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1 Introduction

2 Discrete-Time Transfer Function

2.1 Discrete-Time TF Model
e y(k): controlled output variable (see Figure 2.1)

e u(k): control input variable (see Figure 2.1)

k: sample number

K scalar gain element or multiplier

u(k)
e
Input

Transfer LY

Function

Output

Figure 2.1 Transfer Function (TF) in block diagram form

2.1.1 The Backward Shift Operator

2z~ ! in Equation [1is called backward shift operator.

2y(k) = y(k — i)

(1)

The inverse of Equationis 2'y(k) = y(k+1) where 2 is the forward shift operator. z'y(k) = y(k+1)

takes place of the differential operator, s*(t) = d'y(t)/dt!, which is commonly used in continuous-time

TF model. As depicted in Figure 2.2, the backward shift operator creates one sample delay between

input and output.

u(k) y(k) =z k) =u(k — 1)

T
Lt B L

Figure 2.2 The backward shift operator

Example 2.1 Transfer Function Representation of a First Order System



Difference Equation:
y(k) + a1y(k — 1) = biu(k — 1)

y(k) + a1z ty(k) = brz" tu(k)
TF representation: (The coefficients were arbitrarily chosen.)

biz! 1.6271
k)= —-—ulk) = —————
y(k) 1+a1z_1u( ) 1+0.8z—1u( )

TF model: See Figure 2.3

(k) bzt y(k)

v

v

1+ ayz!

Figure 2.3  Block diagram form of the TF model (2.4)

Unit step response: See Figure 2.4
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Figure 2.4  Unit step response of the first order TF model in Example 2.1
Note that there is a delay of one sample for the output to respond after the command
input goes to one which is expressed in the difference equation; (k-1).

Example 2.2 Transfer Function Representation of a Third Order System

Differencel Equation:
y(k) + a1y(k — 1) + agy(k — 2) + asy(k — 3) = byu(k — 1) 4+ bou(k — 2) + bsu(k — 3)
y(k) + a1z Yy (k) + agz2y(k) + azz3y(k) = brz  u(k) + boz2u(k) + byz3u(k)

TF representation: (The coefficients were from an exercise in CH.8.)

() = b1zt 4 boz™? + b3z ? u(k) = 27.46712"" + 65.64182"% — 91.10062°
O ae Tt age 2 age 31— 2442551 4 2.27942 2 — 0.82742 3

()




TF model: See Figure 2.4

u(k) bz + byt 4 by} k)
1

v

2
l4ayz " +ayz+aq2 3

Figure 2.5 Block diagram form of the TF model (2.9)

Unit step response: See Figure 2.6
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Figure 2.6  Unit step response of the wind turbine system in Example 2.2, comparing the discrete-time
TF model (2.10) with the continuous-time simulation (solid trace)
2.1.2 General Discrete-time TF Model

The general difference equation for an nth order model without time delay:
y(k) +ary(k — 1) + ... + apy(k — n) = bou(k) + byu(k — 1) + ... + bpu(k — m)

where a;(i = 1...n) and b;(i = 0...m) are constant coefficients. The bou(k) term disappears since

discrete-time control requires at least one sample delay; 7 = 1 or larger.

2.1.3 Steady-State Gain

Steady-state is where y(k) —y(k — 1) = 0. This is equivalent to y(k)(1 — 2~!) = 0, where 2~ must be
1 in order to satisfy the equation. Thus, steady state gain, G of a discrete-time TF can be found by

substituting z~! with 1. For example, using the model introduced in Example 2.1,

1.6271 1.6
_1 _ o _ _
Gl =l =1 T~ 1-08 "o (2)
y(k = 00) = Gu = 8.0u (3)

Refer to Figure 2.4. The output reaches to 8 in the steady state.



2.2 Stability and the Unit Circle

Referring to Figure 2.7, for stability, all the poles p; must have a magnitude less than unity, i.e.

