ lists with one ODT each, and you are
monitoring signals in a calibration tool. If you try to assign too many signals to a
particular DAQ list, thereby requiring more space than 7 bytes, the calibration tool
reports an error.

CRO sample time — Sample time for CRO messages
0.1 (default) | -1 | scalar

The sample time for CRO messages. To execute this block asynchronously, set this
parameter to -1.

More About

Supported CCP Commands
These CCP commands are supported by the CAN Calibration Protocol block:

• CONNECT
• DISCONNECT
• DNLOAD
• DNLOAD_6
• EXCHANGE_ID
• GET_CCP_VERSION
• GET_DAQ_SIZE
• GET_S_STATUS
• SET_DAQ_PTR

 C28x CAN Calibration Protocol

2-213

• SET_MTA
• SET_S_STATUS
• SHORT_UP
• START_STOP
• START_STOP_all
• TEST
• UPLOAD
• WRITE_DAQ

Compatibility with Calibration Packages
The supported CCP commands are compatible with:

• Synchronous signal monitoring via calibration packages that use DAQ lists
• Asynchronous signal monitoring via calibration packages that poll the target
• Asynchronous parameter tuning via CCP memory programming

The CCP implementation has been tested with Vector Informatik CANape calibration
package running in both DAQ list and polling mode.

See Also
“Parameter Tuning and Signal Logging over Serial Communication” | “Set Up CAN
Communication with Target Hardware”

2 Blocks — Alphabetical List

2-214

C28x eCAN Receive
Enhanced Controller Area Network receive mailbox
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x

Description
The eCAN Receive block generates source code for receiving enhanced Controller Area
Network (eCAN) messages through an eCAN mailbox. eCAN modules on the processor
provide serial communication capability and have 32 mailboxes configurable for receive
or transmit. The block supports eCAN data frames in standard or extended format.

To use the eCAN Receive block with the eCAN Pack block in the canmsglib library, set
Data type to CAN_MESSAGE_TYPE.

 C28x eCAN Receive

2-215

Configure the eCAN modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the
requirements of your application.

Ports

Output
f() — Function call port
scalar

Connect a function call subsystem to this port. When a new message is received, the
subsystem is executed.

Msg — Message data port
vector

The received data is output in the form of a vector of elements of the selected data type.
The length of the vector is 8 bytes. When the block is used in polling mode, and a new
message is not created between consecutive executions of the block, the existing message
is repeated.

To use the eCAN Receive block with the CAN Unpack block in the canmsglib library, set
Data type to CAN_MESSAGE_TYPE.
Data Types: uint8 | uint16 | uint32 | CAN_MESSAGE_TYPE

len — Length of output message
scalar

The length of output message received.

Dependencies

This port appears only if the Output message length parameter is selected.
Data Types: uint16

2 Blocks — Alphabetical List

2-216

Parameters
Module — eCAN module the block configures
eCAN_A (default) | eCAN_B

Determines the eCAN module configured by the eCAN Receive block.

Mailbox number(0–31) — Sets value of mailbox number register (MBNR)
0 (default) | integer in the range [0 31]

For standard CAN controller (SCC) mode, enter a unique number from 0 to 15. For high-
end CAN controller (HECC) mode, enter a unique number from 0 to 31 . In SCC mode,
transmissions from the mailbox with the highest number have the highest priority. In
HECC mode, the mailbox number only determines priority if the transmit priority level
(TPL) of two mailboxes is equal.

Message identifier — Sets value of message identifier register (MID)
bin2dec('111000111') (default) | numeric identifier of length 11 or 29 bits

The message identifier is 11 bits long for the standard frame size or 29 bits long for the
extended frame size in decimal, binary, or hex format. For binary and hex formats, use
bin2dec(' ') and hex2dec(' '), respectively, to convert the entry.

Message type — Message identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

The message identifier type.

Sample time — Frequency at which mailbox is polled for new message
1 (default) | -1 | scalar

A new message causes a function call to be sent from the mailbox. If you want to update
the message output only when a new message arrives, the block needs to be executed
asynchronously. To execute the block asynchronously, set this parameter to -1, and select
the Post interrupt when message is received option.

Note For information about setting the timing parameters of the CAN module, see
“Configuring Timing Parameters for CAN Blocks”.

 C28x eCAN Receive

2-217

Data type — Output message data type
uint16 (default) | uint8 | uint32 | CAN_MESSAGE_TYPE

The options available are:

• uint8: Vector length = 8 elements
• uint16: Vector length = 4 elements
• uint32: Vector length = 2 elements
• CAN_MESSAGE_TYPE: Outputs data as a structure. Use the CAN Unpack block to

extract the data from the structure.

The length of the vector for the received message is at most 8 bytes. If the message is less
than 8 bytes, the data buffer bytes are right-aligned in the output. The data are unpacked
as follows using the data buffer, which is 8 bytes.

For uint8 data, the eCAN Receive block reads each unit of 8 bytes in the registers and
outputs 8-bit data to eight elements (using the lower part of the 16-bit memory).

Output[0] = data_buffer[0];
Output[1] = data_buffer[1];
Output[2] = data_buffer[2];
Output[3] = data_buffer[3];
Output[4] = data_buffer[4];
Output[5] = data_buffer[5];
Output[6] = data_buffer[6];
Output[7] = data_buffer[7];

For uint16 data, the eCAN Receive block reads each unit of 8 bytes in the registers and
outputs 16-bit data to four elements.

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data, the eCAN Receive block reads each unit of 8 bytes in the registers and
outputs 32-bit data to two elements.

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes:

2 Blocks — Alphabetical List

2-218

data_buffer[0] = 0x21
data_buffer[1] = 0x43

The uint16 output is:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

When you select CAN_MESSAGE_TYPE, the block outputs the following struct data
(defined in can_message.h):

struct {

 /* Is Extended frame */
 uint8_T Extended;

 /* Length */
 uint8_T Length;

 /* RTR */
 uint8_T Remote;

 /* Error */
 uint8_T Error;

 /* CAN ID */
 uint32_T ID;

 /*
 TIMESTAMP_NOT_REQUIRED is a macro that will be defined by Target teams
 PIL, xPC if they do not require the timestamp field during code
 generation. By default, timestamp is defined. If the targets do not require
 the timestamp field, they should define the macro TIMESTAMP_NOT_REQUIRED before
 including this header file for code generation.
 */
 #ifndef TIMESTAMP_NOT_REQUIRED
 /* Timestamp */
 double Timestamp;
 #endif

 /* Data field */
 uint8_T Data[8];

};

Initial output — Sets output before receiving data
0 (default) | integer

The value of the output before receiving data.

Output message length — Output message length in bytes
off (default) | on

 C28x eCAN Receive

2-219

The message length in bytes, sent to the len port. If not selected, the len port is not
visible.

Post interrupt when message is received — Posts asynchronous interrupt
when message is received
off (default) | on

When selected, the block posts an asynchronous interrupt when a message is received.

Interrupt line — Interrupt line of asynchronous interrupt
0 (default) | 1

The interrupt line the asynchronous interrupt uses. The value of this parameter sets bit 2
(GIL) in the global interrupt mask register (CANGIM):

• 1 maps the global interrupts to the ECAN1INT line.
• 0 maps the global interrupts to the ECAN0INT line.

Dependencies

This parameter appears only when you select Post interrupt when message is
received.

See Also
C28x eCAN Transmit | C28x Hardware Interrupt

2 Blocks — Alphabetical List

2-220

C28x eCAN Transmit
Enhanced Controller Area Network transmit mailbox
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C281x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x

Description
The eCAN Transmit block generates source code for transmitting enhanced Controller
Area Network (eCAN) messages through an eCAN mailbox. eCAN modules on the
processor provide serial communication capability and have 32 mailboxes configurable
for receive or transmit. This block supports eCAN data frames in standard or extended
format.

