
Chapter 6
State-Space Design

Two steps

1. Assumption is made that we have all the states at our disposal for
feedback purposes (in practice, we would not measure all these states).
This allows us to implement a control law.

2. Estimator or observer design

The dynamic system obtained from the continued control law and estimator
is called the controller

Control law
Consider a linear combination of the states

u = −Kx = −
[

k1 k2 · · ·
] ⎡⎢⎢⎣

x1

x2
...

⎤
⎥⎥⎦

This control law assumes that r = 0 and usually referred to as a regulator.

We have the difference equation

x(k + 1) = φx(k) + Γu(k)

Substituting u=- K x ⇒

x(k + 1) = φx(k) − ΓKx(k)

Taking z transform
(zI − φ + ΓK)X(z) = 0

The characteristic equation is

det(zI − φ + ΓK) = 0

Pole Placement

Given desired root locations

zi = β1, β2, β3, · · ·

the desired characteristic equation is

αc(z) = (z − β1) (z − β2) (z − β3) · · · = 0
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Example
Design a control law for the plant[

ẋ1

ẋ2

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

F

[
x1

x2

]
+

[
0
1

]
︸ ︷︷ ︸

G

u

The discrete model of the system is

φ = eFT , Γ =
∫ T

0
eFη dη G

⇒ φ =

[
1 T
0 1

]
, Γ =

[
T 2

2

T

]

Suppose we wish to pick z-plane roots of the closed-loop characteristic
equation so that equivalent s-plane roots have a damping ratio of ζ = 0.5
and a real part of s = −1.8rad/sec (i.e. s = −1.8 ± j3.12)

Using z = esT with T = 0.1 we find

z = 0.8 ± j0.25

⇒ the desired characteristic equation is

z2 − 1.6z + 0.70 = 0 (1)

⇒ det

(
z

[
1 0
0 1

]
−
[

1 T
0 1

]
+

[
T 2

2

T

] [
k1 k2

])
= 0

or

z2 +

(
Tk2 +

(
T 2

2

)
k1 − 2

)
z +

(
T 2

2

)
k1 − Tk2 + 1 = 0 (2)

equating coefficients of like power in (1) and (2)

Tk2 +

(
T 2

2

)
k1 − 2 = −1.6

(
T 2

2

)
k1 − Tk2 + 1 = 0.70

⇒ k1 =
0.10

T 2
= 10, k2 =

0.35

T
= 3.5, for T = 0.1

—————————————————————————–

The above calculations are easier if use is made of the control canonical form

Φc =

⎡
⎢⎣ −a1 −a2 −a3

1 0 0
0 1 0

⎤
⎥⎦ , Γc

⎡
⎢⎣ 1

0
0

⎤
⎥⎦ , Hc = [ b1 b2 b3 ]
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The characteristic equation of Φc is

a(z) = z3 + a1z
2 + a2z + a3

i.e. the coefficients of the characteristic polynomial are the negative of the
coefficients of the first row of Φc.
The closed-loop system matrix Φc − ΓcK is

Φc − ΓcK =

⎡
⎢⎣ −a1 − k1 −a2 − k2 −a3 − k3

1 0 0
0 1 0

⎤
⎥⎦

The characteristic equation is

z3 + (a1 + k1)z
2 + (a2 + k2)z + (a3 + k3) = 0

If the desired root locations are given by the roots of the equation

z3 + α1z
2 + α2z + α3 = 0

then the gains are

k1 = α1 − a1 ; k2 = α2 − a2 ; k3 = α3 − a3

Steps in canonical-form design method

Given an arbitrary (Φ, Γ) and desired characteristic equation α(z) = 0 ,
by redefining the states we convert (Φ, Γ) to control form (Φc, Γc) and find
the gain as shown above.
Then we transform the gains back in terms of the original states.

Controllability

Is it always possible to find an equivalent (Φc, Γc) for arbitrary (Φ, Γ) ?