Ipi| <1 1=1,2,..,n

.
@

Figure 2.7 Unit circle on the complex z-plane with complex axis j and real axis Re. The shaded area
shows the stable region with the magnitude of 1.0 highlighted by the arrow

-

Example 2.3 Poles.Zeros and Stability
Figure 2.8(a) shows the unit step response of second order TF mode:

bzt + byz 2 0.5271 —0.4272

k’ = k‘ —_
y(k) =17 a1z-1 + a22—2“< ) =T o810 2"

()

The denominator 1 — 0.82~% + 0.152~2 multiplied by 22 gives:

22 —0.82+0.15=(2—0.3)(z—0.5) =0

The two poles are 0.3 and 0.5, both of which are less than unity. Hence, the system is

stable. Now, changing the numerator to the following;:

bzt + byz2 —0.2271 4+ 0.3272

k — k =
yk) = 17 a1z + agz*QU( ) =T 08T 1015.2"

()

This system has one zero, which is outside the unit circle. The resulting plot is shown in
Figure 2.8(b). This type of system where the initial negative response can be seen is

called non-minimum phase. Lastly, the response of the following system:

—1.0271 +2.0272

y(k) = 1—1.7z71 4272 b

(F)

is shown in Figure 2.8(c). This one is also non-minimum phase, and the poles are at one

which resulted in marginally stable system.
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Figure 2.8 Unit step response of (a) stable (2.18), (b) stable non-minimum phase (2.20) and (c)

marginally stable (2.21) TF o

10dels in Example 2.3

2.3 Block Diagram Analysis

Each of the equations in this section is represented by the diagram shown below it.

y(k) = G1(z7")Ga(e (k) = Ga(27)G1(z" ulk)

y(k) = G1(z" u(k) + Ga(zHulk) = (G1(27") + Ga(27))u(k)

k) yik)
44 Gz " H Gyz ") }—b

Two TF models connected in series

Figure 2.9

. Gl(z_l)
14+ Gi(zN)Ga(2 )

k) + (k)
Gz —?—f

Gyz ™

y(k)

A 4

v

Figure 2.10  Two TF models connected in parallel

2.4 Discrete-Time Control

wlk)  +
 mmm—

Figure 2.11  Two TF models connected in a negative feedback arrangement

Example 2.4 Proportional Control of a First Order TF Model

Control Algorithm:

u(k) = kp(ya(k) —y(k))

where y4(k) is the command input.

CLTF representation: (The coefficients the same as Example 2.1’s.)

B kpblz_l
S ltarz kb

y(k)

—Ya(k)

Figure 2.12 and Figure 2.13 are the TF model and response of the proportional control

system, respectively. The steady state error can be seen in this system. This is referred to

as a Type 0 control system.
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Figure 2.12  Proportional control of a first order TF model

0

0 5 10 15 20
Sample no.

Figure 2.13  Closed-loop unit step response of the proportional control system in Example 2.4

Example 2.5 Integral Control of a First Order TF Model

Control Algorithm:

CLTF representation:

k[blz_l
k) = k
y(k) 14+ (ktby + a1 — 1)zt — a12_2yd( )
TF model: See Figure 2.14
Yak) 4 e(k) K uh) | ! k)

1-z1 I +apz!

Figure 2.14  Integral control of a first order TF model

This system has unity steady state gain and called Type I servomechanism.

Example 2.6 Proportional Integral Control of a First Order TF Model

Control Algorithm:
kr

u(k) = 1_—2_1(yd(k) —y(k)) — foy(k)

CLTF representation:

k[blz_l (k)
fobi + a1 — 14 krb1)z=1 — (a1 — fob1)z_2yd

y(k)=1+(

The transfer function model in Figure 2.15 was simplified and shown in Figure 2.16.
This one is also Type 1 servomechanism.

ylky + ky i uik) byz I yik)
» M >

1 +a!

integral
controller

ya(ky + k; bz! y(k)
— >

L +az "+ fbyz!

control model

proportional
controller

Figure 2.16  Reduced form of the control system in Figure 2.15
Figure 2,15 Proportional-Integral control of a first order TF model



Example 2.7 Pole Assignment Design Based on PI Control Structure

command command

0.8 output
0.6
0.4

0.2 control input

0

0 5 . 10 15 20 0 5 10 15
Sample na. Sample no.

Figure 2.17 Closed-loop unit step response of the deadbeat P1 control system using the characteristic

equation (2.45) in Example 2.7 using the characteristic equation (2.43) in Example 2.7

2.5 Continuous to Discrete-Time TF Model Conversion

Is it important?