Note Fixed-point inputs are not supported by this block.

 C28x eCAN Transmit

2-221

Configure the eCAN modules for a specific hardware board by navigating to Hardware
Implementation > Target hardware resources. Verify that these settings meet the
requirements of your application.

Ports

Input
Msg — Message data
vector

Input message data.
Data Types: uint8 | uint16 | uint32 | CAN_MESSAGE_TYPE

Parameters
Module — eCAN module the block configures
eCAN_A (default) | eCAN_B

Determines the eCAN module configured by this instance of the eCAN Transmit block.

Mailbox number(0–31) — Sets value of mailbox number register (MBNR)
1 (default) | integer in the range [0 31]

A unique number from 0 to 15 for standard or from 0 to 31 for enhanced CAN mode. The
number refers to a mailbox area in RAM. In standard mode, the mailbox number
determines priority.

Message identifier — Value of message identifier register (MID)
bin2dec('111000111') (default) | numeric identifier of length 11 or 29 bits

The message identifier is 11 bits long for the standard frame size or 29 bits long for the
extended frame size in decimal, binary, or hex. For binary and hex formats, use
bin2dec(' ') and hex2dec(' '), respectively, to convert the entry. The message
identifier is coded into a message that is sent to the CAN bus.

2 Blocks — Alphabetical List

2-222

Note CAN messages use the value of the message identifier parameter in the C28x CAN
Transmit block for transmission even when you use the CAN Pack block to create the
CAN message.

Message type — Message identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

The message identifier type.

Enable blocking mode — Sets blocking mode
off (default) | on

If selected, the CAN block waits indefinitely for a transmit (XMT) acknowledgment. If not
selected, the CAN block does not wait for a transmit (XMT) acknowledgment, which is
useful if the hardware fails to acknowledge transmissions.

Post interrupt when message is transmitted — Posts asynchronous
interrupt when message is transmitted
off (default) | on

When selected, this block posts an asynchronous interrupt when data is transmitted.

Interrupt Line — Interrupt line of asynchronous interrupt
0 (default) | 1

The interrupt line the asynchronous interrupt uses. The value of this parameter sets bit 2
(GIL) in the global interrupt mask register (CANGIM):

• 1 maps the global interrupts to the ECAN1INT line.
• 0 maps the global interrupts to the ECAN0INT line.

Note For information about setting the timing parameters of the CAN module, see
“Configuring Timing Parameters for CAN Blocks”.

Dependencies

This parameter appears only when Post interrupt when message is transmitted is
selected.

 C28x eCAN Transmit

2-223

More About

Data Vectors
The length of the vector for each transmitted mailbox message is 8 bytes. Input data are
right-aligned in the message data buffer. The uint8 (vector length = 8 elements),
uint16 (vector length = 4 elements), and uint32 (vector length = 2 elements) data
types are accepted. While using the eCAN Transmit block with the CAN Pack block in the
canmsglib library, CAN_MESSAGE_TYPE is also accepted.

The following examples show how different types of input data are aligned in the data
buffer:

For input of data type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of data type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

2 Blocks — Alphabetical List

2-224

For input of data type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

See Also
C28x eCAN Receive | C28x Hardware Interrupt

 C28x eCAN Transmit

2-225

C28x eQEP
Quadrature encoder pulse block used to derive position, direction, and speed
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / C2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C280x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2833x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / C2834x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M35x / C28x
Embedded Coder Support Package for Texas
Instruments C2000 F28M3x Concerto Processors /
F28M36x / C28x

Description
The enhanced quadrature encoder pulse (eQEP) block is used along with a linear or
rotary incremental encoder to get position, direction, and speed information from a
rotating machine.

The eQEP peripheral module inputs include QEPA, QEPB, QEPI (index), and QEPS
(strobe).

2 Blocks — Alphabetical List

2-226

To configure your device to work with the block, navigate to Model Configuration
Parameters > Hardware Implementation, select your device at Hardware board, and
expand Target hardware resources.

Input/Output Ports

Input
swi — Dynamically update initialization value for position counter
scalar

If the input is true, the position counter is initialized to the value in the Initialization
value (0~4294967295) on page 2-0 parameter.

Dependencies

This port appears only when, in the Position counter tab, you select Enable software
initialization and set Software initialization source to Input port.
Data Types: Boolean

cmp — Value for comparing position
scalar

Input value that generates the position compare sync signal.

Dependencies

This port appears only when, in the Compare output tab, you select Enable position-
compare sync signal output and set Compare value source to Input port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

iel — Software index marker
scalar

Software index event marker for latching the position counter.

Dependencies

This port appears only when, in the Position counter tab:

 C28x eQEP

2-227

• You set Position counter reset mode to Reset on the maximum position or
Reset on the first index event.

• You select Output latch position counter on index event.
• You set Index event latch of position counter to Software index marker via

input port.

Note In Compare output tab, if Sync output pin selection is set to Index pin is
used for sync output, then the Index event latch of position counter parameter
cannot be set to Software index marker via input port.

Data Types: Boolean

Output
qposcnt — Position counter signal
scalar

Position counter signal (PCSOUT) received from the position counter and control unit
(PCCU).

Dependencies

This port appears only when, in the Position counter tab, you select Output position
counter.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

pcef — Position counter error flag on error
scalar

Outputs the position counter error flag on an error.

• 0 — No error occurred during the last index transition.
• 1 — Position counter error.

Dependencies

This port appears only when, in the Position counter tab:

2 Blocks — Alphabetical List

2-228

• You set Position counter reset mode to Reset on an index event.
• You select Output position counter error flag.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qdf — Direction flag of quadrature module
scalar

Direction flag of the quadrature module.

• 0 — counterclockwise rotation (or reverse movement).
• 1 — clockwise rotation (or forward movement).

Dependencies

This port appears only when, in the General tab, you select Quadrature direction flag
output port.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qctmr — Capture timer signal
scalar

Outputs the eQEP capture timer signal.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Output capture timer.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qcprd — Capture period signal
scalar

Outputs the capture period signal, which holds the period count value between the last
successive eQEP position events.

 C28x eQEP

2-229

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Output capture period timer.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

coef — eQEP overflow error flag
scalar

Outputs overflow error flag (COEF flag) in the event of capture timer overflow between
unit position events.

• 0 — Overflow has not occurred.
• 1 — Overflow occurred in the eQEP capture timer register (QEPCTMR).

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Enable and output overflow error flag.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

cdef — Direction change error flag
scalar

Outputs the direction change error flag.

• 0 — Capture direction error has not occurred.
• 1 — Direction change occurred between two capture position events.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Enable and output direction change error flag.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qctmrlat — Capture timer latched value
scalar

2 Blocks — Alphabetical List

2-230

Outputs the capture timer latched value from the QCTMRLAT register.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Output capture timer latched value.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qcprdlat — Capture timer period latched value
scalar

Outputs the capture timer period latched value from the QCPRDLAT register.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Output capture timer period latched value.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qposlat — Position counter latched value
scalar

Outputs position counter latched value from the QPOSLAT register.

Dependencies

This port appears only when, in the Speed calculation tab, you select Enable eQEP
capture and Output position counter latched value.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qposilat — Latches position counter on index event
scalar

eQEP index input can be configured to latch the position counter register (QPOSCNT) as
output on the occurrence of a definite event on this pin.

Dependencies

This port appears only when, in the Position counter tab:

 C28x eQEP

2-231

• You set Position counter reset mode to Reset on the maximum position or
Reset on the first index event.

