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1 Introduction

2 Discrete-Time Transfer Function

2.1 Discrete-Time TF Model

• y(k): controlled output variable (see Figure 2.1)

• u(k): control input variable (see Figure 2.1)

• k: sample number

• K: scalar gain element or multiplier

2.1.1 The Backward Shift Operator

z−1 in Equation 1 is called backward shift operator.

z−iy(k) = y(k − i) (1)

The inverse of Equation 1 is ziy(k) = y(k+1) where zi is the forward shift operator. ziy(k) = y(k+1)

takes place of the differential operator, si(t) = diy(t)/dti, which is commonly used in continuous-time

TF model. As depicted in Figure 2.2, the backward shift operator creates one sample delay between

input and output.

Example 2.1 Transfer Function Representation of a First Order System
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Difference Equation:

y(k) + a1y(k − 1) = b1u(k − 1)

y(k) + a1z
−1y(k) = b1z

−1u(k)

TF representation: (The coefficients were arbitrarily chosen.)

y(k) =
b1z
−1

1 + a1z−1
u(k) =

1.6z−1

1 + 0.8z−1
u(k)

TF model: See Figure 2.3

Unit step response: See Figure 2.4

Note that there is a delay of one sample for the output to respond after the command

input goes to one which is expressed in the difference equation; (k-1).

Example 2.2 Transfer Function Representation of a Third Order System

Differencel Equation:

y(k) + a1y(k − 1) + a2y(k − 2) + a3y(k − 3) = b1u(k − 1) + b2u(k − 2) + b3u(k − 3)

y(k) + a1z
−1y(k) + a2z

−2y(k) + a3z
−3y(k) = b1z

−1u(k) + b2z
−2u(k) + b3z

−3u(k)

TF representation: (The coefficients were from an exercise in CH.8.)

y(k) =
b1z
−1 + b2z

−2 + b3z
−3

1 + a1z−1 + a2z−2 + a3z−3
u(k) =

27.4671z−1 + 65.6418z−2 − 91.1006z−3

1− 2.4425z−1 + 2.2794z−2 − 0.8274z−3
u(k)
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TF model: See Figure 2.4

Unit step response: See Figure 2.6

2.1.2 General Discrete-time TF Model

The general difference equation for an nth order model without time delay:

y(k) + a1y(k − 1) + ...+ any(k − n) = b0u(k) + b1u(k − 1) + ...+ bmu(k −m)

where ai(i = 1...n) and bi(i = 0...m) are constant coefficients. The b0u(k) term disappears since

discrete-time control requires at least one sample delay; τ = 1 or larger.

2.1.3 Steady-State Gain

Steady-state is where y(k)− y(k− 1) = 0. This is equivalent to y(k)(1− z−1) = 0, where z−1 must be

1 in order to satisfy the equation. Thus, steady state gain, G of a discrete-time TF can be found by

substituting z−1 with 1. For example, using the model introduced in Example 2.1,

G(z−1 = 1) =
1.6z−1

1− 0.8z−1
=

1.6

1− 0.8
= 8.0 (2)

y(k ⇒∞) = Gu = 8.0u (3)

Refer to Figure 2.4. The output reaches to 8 in the steady state.
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2.2 Stability and the Unit Circle

Referring to Figure 2.7, for stability, all the poles pi must have a magnitude less than unity, i.e.

|pi| < 1 i = 1, 2, .., n

Example 2.3 Poles.Zeros and Stability

Figure 2.8(a) shows the unit step response of second order TF mode:

y(k) =
b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
u(k) =

0.5z−1 − 0.4z−2

1− 0.8z−1 + 0.15z−2
u(k)

The denominator 1− 0.8z−1 + 0.15z−2 multiplied by z2 gives:

z2 − 0.8z + 0.15 = (z − 0.3)(z − 0.5) = 0

The two poles are 0.3 and 0.5, both of which are less than unity. Hence, the system is

stable. Now, changing the numerator to the following:

y(k) =
b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
u(k) =

−0.2z−1 + 0.3z−2

1− 0.8z−1 + 0.15z−2
u(k)

This system has one zero, which is outside the unit circle. The resulting plot is shown in

Figure 2.8(b). This type of system where the initial negative response can be seen is

called non-minimum phase. Lastly, the response of the following system:

y(k) =
−1.0z−1 + 2.0z−2

1− 1.7z−1 + z−2
u(k)

is shown in Figure 2.8(c). This one is also non-minimum phase, and the poles are at one

which resulted in marginally stable system.
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2.3 Block Diagram Analysis