3 Minimal State Variable Feedback

Example 3.1 State Space Forms for a Third Order TF Model

1 (k) y(k)
x(k) = |wa(k) | = |y(k—1)
3 (k) y(k —2)
z1(k) —a1 —ag —ag| |z1(k—1) 1
x(k)= |zok)| = 1 0 0 | |za(k=1)| + 0] u(k—1)
l‘g(k‘) 0 1 0 l‘3(k‘ — 1) 0
.CCl(k)
y(h) =[1 0 0] [2a(k)
133(/6‘
y(k) —a; —ay —ag| |y(k—1 1
x(k)=|ylk-1)]| =] 1 0 0 y(k—2)| + [0f u(k—1)
y(k — 2 0 1 0| |yk-3 0

u(k) ! ¥(k)

2 i)
l+az ! +apr? 4+ ayr

Figure 3.1 Block diagram form of the TF model (3.2)

20

Figure 2.18  Closed-loop unit step response of the PI control system based on conjugate complex poles

yik—3)
[

Figure 3.2 State space model described by equations (3.6)



z1(k) —a1x1(k— 1)+ 2ok —1)+u(k—1)
x(k) = xo(k)| = —agx1(k —1) +x3(k —1)

—azxry (k‘ — 1)

331(/{?) —al 1 0 xl(k — 1) 1
X(k) = .%‘Q(k‘) = | —a2 0 1 JJQ(/{ — 1) + 0 u(k‘ — 1)
563(]{3) —as 0 O Ig(k - 1) 0

l’l(k)
y(k) =1 0 0] |za(k)
z3(k)

3.1 Controllable canonical Form

y(k) +ary(k — 1)+ -+ apy(k —n) = byu(k — 1) + bou(k — 2) + - - + b"u(k — n)

b1z b+ boz 24+ b,2 "

y(k) = 14+a1z7 4 a9z 2+ + anzfnu( )= A(z*l)u(k)
B b1zt 4 boz 24 bz L
y(k) = l4+a1z7 +agz2+ -4 apz™" u(k)
o1
wik) = l4az7l +agz 2+ + anz—nu(k)
y(k) = (b1z7 ' +boz 2 + - + bz "Hw(k)
C o) | [ wk)
xa(k) w(k —1)
Tn—1(k) w(k —n+2)
| zn(k) | (w(k—n+1)
x1(k) | [~y —ap - —an1 —an] | z1(k—1) 1 [1]
o (k) 1 0 - 0 0 2ok — 1) 0
: = : S : : : + [ ulk—1)
21 (k) 0o 0 1 0 0 | |zosk—1)] o0
L au(k) | [0 0 0 1 0 || zalk-1) | |0
.’El(k) 1
xg(k) 0
xn_l(k) 0
xn (k) 0




Figure 3.3  Controllable canonical form for the general discrete-time system (3.11)

_ y(k)
W) = G bkt BT
ol - y(k) k-
biz7l4+byz72+ -+ b,z B(z71)

Example 3.2 State Variable Feedback based on the Controllable Canonical Form

}In'(k) + u(k) B(z I) v(k)
: Az g
plant
Wt vt
By |

controller

Figure 3.4  The closed-loop control system for Example 3.2 with model mismatch

Example 3.3 State Variable Feedback Pole Assignment based on the Controllable
Canonical Form

3 o .
25} L
!',
7l /" control input
i’
‘!
‘J
1.5} J
'f
1 ,:' command
output
0.5
0 L L L
0 5 10 15 20 25 30
Sample no.

Figure 3.5 Closed-loop unit step response of the SVF control system in Example 3.3



3.1.1 State Variable Feedback for the General TF Model

3.2 Observable Canonical Form

x1(k) —a1z1(k — 1)+ z2(k — 1) + bu(k — 1)
xo(k) —agz(k —1) + x3(k — 1) + bau(k — 1)
.Tn_l(k) —an_lazl(k — 1) + a:n(k — 1) + bn_lu(k‘ — 1)

| (k) | I —apr1(k —1) + bpu(k — 1)