• You select Output latch position counter on index event.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

qposslat — Latches position counter on strobe event
scalar

eQEP strobe input can be configured to latch the position counter register (QPOSCNT) as
output on the occurrence of a definite event on this pin.

Dependencies

This port appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or
Reset on the first index event.

• You select Output latch position counter on strobe event.

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32 | single | double |
Boolean

Parameters

General
Module — eQEP module to obtain position, direction, and speed
eQEP1 (default) | eQEP2 | eQEP3

The eQEP peripheral module used to obtain position, direction, and speed information.
The number of eQEP modules supported varies for different C2000 processors.

Position counter mode — Mode that matches how input to eQEP peripheral is
encoded
Quadrature-count (default) | Direction-count | Up-count | Down-count

2 Blocks — Alphabetical List

2-232

The eQEP peripheral inputs are QEPA, QEPB, QEPI, and QEPS. Configure the GPIO pins
for these inputs by navigating to Configuration Parameters > Hardware
Implementation > Target hardware resources > eQEP.

Input signals QEPA and QEPB to the eQEP peripheral are processed by the quadrature
decoder unit (QDU) in the eQEP peripheral to produce clock (QCLK) and direction (QDIR)
signals. Choose the position counter mode that matches the way the input to the eQEP
module is encoded:

• Quadrature-count — Two square signals (A and B) 90 degrees out of phase are sent
to the eQEP peripheral. The QDU uses the phase relationship of these two inputs to
generate quadrature clock and direction signals.

• Direction-count — Direction and clock signals are directly sent to the eQEP
peripheral. The QEPA pin provides the clock input, and the QEPB pin provides the
direction input.

• Up-count — The position counter is used to measure the frequency of the signal in
the QEPA pin. The direction is hard-wired for up count in this mode.

• Down-count — The position counter is used to measure the frequency of the signal in
the QEPA pin. The direction is hard-wired for down count in this mode.

Positive rotation — Direction of rotation
Clockwise (default) | Counterclockwise

Set the direction of rotation.

If Clockwise is selected, the quadrature count operation is performed without swapping
the quadrature clock inputs fed to the QDU.

If Counterclockwise is selected, reverse counting is performed by swapping the
quadrature clock inputs fed to the QDU. The quadrature decoder reverses the counting
direction.

Dependencies

This parameter appears only when you set Position counter mode to Quadrature-
count on the General tab.

External clock rate — Measurement resolution
2x resolution: Count the rising/falling edge (default) | 1x resolution:
Count the rising edge only

 C28x eQEP

2-233

Select the resolution of the clock generator that the position counter uses as input so that
the counting occurs on both rising and falling edges of the QEPA input or on the rising
edge only. Choosing the former increases the measurement resolution by a factor of 2.
Dependencies

This parameter appears only when you set Position counter mode to Direction-
count, Up-count, or Down-count.

Quadrature direction flag output port — Creates port for direction flag
off (default) | on

Creates a port (qdf) on the block that gives the direction flag of the quadrature module.
Dependencies

This parameter appears only when, in the General tab, Position counter mode is set to
Quadrature-count.

Invert input QEPxX polarity — Inverts polarity of eQEP input
off (default) | on

Inverts the polarity of the eQEP peripheral inputs. The Invert input QEPxA polarity
checkbox corresponds to QEPA, Invert input QEPxB polairty corresponds to QEPB, and
so on.

Index pulse gating option — Enables gating of index pulse with strobe input
off (default) | on

Enables the gating of the peripheral input index signal with the peripheral input strobe
signal. In this case, the internal index signal is high only when both the peripheral input
signals eQEPxI and eQEPxS are high.

Sample time — Frequency at which block reads position counter
0.0001 (default) | -1 | scalar

Sample time for the block in seconds. To execute this block asynchronously, set this
parameter to -1.

Position counter
Output position counter — Outputs position counter signal
on (default) | off

2 Blocks — Alphabetical List

2-234

Outputs the position counter signal PCSOUT from the position counter and control unit
(PCCU). The position counter register counts up or down on every eQEP pulse based on
the direction of the input. The count value is proportional to the position from a given
reference point.

Maximum position counter value (0~4294967295) — Specifies maximum
position counter value
4294967295 (default) | integer in [0, 4,294,967,295]

Enter a maximum value (QPOSMAX) for the position counter. If the position counter
reaches QPOSMAX, the position counter is set to 0 on the next increment of the counter.
If the position counter is 0, the position counter is set to QPOSMAX on the next
decrement of the counter.

Enable set to init value on index event — Enables option to set
initialization value for position counter
off (default) | on

Enables option to set the position counter to its initialization value on an index event.

Set to init value on index event — Initialization value for position counter
Rising edge (default) | Falling edge

Sets the position counter to its initialization value on the rising edge or falling edge of the
index event.

Dependencies

This parameter appears only when, in the Position counter tab, you select Enable set
to init value on index event.

Enable set to init value on strobe event — Enables option to set
initialization value for position counter
off (default) | on

Enables option to set the position counter to its initialization value on a strobe event.

Set to init value on strobe event — Sets initialization value for position
counter
Rising edge (default) | Depending on direction

 C28x eQEP

2-235

The Rising edge option sets the position counter to its initialization value on the rising
edge of the strobe input. The Depending on direction option sets the position
counter to its initialization value on the:

• rising edge of the strobe input, in the forward direction.
• falling edge of the strobe input, in the reverse direction.

Dependencies

This parameter appears only when, in the Position counter tab, you select Enable set
to init value on strobe event.

Enable software initialization — Enables option to set initialization value
for position counter
off (default) | on

Allows the position counter to be set to its initialization value using the software.

Software initialization source — Specifies initialization source of position
counter
Input port (default) | Set to init value at start up

Choose the Set to init value at start up option to initialize the position counter
to the value entered in Initialization value at the start of the execution of the program.
Choose the Input port option to update the initialization value dynamically based on an
input initialization signal (input port swi). If the input swi is true, the position counter is
initialized to the Initialization value.

Dependencies

This parameter appears only when, in the Position counter tab, you select Enable
software initialization.

Initialization value (0~4294967295) — Initialization value for position
counter
2147483648 | integer in [0, 4,294,967,295]

Enter the initialization value for the position counter.

Dependencies

This parameter appears only when you select Enable set to init value on index event,
Enable set to init value on strobe event, or Enable software initialization.

2 Blocks — Alphabetical List

2-236

Position counter reset mode — Resets position counter
Reset on an index event (default) | Reset on the maximum position | Reset
on the first index event | Reset on a time unit event

Position counter reset mode, depending on the nature of the system the eQEP module is
working with.

• Reset on an index event — If the index event occurs during the forward
direction, then the position counter is reset to 0 on the next eQEP clock. If the index
event occurs during the reverse direction, then the position counter is reset to the
value in the QPOSMAX register on the next eQEP clock.

• Reset on the maximum position — During the forward direction, when the
position counter is equal to QPOSMAX, the position counter is reset to 0 on the next
eQEP clock, and the position counter overflow flag is set. During the reverse direction,
when the position counter is equal to 0, the position counter is reset to QPOSMAX on
the next QEP clock, and the position counter underflow flag is set.

• Reset on the first index event — If the index event occurs during the forward
direction, the position counter is reset to 0 on the next eQEP clock. If the index event
occurs during the reverse direction, the position counter is reset to the value in the
QPOSMAX register on the next eQEP clock. The position counter is reset using the
Reset on the first index event option only on the first index event
occurrence. After the first index event occurrence, the position counter is reset based
on the maximum position.

• Reset on a time unit event — The QPOSCNT value is latched to the QPOSLAT
register on a unit time event. The QPOSCNT register is then reset to 0 for the forward
direction and QPOSMAX for the reverse direction. You can use this option for
frequency measurement.