If the roots of det(zI − φ) = 0 are distinct, then the state equation may
be transformed into the following form

x(k + 1) =

⎡
⎢⎢⎢⎢⎣

λ1 0
λ1

. . .

0 λn

⎤
⎥⎥⎥⎥⎦ x(k) +

⎡
⎢⎢⎢⎢⎣

Γ1

Γ2
...

Γn

⎤
⎥⎥⎥⎥⎦u(k)

Criterion for controllability: no element of Γ can be zero.
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Ackerman’s Formula

Given that (Φc, Γc) exists, i.e.the system is controllable, then the gains
to implement a control law are given by

K =
[

0 · · · 0 1
] [

Γ ΦΓ Φ2Γ · · · Φn−1Γ
]−1

αc(Φ)

where C =
[

Γ ΦΓ · · ·
]

is the controllability matrix, n is the order of the

system and we substitute Φ for z in αc(z) to form

αc(Φ) = Φn + α1Φ
n−1 + α2Φ

n−2 + · · ·+ αnI

where α′
is are the coefficients of the desired characteristic equation.

αi(z) = |zI − φ + Γk| = zn + α1z
n−1 + · · · + αn

Example
Redo last example

⇒ α1 = −1.6, α2 = 0.70

Since desired characteristic equation is z2 − 1.6z + 0.70 = 0
⇒

αc(Φ) =

[
1 2T
0 1

]
− 1.6

[
1 T
0 1

]
+ 0.7

[
1 0
0 1

]
=

[
0.1 0.4T
0 0.1

]

also [
Γ ΦΓ

]
=

[
T 2

2
3T 2

2

T T

]

and [
Γ ΦΓ

]−1
=

1

T 2

[ −1 3T
2

1 −T
2

]

⇒ K =
[

k1 k2

]
=

1

T 2

[
0 1

] [ −1 3T
2

1 −T
2

] [
0.1 0.4T
0 0.1

]

⇒
[

k1 k2

]
=

1

T 2

[
0.1 0.35T

]
=
[

10 3.5
]

Which is the same result as before
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Estimator Design

There are two kinds of basic estimates of the state x(k):

1. The current estimate, x̂(k) is based on measurements y(k) up to and
including the kth instant.

2. predictor estimate, x̄(k) is based on measurements up to y(k − 1)

We will like to set
u = −Kx̂ or u = −Kx̄

Prediction estimator

To estimate the state we could construct a model of the plant dynamics

x̄(k + 1) = Φx̄(k) + Γu(k)

We know Φ, Γ and u(k), so the above system should work if we can ob-
tain x(0) and set x̄(0) equal to it.

Define an error in the estimate

x̃ = x̄ − x (∗)
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The dynamics of the estimator-error is given by

x̃(k + 1) = Φx̃(k)

if the initial value of x̄ is off, the dynamics are those of the uncompensated
plant, Φ.

The estimator is running open-loop and not utilizing any continuing mea-
surements of the system’s behavior, and so we expect it to diverge from the
truth. However, we can incorporate feedback to better the estimates.

The closed-loop estimator is described by

x̄(k + 1) = Φx̄(k) + Γu(k) + Lp[y(k) − H x̄(k)] (∗∗)

where Lp is the feedback gain matrix This is a Prediction estimator because
a measurement at time k results in an estimate of the state that is valid at
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time k + 1, i.e. the estimate has been predicted one cycle in the future.

The dynamics of the estimator error is found by subtracting

x(k + 1) = Φx(k) + Γu(k)

y(k) = Hx(k) from(∗∗)
x̃(k + 1) = [Φ − LpH ]x̃(k)

Due to feedback action, x̄(k) will converge to x(k) regardless of x̄(0) and
will do so quickly particularly if Lp is large (assuming a stable system matrix).

To find Lp, we do the same as for designing the control law. Specify the
desired estimator root locations in the z-plane

char. eqn. (z − β1)(z − β2) · · · (z − βn) = 0 (†)
equate the coefficients of (†) and

|zI − Φ + LpH| = 0

Example
Construct estimator for previous examples. The measurement is of x1

⇒ H = [1 0]. The desired roots are z = 0.4 ± j0.4 ⇒ s-plane roots
with ζ = 0.6 and ωn that is 3 times faster than the control roots selected.