Each of the equations in this section is represented by the diagram shown below it.

y(k) = G1(z
−1)G2(z

−1)u(k) = G2(z
−1)G1(z

−1)u(k)

y(k) = G1(z
−1)u(k) +G2(z

−1)u(k) = (G1(z
−1) +G2(z

−1))u(k)

y(k) =
G1(z

−1)

1 +G1(z−1)G2(z−1)
u(k)

2.4 Discrete-Time Control

Example 2.4 Proportional Control of a First Order TF Model

Control Algorithm:

u(k) = kp(yd(k)− y(k))

where yd(k) is the command input.

CLTF representation: (The coefficients the same as Example 2.1’s.)

y(k) =
kpb1z

−1

1 + a1z−1 + kpb1z−1
yd(k)

Figure 2.12 and Figure 2.13 are the TF model and response of the proportional control

system, respectively. The steady state error can be seen in this system. This is referred to

as a Type 0 control system.
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Example 2.5 Integral Control of a First Order TF Model

Control Algorithm:

u(k) =
kI

1− z−1
(yd(k)− y(k))

CLTF representation:

y(k) =
kIb1z

−1

1 + (kIb1 + a1 − 1)z−1 − a1z−2
yd(k)

TF model: See Figure 2.14

This system has unity steady state gain and called Type 1 servomechanism.

Example 2.6 Proportional Integral Control of a First Order TF Model

Control Algorithm:

u(k) =
kI

1− z−1
(yd(k)− y(k))− f0y(k)

CLTF representation:

y(k) =
kIb1z

−1

1 + (f0b1 + a1 − 1 + kIb1)z−1 − (a1 − f0b1)z−2
yd(k)

The transfer function model in Figure 2.15 was simplified and shown in Figure 2.16.

This one is also Type 1 servomechanism.
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Example 2.7 Pole Assignment Design Based on PI Control Structure

2.5 Continuous to Discrete-Time TF Model Conversion

Is it important?

3 Minimal State Variable Feedback

Example 3.1 State Space Forms for a Third Order TF Model

x(k) =

x1(k)

x2(k)

x3(k)

 =

 y(k)

y(k − 1)

y(k − 2)



x(k) =

x1(k)

x2(k)

x3(k)

 =

−a1 −a2 −a3
1 0 0

0 1 0


x1(k − 1)

x2(k − 1)

x3(k − 1)

 +

1

0

0

u(k − 1)

y(k) =
[
1 0 0

]x1(k)

x2(k)

x3(k)



x(k) =

 y(k)

y(k − 1)

y(k − 2)

 =

−a1 −a2 −a3
1 0 0

0 1 0


y(k − 1)

y(k − 2)

y(k − 3)

 +

1

0

0

u(k − 1)
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x(k) =

x1(k)

x2(k)

x3(k)

 =

−a1x1(k − 1) + x2(k − 1) + u(k − 1)

−a2x1(k − 1) + x3(k − 1)

−a3x1(k − 1)



x(k) =

x1(k)

x2(k)

x3(k)

 =

−a1 1 0

−a2 0 1

−a3 0 0


x1(k − 1)

x2(k − 1)

x3(k − 1)

 +

1

0

0

u(k − 1)

y(k) =
[
1 0 0

]x1(k)

x2(k)

x3(k)


3.1 Controllable canonical Form

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + b2u(k − 2) + · · ·+ bnu(k − n)

y(k) =
b1z
−1 + b2z

−2 + · · ·+ bnz
−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
u(k) =

B(z−1)

A(z−1)
u(k)

y(k) =
b1z
−1 + b2z

−2 + · · ·+ bnz
−n+1z−1

1 + a1z−1 + a2z−2 + · · ·+ anz−n
u(k)

w(k) =
z−1

1 + a1z−1 + a2z−2 + · · ·+ anz−n
u(k)

y(k) = (b1z
−1 + b2z

−2 + · · ·+ bnz
−n+1)w(k)



x1(k)

x2(k)
...

xn−1(k)

xn(k)


=



w(k)

w(k − 1)
...

w(k − n+ 2)

w(k − n+ 1)




x1(k)

x2(k)
...

xn−1(k)

xn(k)


=



−a1 −a2 · · · −an−1 −an
1 0 · · · 0 0
...

. . .
...

...
...

0 0 1 0 0

0 0 0 1 0





x1(k − 1)

x2(k − 1)
...

xn−1(k − 1)

xn(k − 1)


+



1

0
...