Output position counter error flag — Outputs position counter error flag
on error
off (default) | on

Outputs the position counter error flag on error. When you select this option, the output
port pcef is created.

Dependencies

This parameter appears only when, in the Position counter tab, you set Position
counter reset mode to Reset on an index event.

 C28x eQEP

2-237

Output latch position counter on index event — Latches position counter
on index event
off (default) | on

When this option is enabled, the position counter QPOSCNT latches into QPOSLAT on the
occurrence of an event on the strobe pin.

Dependencies

This parameter appears only when, in the Position counter tab, you set Position
counter reset mode to Reset on the maximum position or Reset on the first
index event.

Index event latch of position counter — Configures position counter to
latch on an event
Rising edge (default) | Falling edge | Software index marker via input
port

Configures the eQEP position counter to latch on the index event selected.

Dependencies

This parameter appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or
Reset on the first index event.

• You select Output latch position counter on index event.

Output latch position counter on strobe event — Latches position counter
on strobe event
off (default) | on

The eQEP strobe input can be configured to latch the position counter (QPOSCNT) into
QPOSSLAT on occurrence of a definite event on this pin. This option latches the position
counter on each strobe event.

Dependencies

This parameter appears only when, in the Position counter tab, you set Position
counter reset mode to Reset on the maximum position or Reset on the first
index event.

2 Blocks — Alphabetical List

2-238

Strobe event of latched position counter — Configures position counter to
latch on strobe
Rising edge (default) | Depending on direction

Rising edge latches on the rising edge of the strobe event input. Depending on
direction latches on the rising edge in the forward direction and the falling edge in the
reverse direction.

Dependencies

This parameter appears only when, in the Position counter tab:

• You set Position counter reset mode to Reset on the maximum position or
Reset on the first index event.

• You select Output latch position counter on strobe event.

Speed calculation
To view the other parameters of this tab, select the Enable QEP capture option.

Enable QEP capture — Enables edge capture unit
off (default) | on

The eQEP peripheral includes an integrated edge capture unit to measure the elapsed
time between the unit position events. This option enables the edge capture unit.

Output capture timer — Outputs capture timer
off (default) | on

Outputs the capture timer value from the QCTMR register.

Output capture period timer — Outputs capture period
off (default) | on

Outputs the period count value between the last successive eQEP position events from
the QCPRD register.

eQEP capture timer prescaler — Prescales capture timer clock frequency
128 (default) | 1 | 2 | 4 | 8 | 16 | 32 | 64

 C28x eQEP

2-239

The eQEP capture timer runs from prescaled SYSCLKOUT. The capture timer clock
frequency is the frequency of SYSCLKOUT divided by the value you choose for this
parameter.

Unit position event prescaler — Prescales quadrature clock
128 (default) | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 256 | 512 | 1024 | 2048

The timing of the unit position event is determined by prescaling the quadrature clock
(QCLK). QCLK is divided by the prescalar value you choose for this parameter.

Enable and output overflow error flag — Outputs overflow error flag when
capture timer overflows
off (default) | on

Enables and outputs the eQEP overflow error flag (COEF) in the event of capture timer
overflow between unit position events.

Enable and output direction change error flag — Outputs direction
change error flag
off (default) | on

Enables and outputs the direction change error flag (CDEF) when direction change
occurs between the unit position events.

Capture timer and position — QEP capture latch mode
On position counter read (default) | On unit time-out event

Event that triggers the latching of the capture timer and capture period register:

• On position counter read — Latch on position counter read by the processor.
The capture timer and capture period values are latched into the QCTMRLAT and
QCPRDLAT registers when the processor reads the QPOSCNT register.

• On unit time-out event — Latch on unit time-out. The position counter, capture
timer, and capture period values are latched into the QPOSLAT, QCTMRLAT, and
QCPRDLAT registers on unit time-out.

Unit timer period (0~4294967295) — Sets unit timer period
100000000 (default) | value in the range [0, 4,294,967,295]

Set the unit timer period.

2 Blocks — Alphabetical List

2-240

Dependencies

This parameter appears only when you set Capture timer and position to On unit
time-out event.

Output capture timer latched value — Outputs capture timer latched value
off (default) | on

Outputs the capture timer latched value from the QCTMRLAT register at the output port
qctmrlat.

Output capture timer period latched value — Outputs capture timer period
latched value
off (default) | on

Outputs the capture timer period latched value from the QCPRDLAT register at the
output port qcprdlat.

Output position counter latched value — Outputs position counter latched
value
off (default) | on

Outputs the position counter latched value from the QPOSLAT register at the output port
qposlat.

Compare output
To view the other parameters of this tab, select the Enable position-compare sync
signal output option.

Enable position-compare sync signal output — Enables position compare
sync signal output
off (default) | on

The eQEP peripheral includes a position compare unit that generates the position
compare sync signal when the position counter register (QPOSCNT) and the position
compare register (QPOSCMP) values match. This option enables the position compare
sync signal output. The sync signal can be output using an index pin or strobe pin of the
eQEP peripheral.

 C28x eQEP

2-241

Sync output pin selection — GPIO pin used for sync signal
Index pin is used for sync output (default) | Strobe pin is used for sync
output

The GPIO pin used for the sync signal output. Use the index pin or strobe pin of the eQEP
peripheral to output the position compare sync signal.

Compare value source — Source of value for position comparison
Specify via dialog (default) | Input port

Source of the value to be used for the position compare register (QPOSCMP). When this
parameter is set to Input port the input port cmp is created.

Position compare shadow load mode — Shadow mode for generating position
compare sync signal
Load on QPOSCNT=0 (default) | Shadow disabled(load immediate) | Load on
QPOSCNT=QPOSCMP

This parameter lets you enable or disable shadow mode for updating the position compare
(QPOSCMP) register. When shadow mode is enabled, you can also choose an event to
trigger the loading of the shadow register value into the active register. When shadow
mode is disabled, the processor directly loads the value into the active register.

Load on QPOSCNT=0 loads on a position counter zero event, and Load on
QPOSCNT=QPOSCMP loads when the QPOSCNT and QPOSCMP values match. When you
select these options, shadow mode is enabled.

Position compare value (0~4294967295) — Value for comparing postiton
4294967295 (default) | value in the range [0, 4,294,967,295]

This value is loaded into the position compare register (QPOSCMP).
Dependencies

This parameter appears only when you set Compare value source to Specify via
dialog.

Sync output pulse width (1~4096) — Pulse width of position compare sync
output signal
1 (default) | value in the range [0, 4,096]

The pulse stretcher logic in the position compare unit generates a programmable position
compare sync pulse output on the position compare match.

2 Blocks — Alphabetical List

2-242

A value from 1 to 4096 that determines the pulse width of the position compare sync
output signal. The width of the output pulse, measured in SYSCKOUT cycles, is four times
the entered value.

Polarity of sync output — Polarity of sync output
Active high (default) | Active low

Select the polarity of the sync output signal generated.

Watchdog unit
Watchdog timer enable — Enables watchdog time-out flag
off (default) | on

The eQEP peripheral contains a watchdog timer that monitors the quadrature clock to
indicate that the motion-control system is operating. The timer is reset on an edge
transition of the quadrature clock. The watchdog unit generates an interrupt, which you
can enable in the Interrupt tab.

Watchdog timer — Time-out value for watchdog timer
65535 (default) | value in the range [0, 65,535]

The time period after which the watchdog unit generates an interrupt.

Dependencies

This parameter appears only when you select Watchdog timer enable.

Signal Data Types
When you select signals as output in the other tabs, the corresponding signals appear in
this tab. For example, when you select the Output position counter option on the
Position counter tab, the Position counter value data type option appears on this tab.
Using this tab, you can select the data types of the signals.