-fL‘l(k')- _—al 1 0 --- 0- -l'l(k‘—l)- -bl-
xa(k) —az 01 --- 0 xa2(k —1) bo
x(k) = : = : Do : : +1 ¢ julk—1)
:L‘n_l(k) —Up—1 00 --- 1 :En_l(k? - 1) bn—l
| (k) a0 0 -0 O] [ zn(k=1) | | b

- (k) -
l’Q(k‘)
y(k)=1{1 0 00 :
LL‘n_l(k’)
[ #n(k) |
u(k)

e
y(k) =x(k)

Figure 3.6 Observable canonical form for the general discrete-time system (3.11)

Example 3.4 State Variable Feedback based on the Observable Canonical Form

u(k) by v by ? yik) = xy(k)

| 2
l+a 2" +ar~

plant

Figure 3.7 The closed-loop control system for Example 3.4 with model mismatch
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3.3 General State Space Form
x(k) =Fx(k—1)+gu(k—1)

y(k) = hx

3.3.1 Transfer Function Form of a State Space Model
x(k) = Fz7'x(k) + gz~ tu(k)

(I-Fz Yx(k) = gz lu(k)

uik) + N x(k) 1 yik)
T o I
+

Figure 3.8 Block diagram form for the general state space systemn description {(3.46), (3.47)}

Example 3.5 Determining the TF from a State Space Model

3.3.2 The Characteristic Equation, Eigenvalues and Eigenvectors

Example 3.6 Eigenvalues and Eigenvectors of a State Space Model

3.3.3 The Diagonal Form of a State Space Model

3.4 Controllability and Observability

Controllability: _ -
u(n —
u(n — 2
x(n) ~ F"x(0) = [g Fg - F*2%g Flg||
u(1)
[ u(0)
S1= {g Fg .- F' g F“_lg}
Observability:
[ h ] [y (0) ]
hF y(1)
2 =(0) = :
hF" y(n—2)
hF" ! y(n —1)

11



h
hF

So :
hFTLfQ
th,1

0.8 -0.15 —-04
F=]|1 0 0
0.49 —-0.12 —-0.32

So=|hF|=|08 -0.15 —-04
hF?2 049 —0.12 —0.32

4 Non-Minimal State Variable Feedback

4.1 The NMSS Form

4.1.1 The NMSS(Regulator) Representation

L1
o) = R ulh

x(k) =Fx(k—1)+gu(k—1)

y(k) = hx(k)

12



—ay —a —Gp-1 —ap by b3 bm—1
10 0 0O 0 0 0
0 1 0 0O 0 0 0
0 0 1 0O 0 0 0
F=|0 0 0 0O 0 0 0
0 0 0 0O 1 0 0
0 0 0 0o 0 1 0
0 0 0 0O 0 0 1
| a1 a2 apn-1  ap, —by —b3 —bm—1
T
gz[bl 0 0010 0 —bl}
h= [1 0 0000 0 0}
x(k) = [y(k) ylk—1) yk—n+1) ulk—1) ulk—2)

4.1.2 The Characteristic Polynomial of the NMSS Model

)

—by |

T
u(k—m+1)

Example 4.1 Non-Minimal State Space Representation of a Second Order TF Model

4.2 Controllability of the NMSS Model

Slz[g Fg Fig

4.3 Proportional-Integral-Plus Control

yalky + ky
:; 1

1-7 3

integral
control

Fn+m—2g

u(k) = —k"x(k) + kaya(k)

k' = [fo h

u(k)

fnfl

Bz

yk)
»

@ |«

input feedback filter

|

A

plant

Io |*

:

proportional control

|

Pzl |«

:

output feedback filter

g1

Figure 5.3  Block diagram of the univariate PIP control system explicitly showing the proportional and

integral control action

13

gm — 1 —kl]

u(k) = —foy(k) = fry(k =1) =+ = faa(k =n+ 1) —gru(k = 1) = - = gmau(k —m + 1) = krz(k)

control

yalk) k o~ 1 uk) | Bz | &
1-7! - Gz A"
integral forward path filter plant

(")

[

feedback filter

Figure 5.4 Block diagram of the univariate PIP control system in reduced form



Fz Y =fo+ fizt+ 4 faz "
Gz H=1+gz '+ +gma1z "