0

0


u(k − 1)

y(k) =
[
b1 b2 · · · bn−1 bn

]


x1(k)

x2(k)
...

xn−1(k)

xn(k)


+



1

0
...

0

0


u(k − 1)
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w(k) =
y(k)

(b1 + b2 + · · ·+ bnz−n+1)

w(k) =
z−1y(k)

b1z−1 + b2z−2 + · · ·+ bnz−n
=
y(k − 1)

B(z−1)

Example 3.2 State Variable Feedback based on the Controllable Canonical Form

Example 3.3 State Variable Feedback Pole Assignment based on the Controllable

Canonical Form
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3.1.1 State Variable Feedback for the General TF Model

3.2 Observable Canonical Form

x1(k)

x2(k)
...

xn−1(k)

xn(k)


=



−a1x1(k − 1) + x2(k − 1) + b1u(k − 1)

−a2x1(k − 1) + x3(k − 1) + b2u(k − 1)
...

−an−1x1(k − 1) + xn(k − 1) + bn−1u(k − 1)

−anx1(k − 1) + bnu(k − 1)



x(k) =



x1(k)

x2(k)
...

xn−1(k)

xn(k)


=



−a1 1 0 · · · 0

−a2 0 1 · · · 0
...

...
...

. . .
...

−an−1 0 0 · · · 1

an 0 0 · · · 0





x1(k − 1)

x2(k − 1)
...

xn−1(k − 1)

xn(k − 1)


+



b1

b2
...

bn−1

bn


u(k − 1)

y(k) =
[
1 0 · · · 0 0

]


x1(k)

x2(k)
...

xn−1(k)

xn(k)



Example 3.4 State Variable Feedback based on the Observable Canonical Form
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3.3 General State Space Form

x(k) = Fx(k − 1) + gu(k − 1)

y(k) = hx

3.3.1 Transfer Function Form of a State Space Model

x(k) = Fz−1x(k) + gz−1u(k)

(I− Fz−1)x(k) = gz−1u(k)

Example 3.5 Determining the TF from a State Space Model

3.3.2 The Characteristic Equation, Eigenvalues and Eigenvectors

Example 3.6 Eigenvalues and Eigenvectors of a State Space Model

3.3.3 The Diagonal Form of a State Space Model

3.4 Controllability and Observability

Controllability:

x(n)− Fnx(0) =
[
g Fg · · · Fn−2g Fn−1g

]


u(n− 1)

u(n− 2)
...

u(1)

u(0)


S1 =

[
g Fg · · · Fn−2g Fn−1g

]
Observability: 

h

hF
...

hFn−2

hFn−1


x(0) =



y(0)

y(1)
...

y(n− 2)

y(n− 1)
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S0 =



h

hF
...

hFn−2

hFn−1



F =

 0.8 −0.15 −0.4

1 0 0

0.49 −0.12 −0.32



g =

0.5

0

1


h =

[
1 0 0

]

S1 =
[
g Fg F2g

]
=

0.5 0 −0.075

0 0.5 0

1 0 0



S0 =

 h

hF

hF2

 =

 1 0 0

0.8 −0.15 −0.4

0.49 −0.12 −0.32



4 Non-Minimal State Variable Feedback

4.1 The NMSS Form

4.1.1 The NMSS(Regulator) Representation

y(k) =
B(z−1)

A(z−1)
u(k)

x(k) = Fx(k − 1) + gu(k − 1)

y(k) = hx(k)
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F =



−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm

1 0 · · · 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...
. . .

...

0 0 . . . 1 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0

0 0 . . . 0 0 0 1 . . . 0 0
...

...
. . .

...
...

...
...

...
. . .

...

0 0 . . . 0 0 0 0 . . . 1 0

a1 a2 . . . an−1 an −b2 −b3 . . . −bm−1 −bm


g =

[
b1 0 · · · 0 0 1 0 · · · 0 −b1

]T
h =

[
1 0 · · · 0 0 0 0 · · · 0 0

]

x(k) =
[
y(k) y(k − 1) · · · y(k − n+ 1) u(k − 1) u(k − 2) · · · u(k −m+ 1)