The valid data types are auto, double, single, int8, uint8, int16, uint16, int32,
uint32, and boolean.

The following table summarizes the options for which you can set the data type in the
Signal data types tab:

 C28x eQEP

2-243

Pane Option
General Quadrature direction flag output port
Position counter Output position counter (selected by default)

Output position counter error flag
Output latch position counter on index event
Output latch position counter on strobe event

Speed calculation Output capture timer
Output capture period timer
Enable and output overflow error flag
Enable and output direction change error flag
Output capture timer latched value
Output capture timer period latched value
Output position counter latched value

Interrupt
Interrupts corresponding to specific events are enabled or disabled based on the settings
in this tab. The generated interrupts are used with the C28x Hardware Interrupt.

Position counter error interrupt enable — Enables position counter error
interrupts
off (default) | on

Enables position counter error interrupts. The position counter interrupt is generated
only in index event reset mode. When eQEP is configured in this mode, the position
counter value is latched to the QPOSILAT register, and the direction information is
recorded on every index event marker. If the latched value is not equal to 0 or QPOSMAX,
the position counter error interrupt is generated.

Quadrature phase error interrupt enable — Enables quadrature phase error
interrupts
off (default) | on

Enables quadrature phase error interrupts. In quadrature count mode, the quadrature
inputs QEPA and QEPB are expected to be 90 degrees out of phase. The quadrature phase
error interrupt is generated when edge transition is detected simultaneously on the QEPA
and QEPB signals.

2 Blocks — Alphabetical List

2-244

Quadrature direction change interrupt enable — Enables quadrature
direction change interrupt
off (default) | on

When the direction of counting changes, the quadrature direction change interrupt is
generated.

Watchdog timeout interrupt enable — Enables watchdog timeout interrupts
off (default) | on

The eQEP peripheral contains a watchdog timer that monitors the quadrature clock. If no
quadrature clock event is detected until the watchdog timer matches the watchdog
period, time-out occurs and the watchdog timeout interrupt is generated.

Position counter underflow interrupt enable — Enables position counter
underflow interrupts
off (default) | on

Enables position counter underflow interrupts. In the reverse direction, if the position
counter reaches 0, then the position counter is reset to QPOSMAX on the next QEP clock
and the position counter underflow interrupt is generated.

Position counter overflow interrupt enable — Enables position counter
overflow interrupts
off (default) | on

Enables position counter overflow interrupts. In the forward direction, if the position
counter reaches QPOSMAX, the position counter is reset to 0 on the next QEP clock, and
the position counter overflow interrupt is generated.

Position-compare ready interrupt enable — Enables position compare ready
interrupts
off (default) | on

Enables position compare ready interrupts. When the position compare register is
configured for shadow mode, the position compare ready interrupt is generated after the
shadow register value is loaded into the active register.

Position-compare match interrupt enable — Enables position compare
match interrupts
off (default) | on

 C28x eQEP

2-245

Enables position compare match interrupts. The position compare match interrupt is
generated when the position counter value QPOSCNT matches with the active position
compare register QPOSCMP.

Strobe event latch interrupt enable — Enables strobe event latch
interrupts
off (default) | on

Enables strobe event latch interrupts. The strobe event latch interrupt is generated when
the position counter is latched to the QPOSSLAT register during a strobe event latch.

Index event latch interrupt enable — Enables index event latch interrupts
off (default) | on

Enables index event latch interrupts. The strobe event latch interrupt is generated when
the position counter is latched to the QPOSILAT register during an index event latch.

Unit timeout interrupt enable — Enables unit timeout interrupts
off (default) | on

Enables unit timeout interrupts. The unit time-out interrupt is generated when the unit
timer matches the unit period.

See Also
“Embedded Coder Support Package for Texas Instruments C2000 Processors”

2 Blocks — Alphabetical List

2-246

C28x CLA Task
Create CLA task that executes downstream function-call subsystem on CLA core
Library: Embedded Coder Support Package for Texas

Instruments C2000 Processors / F2803x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2805x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2806x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2807x
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xD
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F2837xS
Embedded Coder Support Package for Texas
Instruments C2000 Processors / F28004x

Description
The CLA Task block creates a (Control Law Accelerator) CLA task that executes a
downstream function-call subsystem on the CLA core. CLA is a coprocessor that allows
parallel processing. Utilizing the CLA for time-critical tasks frees up the main CPU to
perform other system and communication functions concurrently.

You can specify the interrupt source to trigger the CLA task. You can create up to eight
CLA tasks to execute on the CLA core.

For information about how to configure a CLA block to execute a downstream function-
call subsystem, see “Using the Control Law Accelerator (CLA)”.

Limitations
• The CLA application code can only be triggered by a C28x event. CLA Task can be

triggered by the C28x CPU via software or by different peripheral interrupts.
• All interfaces between the CLA and the CPU must be placed in specific memory

locations. The CpuToCla1MsgRAM memory section is used to exchange data from

 C28x CLA Task

2-247

C28x to the CLA. The Cla1ToCpuMsgRAM memory section is used to exchange data
from the CLA to C28x.

• The CLA application code does not have access to global variables.
• Early versions of the CLA C compiler support only two levels of function calls. CLA

interrupt service routines may call leaf functions only. Leaf functions may not call
other functions.

• Recursive function calls are not supported.
• Integer division, modulus, and integer unsigned comparison are not supported with

the CLA C compiler.

For more details and a full list of limitations, see http://processors.wiki.ti.com/index.php/
C2000_CLA_C_Compiler.

Ports

Output
Port_1 — Function-call signal to a function-call subsystem or function-call model
scalar

The output triggers the CLA task that executes a downstream function-call subsystem on
the CLA core.

Parameters
CLA task number — CLA task number executed on CLA core
1 (default) | integer in [1, 8]

The CLA task number that you want to execute on the CLA core.

CLA task trigger source — Source of CLA task trigger
Software (default) | peripheral interrupt

The software or peripheral interrupt source that triggers the CLA task to execute on the
CLA core.

2 Blocks — Alphabetical List

2-248

http://processors.wiki.ti.com/index.php/C2000_CLA_C_Compiler
http://processors.wiki.ti.com/index.php/C2000_CLA_C_Compiler

Sample time — Frequency at which function-call subsystem is triggered
0.2 (default) | -1 | scalar

Set the frequency at which the function-call subsystem is triggered by the CLA task
trigger source. To execute this block asynchronously, set this parameter to -1.

Dependencies

This parameter appears only when you select the Software option in the CLA task
trigger source parameter.

See Also
“Embedded Coder Support Package for Texas Instruments C2000 Processors”

Introduced in R2016b

 C28x CLA Task

2-249

Byte Pack
Convert input signals to 8-, 16-, or 32-bit vector
Library: Simulink Support Package for Arduino Hardware/

Utilities
Embedded Coder Support Package for
STMicroelectronics Discovery Boards/Utilities
Simulink Coder Support Package for
STMicroelectronics Nucleo Boards/Utilities
Embedded Coder Support Package for Texas
Instruments C2000 Processors/Target Communication

Description
The Byte Pack block converts one or more signals of user-selectable data types to a single
uint8, uint16, or uint32 vector output. Using the parameters of this block, you specify
the input data types and the alignment of the data in the output vector. The output of this
block connects to an input port of a send block, such as SPI Transmit, SCI Transmit, or
UDP Send. The send block then transmits signals across various communication
networks, such as SPI, SCI, UDP, or I2C.