Example 4.2 Ranks Test for the NMSS Model

4.4 The Unity Gain NMSS Regulator

Example 4.3 Regulator Control Law for a NMSS Model with Four State Variables

724+27°3 y(k) v,,(ic)'- +. 1 wh | 2+t ¥k
- d > »
2 - I+),-|:'+,A:333 I—I,73'+12

1- 177 42
plant forward path filter plant
Jorhe!

feedback filter

Figure 4.1 NMSS regulator control of Example 4.3 showing an explicit feedback of the input states Figure 4.2 Simplified NMSS regulator control of Example 4.3 with a forward path filter

Example 4.4 Pole Assignment for the Fourth Order NMSS Regulator Example 4.5
Unity Gain NMSS Regulator for the Wind Turbine Simulation

command

0.8

0.6

04 control input

0.2

0.2

0 10 20 30 40 50
Sample no.

Figure 4.3 Closed-loop unit step response using the unity gain NMSS regulator of Example 4.4

1 ulk) | B | ¥k
G Az

sk '
Yatk) .’id

forward path filter

Ya(k) - + [ utk) | Bl | k)
”l L >
- Giz'Y Azl

forward path filter plant

PP feedback filter

feedback filter

Figure 4.4 Block diagram representation of the unity gain NMSS regulator proportional gain

Figure 4.5 Unity gain NMSS regulator with separate proportional gain

Example 4.6 Mismatch and Disturbances for the Fourth Order NMSS Regulator

14



command
1.2
command
0.8

output

0.6

04

control input
control input 3 S e aalt

0.2

10 20 30 40 50
Sample no. Sample no.

Figure 4.6 Closed-loop unit step response using the unity gain NMSS regulator of Example 4.4 when ~ Figure 4.7 Closed-loop unit step response using the unity gain NMSS regulator of Example 4.4, with
the model has a 10% error in one parameter an input step disturbance of 0.05 at the 25th sample

4.5 Constrained NMSS Control and Transformation

¥alk) + u(k) by + by ? (k)

v

_ | +az ' +ayr?

plant

L'+ b?

r';] s f;zz‘z
controller

Figure 4.8 Unity gain (minimal) SVF regulator for Example 4.8 based on the controllable canonical
form (cf. Figure 3.4)

A ',a;“'l) K + + u(k) | h1z_1 + blz_z 'ﬂk}...
> il L L 4
-~ N 1+ (:12'1 + uzz'z
nz |« plant
fothz ' |e

Figure 4.9 Unity gain NMSS regulator for Example 4.8
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5 True Digital Control for Univariate Systems

50 actual output

=100

100 200 300 400 500 600 700

(b) T T T T T T

-50 simulated output

100

100 200 300 400 500 600 700
Sample no.

Figure 5.1 Closed-loop response using the PIP controller of Example 5.2, showing the output bucket
joint angle in degrees (thick traces) and the time varying command input (thin traces). (a) Experimental
data collected from the laboratory excavator and (b) the equivalent simulated response based on the TF
model (5.1). The sampling rate is 0.11s

@ T T T T T T
100
0
_100 actual input
—200 | 1
100 200 300 400 500 600 700
(b) T T T T T T
100 | 1
0
~100 simulated input
—200 b i
1 L 1 L 1 L
100 200 300 400 500 600 700
Sample no.

Figure 5.2 Control input signals associated with Figure 5.1, showing the scaled voltage. (a) Experi-
mental data collected from the laboratory excavator and (b) the equivalent simulated response based on
the TF model (5.1)

5.1 The NMSS Servomechanism Representation

bzt 4 by
k)= —u(k) =
y(k) A(z—l)u( ) Il+az7t 4+ Fapz!

x(k) =Fx(k—1) +gu(k —1) + dyq(k)

16



T
x() = [y(k) yk=1) - yh—n+1) ulk—1) uk-2) - u(k—m+1) (k)]

[—a1 —as —Qp-1 —ap by b3 bn-1  bm O]
10 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 10 0 0 0 0 0
F=|0 0 0 0 0 0 0 0 o0
0 0 0 0 1 0 0 0 o0

0 0 0 0 0 1 0 0 o0

0o 0 .. 0 0 0 0 .. 1 0 0

| a1 as ... Qp—1 anp  —by —b3y ... —bp_1 —by 1]