]T
4.1.2 The Characteristic Polynomial of the NMSS Model

Example 4.1 Non-Minimal State Space Representation of a Second Order TF Model

4.2 Controllability of the NMSS Model

S1 =
[
g Fg F2g · · · Fn+m−2g

]
4.3 Proportional-Integral-Plus Control

u(k) = −kTx(k) + kdyd(k)

kT =
[
f0 f1 · · · fn−1 g1 · · · gm − 1 −kI

]
u(k) = −f0y(k)− f1y(k − 1)− · · · − fn−1(k − n+ 1)− g1u(k − 1)− · · · − gm−1u(k −m+ 1)− kIz(k)
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F(z−1) = f0 + f1z
−1 + · · ·+ fn−1z

−n+1

G(z−1) = 1 + g1z
−1 + · · ·+ gm−1z

−m+1

Example 4.2 Ranks Test for the NMSS Model

4.4 The Unity Gain NMSS Regulator

Example 4.3 Regulator Control Law for a NMSS Model with Four State Variables

Example 4.4 Pole Assignment for the Fourth Order NMSS Regulator Example 4.5

Unity Gain NMSS Regulator for the Wind Turbine Simulation

Example 4.6 Mismatch and Disturbances for the Fourth Order NMSS Regulator
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4.5 Constrained NMSS Control and Transformation
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5 True Digital Control for Univariate Systems

5.1 The NMSS Servomechanism Representation

y(k) =
B(z−1)

A(z−1)
u(k) =

b1z
−1 + · · ·+ bmz

−1

1 + a1z−1 + · · ·+ anz−1
u(k)

x(k) = Fx(k − 1) + gu(k − 1) + dyd(k)
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y(k) = hx(k)

x(k) =
[
y(k) y(k − 1) · · · y(k − n+ 1) u(k − 1) u(k − 2) · · · u(k −m+ 1) z(k)

]T

F =



−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm 0

1 0 · · · 0 0 0 0 · · · 0 0 0

0 1 · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 . . . 1 0 0 0 . . . 0 0 0

0 0 . . . 0 0 0 0 . . . 0 0 0

0 0 . . . 0 0 1 0 . . . 0 0 0

0 0 . . . 0 0 0 1 . . . 0 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . 1 0 0

a1 a2 . . . an−1 an −b2 −b3 . . . −bm−1 −bm 1


g =

[
b1 0 0 · · · 0 1 0 0 · · · 0 −b1

]T
d =

[
0 0 0 · · · 0 0 0 0 · · · 0 1

]
h =

[
1 0 0 · · · 0 0 0 0 · · · 0 0

]

S1 =
[
g Fg F2g · · · Fn+m−1g

]
5.2 Proportional-Integral-Plus Control

kT =
[
f0 f1 · · · fn−1 g1 · · · gm − 1 −kI

]
u(k) = −f0y(k)− f1y(k − 1)− · · · − fn−1(k − n+ 1)− g1u(k − 1)− · · · − gm−1u(k −m+ 1)− kIz(k)

F(z−1) = f0 + f1z
−1 + · · ·+ fn−1z

−n+1

G(z−1) = 1 + g1z
−1 + · · ·+ gm−1z

−m+1
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5.2.1 The Closed-Loop Transfer Function

Example 5.5 Proportional-Integral-Plus Control System Design for NMSS Model with

Five State Variables

5.3 Pole Assignment for PIP Control

5.3.1 State Space Derivation

Example 5.6 Pole Assignment Design for the NMSS Model with Five State Variables

Example 5.7 Implementation Results for FACE system with Disturbances
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5.4 Optimal Design for PIP Control

J =

∞∑
k=0

x(k)TQx(k) + r(uk(k)2)

5.4.1 Linear Quadratic Weighting Matrices

Q = diag(q1 q2 ... qn qn+1 ... qn+m−1 qn+m)
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q1 q2 ... qn are called the user-defined output weighting parameters and usually qy = Wy/n is used.

Likewise, qn+1 ... qn+m−1 are the input weighting parameters and substituted with qu = Wu/m.

The last term qn+m is qe = 1.

5.4.2 The LQ Closed-loop System and Solution of the Riccati Equation

kT = (r + gTPg)−1gTPF (4)

P− FTPF + FTPg(r + gTPg)−1gTPF−Q = 0 (5)

Example 5.8 PIP-LQ Design for the NMSS Model with Five State Variables

P = 0;k(N) = 0

kT (i) = (r + gTP(i+ 1)g)−1gTP(i+ 1)F (6)

P(i) = Q + FTP(i+ 1)F− FTP(i+ 1)gkT (i) (7)

Q in Equation 7 was defined as:

Q = diag(qy qy qy qy qu qu qu qe) (8)
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