Input/Output Ports

Input
Port_1 — First of N input ports
scalar | vector | matrix

The number of input ports and their types specified as a cell array in the Input port data
types (cell array) parameter. The block can have from 1 to N input ports. N is the
number of incoming data types specified in the cell array.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

2 Blocks — Alphabetical List

2-250

Output
Port_1 — Vector containing packed data
vector

Transmits a vector of packed data.
Data Types: uint8 | uint16 | uint32

Parameters
Output port (packed) data type — Data type of packed output signal
uint8 (default) | uint16 | uint32

The data type of the packed output signal at the output port.

Input port data types (cell array) — Data types of unpacked input signals
{'double'} (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
boolean

Data types of input signals (unpacked), specified as a cell array. The block creates input
ports in the order of the incoming data types specified in the cell array. For example, the
first data type in the cell array corresponds to the top port and the last data type
corresponds to the bottom port.

For example, if the data types are single, uint8, and uint8, the block creates three
input ports. The order of the input port data types is same as the data types specified in
the cell array.

Byte alignment — Alignment of input signal data types after packing
1 (default) | 2 | 4 | 8

Each element in the input signal list starts at a multiple of the byte alignment value,
specified from the start of the vector. If the byte alignment value is larger than the size of
the data type in bytes, the input values are padded with zeros to fill the space allotted.

For example, if the byte alignment value is 4, a uint32 receives no padding, a uint16
receives 2 bytes of padding, and a uint8 receives 3 bytes of padding.

Tip If the model accesses the data items frequently, consider selecting a byte alignment
value equal to the largest data type that you want to access. If the model transfers the

 Byte Pack

2-251

data items frequently as a group, consider selecting a byte alignment value of 1, which
packs the data into the smallest space possible.

Example
Suppose that you are packing four signals into a vector of data type uint8 or uint16,
and the signals have these attributes.

Dimension Size Type
Vector 3 int8
Vector 2 int16
Scalar 1 uint8
Scalar 1 uint32

To pack the signals:

1 Set Output port (packed) data type. This example compares uint8 and uint16.
2 Set Input port data types (cell array) to:

{'int8’, ‘int16’, ‘uint8’, ‘uint32’}

The block creates four input ports that match the order of the incoming signal data
types specified in the cell array.

3 Set the required byte alignment value. The byte alignment value specifies the number
of bytes after which a new byte starts from the previous boundary.

The size of the output is based on the packed vector size, the byte alignment value,
and the smallest memory cell size of the processor. Depending on the byte alignment
value, input values are padded with zeros before the next signal is packed. The
smallest addressable memory cell indicates the number of bits occupied by the char
or uint8 data type for a processor and determines the structure of packets.

4 Connect incoming signals to the input port of the Byte Pack block.

For processors with a smallest addressable memory cell of 8 bits per char, consider these
values for input signals.

2 Blocks — Alphabetical List

2-252

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 23

4 04
–3 FD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 70
Scalar 1 uint32 5000 00001388

The packed output vector data type uint8 is:

Red zeros represent padded empty memory cells.

For a packed output vector of data type uint8 and byte alignment value 2, the int8 data
value (23 04 FD) occupies the first three memory cells, with each cell occupying 8 bits.
Because three is not a multiple of the byte alignment value 2, the next input signal of
int16 data value (00DA FFF4) is allocated the next four cells (fifth through eighth),
leaving the fourth cell empty. The block fills the empty cell with zero. The rest of the input
signals are packed in a similar way.

After packing all input signals, the Byte Pack block calculates the total packets allocated
and outputs a uint8 vector of size 4 + 4 + 2 + 4 = 14. Here, the int8 signal occupies

 Byte Pack

2-253

the first 4 cells, the int16 signal occupies the second 4 cells, the uint16 signal occupies
the third 2 cells, and the uint32 signal occupies the fourth 4 cells.

The packed output vector of data type uint16 is:

For processors such as Texas Instruments C2000, with the smallest addressable memory
cell of 16 bits per char, consider these values for input signals. The int8 and uint8 data
values occupy 16 bits, as indicated by the hex value.

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 0023

4 0004
–3 FFFD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 0070
Scalar 1 uint32 5000 00001388

For the packed output vector of data type uint8, the output packet occupies 16 bits,
although the data value the packet represents is 8 bits. The byte alignment values are
calculated with respect to the16-bit addressable memory.

2 Blocks — Alphabetical List

2-254

For a packed output vector of data type uint8 and byte alignment value 2, the int8 data
value (0023 0004 00FD) occupies the first three memory cells, with each cell occupying
16 bits. Because three is not a multiple of byte alignment value 2, the next signal of data
type int16 (00DA 0000 00F4 00FF) is allocated the next four cells (fifth through eighth),
leaving the fourth cell empty. The block fills the empty cell with zero. The rest of the input
signals are packed in a similar way. After packing all input signals, the Byte Pack block
calculates total packets allocated and outputs a uint8 vector of size 4 + 4 + 2 + 4 = 14.

For the packed output vector of data type uint16, the output packet occupies 16 bits,
and the data value the packet represents is also 16 bits. For a packet size of 16 and
larger, the byte alignment is calculated with respect to the number of bytes the data
values are packed into. Therefore, in this case, 1-byte alignment is not allowed.

 Byte Pack

2-255

For a packed output of data type uint16 and byte alignment value 2, the three int8 data
values (0423 FD) are packed together as two words in the first two memory cells. The
fourth byte in the second memory cell is empty and filled with zero. The int16 data value
(00DA FFF4) is allocated the next two memory cells (third and fourth). The rest of the
input signals are packed in a similar way. After packing all signals, the Byte Pack block
calculates total packets allocated and outputs a uint16 vector of size 2 + 2 + 1 + 2 = 7.

See Also
Byte Unpack |

Introduced in R2016b

2 Blocks — Alphabetical List

2-256

Byte Unpack
Unpack 8-, 16-, or 32-bit input vector to multiple output vectors
Library: Simulink Support Package for Arduino Hardware/

Utilities
Embedded Coder Support Package for
STMicroelectronics Discovery Boards/Utilities
Simulink Coder Support Package for
STMicroelectronics Nucleo Boards/Utilities
Embedded Coder Support Package for Texas
Instruments C2000 Processors/Target Communication

Description
The Byte Unpack block converts a vector of uint8, uint16, or uint32 data type to one
or more signals of user-selectable data types. This block is the inverse of the Byte Pack
block. The input of this block connects to an output port of a receive block, such as SPI
Receive, SCI Receive, or UDP Receive. The Receive block then transmits signals across
various communication networks, such as SPI, SCI, UDP, or I2C.

Input/Output Ports

Input
Port_1 — Packed data
scalar | vector | matrix

Receives a vector of packed data.
Data Types: uint8 | uint16 | uint32

Output
Port_1 — First of N output ports
scalar | vector | matrix

 Byte Unpack

2-257

The block can have from 1 to N output ports, as specified by elements of the cell array in
the parameter Output port data types (cell array).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Parameters
Output port dimensions (cell array) — Dimensions of each output port
(unpacked)
{[1]} (default) | {[N], [M], ...}

Output port dimensions specified as a cell array of vectors.

Specify the same dimensions that you set for the corresponding Byte Pack block in the
model.

Output port data types (cell array) — Data types for unpacked output
signals
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

Data types of the output ports (unpacked) specified for different output signals as a cell
array. The number of elements in the cell array determines the number of output ports
shown by this block instance.

Specify the same data types that you set in the Input port data types (cell array)
parameter for the corresponding Byte Pack block in the model.

Byte alignment — Alignment of output signal data types before unpacking
1 (default) | 2 | 4 | 8

Each element in the input signals list starts at a multiple of the byte alignment value,
specified from the start of the vector. If the byte alignment value is larger than the size of
the data type in bytes, the output values are padded with zeros to fill the space allotted.

For example, if the byte alignment value is 4, a uint32 receives no padding, a uint16
receives 2 bytes of padding, and a uint8 receives 3 bytes of padding.