T
g:[6100~~0100---0—b1}
d=[0 00 - 0000 - 01

h:[100---0000--.00}

Slz[g Fg F2g Fn+m—1g}

5.2 Proportional-Integral-Plus Control

kT:[fo i o far g1 o gm—1 —k‘l]

u(k) = —foy(k) = fry(k =1) =+ = faa(k =n+ 1) —gru(k = 1) = - = gmau(k —m + 1) = krz(k)

k) + k; Bz ™" yk)
B >
3 1-z! A
integral plant
control - vak) k + 1 wk) | Bz | ¥R
input feedback filter - -7 - G A
integral forward path filter plant
fo |« control
Fiz
proportional control
feedback filter
Pzl |«
output feedback filter Figure 5.4 Block diagram of the univariate PIP control system in reduced form

Figure 5.3  Block diagram of the univariate PIP control system explicitly showing the proportional and
integral control action

F(z_l) =fo+ fiz b frozT

Gz YHY=1+gz '+ +gn1z™!

17



5.2.1 The Closed-Loop Transfer Function

Example 5.5 Proportional-Integral-Plus Control System Design for NMSS Model with

Five State Variables

Ya(ky *

I

uik)

L4

7242773

yik)

2

-z L+giz '+ 5272 - 1.7z +2
integral forward path filter plant
control
fTothiz' |+
feedback filter
Figure 5.5 PIP control of the non-minimum phase oscillator in Example 5.5

5.3 Pole Assignment for PIP Control

5.3.1 State Space Derivation

Example 5.6 Pole Assignment Design for the NMSS Model with Five State Variables
Example 5.7 Implementation Results for FACE system with Disturbances

0.2
0

command

control input

-

-
e

_____________

20

Sample no.

30

40

Figure 5.6  Closed-loop unit step response using the PIP controller of Example 5.6, with an input step
disturbance of 0.05 at the 25th sample (cf. Figure 4.7 using the unity gain NMSS regulator)

Ya(k) +®

— &

0.063

11—z

integral
control

1 N —<2+1873 yk)
1+0.7z71 + 092772 1-17714 272
forward path filter plant

0.176 — 0.465z7"

feedback filter

Figure 5.7 PIP control of the non-minimum phase oscillator in Example 5.6 with model mismatch
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0.2}
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Figure 5.8 Closed-loop unit step response using the PIP controller of Example 5.6, when the model
has a 10% error in one of the parameters (cf. Figure 4.6 using the unity gain NMSS regulator)

T T T

1000

control input
i ﬂ' \H s [T ;l'—r‘ I 'H.‘Il"‘ A
H”l.‘ v """'.,'&" |r-\,P U"‘-"‘J“'ﬂ yw i ".:"t'gn Ay
|‘ ? L] ] *l

0 L
wind
—500 : : .
100 150 200 250 300
Sample no.

Figure 5.9 Closed-loop response using the PIP controller (5.74), showing the output CO; concentration
{ppm), the command input at 500 ppm, the control input (a scaled voltage regulating a mass flow valve)
and a scaled voltage representing changes in wind velocity (for which zero represents the mean wind
speed). The sampling rate is 10 s

5.4 Optimal Design for PIP Control

3= 3" x(TQx(K) + r(uk(b?)

k=0
5.4.1 Linear Quadratic Weighting Matrices

Q:diag((h q2 -~ 4n Gn+1 -~ Gni+m—1 Q'n—l—m)

19



@1 G2 ... Qn arecalled the user-defined output weighting parameters and usually g, = W, /n is used.
Likewise, @n+1 ... Qnitm—1 are the input weighting parameters and substituted with ¢, = W, /m.

The last term gp4m is ge = 1.

5.4.2 The LQ Closed-loop System and Solution of the Riccati Equation

k" = (r+g'Pg) 'g' PF (4)

P - FTPF + F'Pg(r + g’ Pg) 'g’PF- Q=0 (5)

Example 5.8 PIP-LQ Design for the NMSS Model with Five State Variables
P=0;k(N)=0

kT'(i)=(r+g'P(i+1)g) g’ P(i + F (6)

P(i) = Q+FTP(i + 1)F — FTP(i + 1)gk’ (i) (7)

Q in Equation [7| was defined as:

Q=diagley 9 @& U G u du Ge) (8)
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