Choose the same byte alignment value that you set in the Byte alignment parameter for
the corresponding Byte Pack block in the model.

2 Blocks — Alphabetical List

2-258

Example
Suppose that you are unpacking a vector of data type uint8 or uint16, and the
unpacked signals have these attributes.

Dimension Size Type
Vector 3 int8
Vector 2 int16
Scalar 1 uint8
Scalar 1 uint32

To unpack the signals:

1 Set Output port dimensions (cell array) to:

{'3’, ‘2’, ‘1’, ‘1’}
2 Set Output port data types (cell array) to:

{'int8’, ‘int16’, ‘uint8’, ‘uint32’}

The block creates four output ports that match the order of the signal data types
specified in the cell array.

3 Set the required byte alignment value. The byte alignment value specifies the number
of bytes after which a new byte starts from the previous boundary.

The size of the output is based on the packed vector size, the byte alignment value,
and the smallest memory cell size of the processor. Depending on the byte alignment
value, output values padded with zeros are discarded before the next signal is
unpacked. The smallest addressable memory cell indicates the number of bits
occupied by char or uint8 data type for a processor, and determines the structure
of packets.

4 Connect incoming signals to the input port of the Byte Unpack block.

For processors with a smallest addressable memory cell of 8 bits per char, consider the
packed input vector data type uint8.

 Byte Unpack

2-259

Red zeros represent padded empty memory cells.

For a packed input vector of data type uint8 and byte alignment value 2, the int8 data
value (23 04 FD) occupies three memory cells, with each cell occupying 8 bits. The next
input signal of int16 data value (00DA FFF4) occupies the next four cells (fifth through
eighth), and the fourth cell is empty (padded). The Byte Unpack block considers the
alignment and padding of cells while unpacking.

The packed input vector of data type uint16 is:

The unpacked output signals are:

2 Blocks — Alphabetical List

2-260

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 23

4 04
–3 FD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 70
Scalar 1 uint32 5000 00001388

For processors such as Texas Instruments C2000, with a smallest addressable memory
cell of 16 bits per char, consider a packed input vector data type uint8. The output
packet occupies 16 bits although the data value that the packet represents is 8 bits. The
byte alignment values are calculated with respect to the 16-bit addressable memory.

For a packed input vector of data type uint8 and byte alignment value 2, the int8 data
value (0023 0004 00FD) occupies three memory cells, with each cell occupying 16 bits.
The next signal of data type int16 (00DA 0000 00F4 00FF) occupies the next four cells
(fifth through eighth), and the fourth cell is empty (padded). The Byte Unpack block
considers the alignment and padding of cells while unpacking.

For the packed input vector of data type uint16, the output packet occupies 16 bits, and
the data value the packet represents is also 16 bits. For a packet size of 16 and larger, the
byte alignment is calculated with respect to the number of bytes the data values have to
be packed. Therefore, in this case, 1-byte alignment is not allowed.

 Byte Unpack

2-261

For a packed input of data type uint16 and byte alignment value 2, the three int8 data
values (0423 FD) occupy the first two memory cells. The fourth byte in the second
memory cell is empty and padded with zero. The int16 data value (00DA FFF4) occupies
the next two memory cells (third and fourth). The Byte Unpack block considers the
alignment and padding of cells while unpacking.

The table lists the unpacked output signals. The int8 and uint8 data values occupy 16
bits, as indicated by the hex value.

Unpacked Signals
Dimension Size Data Type Dec Value Hex Value
Vector 3 int8 35 0023

4 0004
–3 FFFD

Vector 2 int16 218 00DA
–12 FFF4

Scalar 1 uint8 112 0070
Scalar 1 uint32 5000 00001388

2 Blocks — Alphabetical List

2-262

See Also
Byte Pack |

Introduced in R2016b

 Byte Unpack

2-263

Idle Task
Create free-running task

Description

The Idle Task block, and the subsystem connected to it, specify one or more functions to
execute as background tasks. The tasks executed through the Idle Task block are of the
lowest priority, lower than that of the base rate task.

This block is not supported on targets running an operating system or RTOS.

Vectorized Output
The block output comprises a set of vectors—the task numbers vector and the preemption
flag or flags vector. A preemption-flag vector must be the same length as the number of
tasks vector unless the preemption flag vector has only one element. The value of the
preemption flag determines whether a given interrupt (and task) is preemptable.
Preemption overrides prioritization. A lower-priority nonpreemptable task can preempt a
higher-priority preemptable task.

When the preemption flag vector has one element, that element value applies to the
functions in the downstream subsystem as defined by the task numbers in the task
number vector. If the preemption flag vector has the same number of elements as the task
number vector, each task defined in the task number vector has a preemption status
defined by the value of the corresponding element in the preemption flag vector.

2 Blocks — Alphabetical List

2-264

Parameters
Task numbers

Identifies the created tasks by number. Enter as many tasks as you need by entering a
vector of integers. The default values are [1,2] to indicate that the downstream
subsystem has two functions.

The values you enter determine the execution order of the functions in the
downstream subsystem, while the number of values you enter corresponds to the
number of functions in the downstream subsystem.

Enter a vector containing the same number of elements as the number of functions in
the downstream subsystem. This vector can contain up to 16 elements, and the values
must be from 0 to 15 inclusive.

The value of the first element in the vector determines the order in which the first
function in the subsystem is executed, the value of the second element determines the
order in which the second function in the subsystem is executed, and so on.

For example, entering [2,3,1] in this field indicates that there are three functions to
be executed, and that the third function is executed first, the first function is executed
second, and the second function is executed third. After the functions are executed,
the Idle Task block cycles back and repeats the execution of the functions in the same
order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower priority. To allow
you to control preemption, use the preemption flags to specify whether an interrupt
can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0 indicates the
interrupt cannot be preempted. When Task numbers contains more than one task,
you can assign different preemption flags to each task by entering a vector of flag
values, corresponding to the order of the tasks in Task numbers. If Task numbers
contains more than one task, and you enter only one flag value here, that status
applies to the tasks.

In the default settings [0 1], the task with priority 1 in Task numbers is not
preemptable, and the priority 2 task can be preempted.

 Idle Task

2-265

Enable simulation input
When you select this option, Simulink software adds an input port to the Idle Task
block. This port is used in simulation only. Connect one or more simulated interrupt
sources to the simulation input.

Note Select this check box to test asynchronous interrupt processing behavior in
Simulink software.

2 Blocks — Alphabetical List

2-266

C280x/C2802x/C2803x/C2805x/C2806x/
C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x GPIO Digital Input
Configure general-purpose input/output pins as digital input

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2805x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C280x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2833x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2834x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2807x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xD

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xS

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2838x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F28004x

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x GPIO Digital
Input

2-267

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

Description
This block configures the general-purpose I/O (GPIO) MUX registers that control the
operation of GPIO shared pins for digital input. Each I/O port has one MUX register that
selects peripheral operation or digital I/O operation (the default). When a pin is
configured for digital input, it becomes unavailable for digital output or peripheral
operation. You can configure the Input qualification type for individual digital input
pins. To configure, go to Configuration Parameters > Hardware Implementation >
Target Hardware Resources and select the appropriate GPIO group.

Each processor has a different number of available GPIO pins.

Note To avoid losing new settings, click Apply before changing the GPIO Group
parameter.

Parameters
GPIO Group

Select the group of GPIO pins you want to view or configure. For a table of GPIO pins
and peripherals, refer to the Texas Instruments documentation for your specific
target.

Sample time
Specify the time interval between output samples. To inherit sample time from the
upstream block, set this parameter to -1. For more information, refer to the section
on “Specify Sample Time” (Simulink) in the Simulink documentation.

Data type
Specify the data type of the input. The input is read as 16-bit integer, and then cast to
the selected data type. Valid data types are auto, double, single, int8, uint8,
int16, uint16, int32, uint32 or boolean.

2 Blocks — Alphabetical List

2-268

See Also
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F28004x GPIO Digital Output

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x GPIO Digital
Input

2-269

C280x/C2802x/C2803x/C2805x/C2806x/
C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F2838x/F28004x GPIO Digital
Output
Configure general-purpose input/output pins as digital output

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2805x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C280x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2833x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2834x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2807x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xD

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2837xS

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F2838x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ F28004x

2 Blocks — Alphabetical List

2-270

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

Description
Configure individual general-purpose input/output (GPIO) pins to operate as digital
outputs. When a pin is configured for digital output, it cannot operate as a digital input or
connect to peripheral I/O signals. When you select a pin for digital output, the user
interface presents a Toggle option that inverts the output signal on the pin.

Each processor has a different number of available GPIO pins.

Note To avoid losing new settings, click Apply before changing the GPIO Group
parameter.

Parameters
GPIO Group

Select the group of GPIO pins you want to view or configure.
GPIO pins for output

To configure a GPIO pin for digital output, select the checkbox next to it. Refer to the
block for a table of all available peripherals for each pin.

A value of True at the input of the block drives the selected GPIO pin high. A value of
False at the input of the block grounds the selected GPIO pin.

Toggle GPIO[bit#]
For each pin selected for output, you can elect to toggle the signal of that pin. In
Toggle mode, a value of True at the input of the block switches the GPIO pin output
level. Thus, if the GPIO pin was driven high, in Toggle mode, with the value of True
at the input, the pin output level is driven low. If the GPIO pin was driven low, in
Toggle mode, with the value of True at the input of the block, the same pin output
level is driven high. If the input of the block is False, the GPIO pin output level is
unaffected.

 C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/F2837xS/F2838x/F28004x GPIO Digital
Output

2-271

Note The outputs of this block can be vectorized.

See Also
C280x/C2802x/C2803x/C2805x/C2806x/C2833x/C2834x/F28M3x/F2807x/F2837xD/
F2837xS/F28004x GPIO Digital Input

2 Blocks — Alphabetical List

2-272

C2802x/C2803x/C2806x/F28M3x AnalogIO
Input
Configure pin, sample time, and data type for analog input

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

Description
Use this block to sample the voltage on Analog IO pins and output the results.

Parameters
Parameters (Input pins)

Select the input pins to sample.
Sample time

Specify the time interval between samples. To inherit sample time from the upstream
block, set this parameter to -1.

 C2802x/C2803x/C2806x/F28M3x AnalogIO Input

2-273

Data type
Select the data type of the digital output data. If you select auto, the block
automatically selects the data type for your model. You can also manually select a
data type. You can choose from the options double, single, int8, uint8, int16,
uint16, int32, and uint32.

See Also
C2802x/C2803x/C2806x/F28M3x AnalogIO Output

2 Blocks — Alphabetical List

2-274

C2802x/C2803x/C2806x/F28M3x AnalogIO
Output
Configure Analog IO to output analog signals on specific pins

Library
Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2802x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2803x

Embedded Coder Support Package for Texas Instruments C2000 Processors/ C2806x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M35x/ C28x

Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto
Processors/ F28M36x/ C28x

Description
Use this block to drive the output voltage of Analog IO pins.

In regular mode, a value of True at the input of the block pulls the Analog IO pin high
while a value of False grounds the pin.

In toggle mode, a value of True at the input of the block switches the actual output level
of the Analog IO pin while a value of False does not alter the output level of the Analog IO
pin.

 C2802x/C2803x/C2806x/F28M3x AnalogIO Output

2-275

Parameters
Parameters (Output Pins)

Select the analog output pins. Selecting Toggle inverts the output voltage levels of
the pins if the input of the block is True.

See Also
C2802x/C2803x/C2806x/F28M3x AnalogIO Input

2 Blocks — Alphabetical List

2-276

Appendix

3

Support SPI Communication
In this section...
“SPI Lines” on page 3-2
“Data Transmission” on page 3-3
“SPI Transfer Modes” on page 3-4

SPI, or Serial Peripheral Interface, is a synchronous, full duplex serial communication
protocol between high-speed devices over short distances. The SPI protocol supports a
single master with one or more slaves. The master can communicate to any slave on the
bus, but each slave can communicate only with the master.

The SPI Master Transfer block in the support package library enables communication
with other SPI devices. You can use this block only when you use your hardware as the
master device.

With SPI, you can:

• Connect various sensors to boards to measure different quantities such as
temperature, pressure.

• Connect various shields to boards to enhance capabilities such as WiFi shield.
• Access an SD card to store data or extend the available memory.

You can set SPI properties such as the SPI clock out frequency (in MHz), SPI mode, and
the Bit order in the Configuration Parameters > Hardware Implementation > SPI
properties section.

SPI Lines
SPI uses a four-wire serial bus for communication: MISO, MOSI, SCK, and SS. The MISO,
MOSI, and the SCK lines are common to all devices. The SS line is specific to each slave.

• MISO (Master In Slave Out) – This line is the slave line for sending data to the SPI
master.

• MOSI (Master Out Slave In) – This line is the master line for sending data to the SPI
peripherals.

• SCK (Serial Clock) –The master generates the clock pulses that synchronize the data
transmission.

3 Appendix

3-2

• SS (Slave Select) – This is specific to the device. This is the pin on each device that the
SPI master can use to enable and disable the device. This signal is an ‘active low’
signal which means a device becomes a slave when its SS pin is set to low.

The SPI lines over In Circuit Serial Programming (ICSP) header are consistent across all
the boards shown as follows.

Data Transmission
• The SPI master sets the clock with a frequency supported by the SPI slave with which

the master wants to communicate.
• The master selects the slave by setting the SS pin of slave to low (0). The master can

select only one slave at a time.
• As each SPI transfer is a full duplex transmission, the master sends a bit on MOSI line

and the slave reads it. The slave also sends a bit on the MISO line and the master
reads it.

When the master makes a data transfer, the slave cannot opt out of sending data.
However, the slave device sends dummy bytes (usually all 1s or all 0s) when
communication is one-way. Similarly, when the master reads data from a slave, the
slave knows to ignore the data that the master sends.

• When the transfer is complete, the master stops toggling the SCK and mostly pulls up
the SS to deselect the slave.

• During the data transmission, the other slaves on the SPI bus that have not been
selected by the master ignore the SCK and the MOSI signals, and do not drive the
MISO.

 Support SPI Communication

3-3

SPI Transfer Modes
An SPI master sets the clock polarity and the clock phase.

Clock Polarity (CPOL) – is the default value (HIGH/LOW) of SCK signal when the bus is
idle.

3 Appendix

3-4

CPOL = 0 means a default LOW value of SCK when bus is idle. CPOL = 1 means default
HIGH value of SCK when bus is idle.

Clock Phase (CPHA) – indicates, if the clock data is sampled at LEADING (first) or
TRAILING (second) edge of SCK.

CPHA = 0 means sample at LEADING edge of SCK and CPHA = 1 means sample at
TRAILING edge of SCK, regardless of whether the clock edge is RISING or FALLING.

The combination of polarity and phase are referred to as SPI modes. The SPI modes 0–3
are shown in the table.

Mode Clock Polarity (CPOL) Clock Phase (CPHA)
0 0 1
1 0 0
2 1 1
3 1 0

Mode 0

Mode 1

 Support SPI Communication

3-5

Mode 2

3 Appendix

3-6

Mode 3

 Support SPI Communication

3-7

3 Appendix

3-8