Desired characteristic equation gives (approx.)

z2 − 0.8z + 0.32 = 0

|zI − Φ + LpH| = 0 ⇒

det

(
z

[
1 0
0 1

]
−
[

1 T
0 1

]
+

[
Lp1

Lp2

] [
1 0

])
= 0

or
z2 + (Lp1 − 2)z + TLp2 + 1 − Lp1 = 0

⇒ LP1 = 1.2

LP2 =
0.52

T
= 5.2

The estimator algorithm to be coded in the computer is

x̄1(k + 1) = x̄1(k) + 0.005u(k) + 0.1x̄2(k) + 1.2[y(k) − x̄1(k)]

x̄2(k + 1) = x̄2(k) + 0.1u(k) + 5.2[y(k) − x̄1(k)]
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Since

Φ =

[
1 T
0 1

]
Γ =

[
T 2

2

T

]

T = 0.1

Φ =

[
1 0.1
0 1

]
Γ =

[
0.005
0.1

]

Observability

Given a desired set of estimator roots, is Lp uniquely determined?
It is provided y is a scalar and the system is ”observable”.

Ackerman’s Formula
Lp may be determined from

Lp = αe(Φ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H
HΦ
HΦ2

...
Hφn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
O

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where
αe(Φ) = Φn + α1Φ

n−1 + α2Φ
n−2 + · · ·+ αnI

and the α′
is are the coefficients of the desired characteristic equation, i.e.

αe(z) = zn + α1z
n−1 + · · ·+ αn

O is the observability matrix and it must be full rank for the matrix to
be invertible and for the system to be observable.
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Current Estimator

For the prediction estimator, the state estimate x̄(k) is arrived at after re-
ceiving measurements up through y(k−1). The current estimator, estimates
the state x̂(k) based on the current measurement y(k).

x̂(k) = x̄(k) + Lc(y(k) − Hx̄(k)) (3)

where x̄(k) is the predicted estimate based on a model prediction from
the previous time estimate, that is

x̄(k) = Φx̂(k − 1) + Γu(k − 1) (4)

(3) and (4) ⇒

x̄(k + 1) = Φx̄(k) + Γu(k) + ΦLc[y(k) − Hx̄(k)] (5)

The estimation-error equation for x̄(k) is

x̃(k + 1) = [Φ − ΦLcH ]x̃(k) (6)

where x̃ = x̄ − x
From the above we see that x̄ in the current estimator equation is the same
quantity as x̄ in the predictor estimator equation and the estimator gain
matrices are related by

Lp = ΦLc (7)

the estimator-error equation for x̂ is

x̃(k + 1) = [Φ − LcHΦ]x̃(k) (8)

Where x̃ = x̂ − x

(6) and (8) can be shown to have the same roots. Therefore one could
use either form as the basis for computing the estimator gain, Lc.

Using (8) which is similar to prediction estimator result except that HΦ
appears instead of H, Ackerman’s formula for Lc is

Lc = αe(Φ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HΦ
HΦ2

HΦ3

...
Hφn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where αe(Φ) is based on the desired root locations.
Note (7) ⇒

Lc = Φ−1Lp (10)
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Example

Repeat previous example using the current estimator formulation

(8) ⇒ Lc
T = [0.68 5.2]

The estimator implementation using (3) and (4) in a way that reduces the
computation delay as much as possible is, before sampling

x̄1(k) = x̂1(k − 1) + 0.005u(k − 1) + 0.1x̂2(k − 1)

x̄2(k) = x̂2(k − 1) + 0.1u(k − 1)

x′
1 = (1 − 0.68)x̄1(k)

x′
2 = x̄2(k) − 5.2x̄1(k)

and after sampling y(k)

x̂1(k) = x′
1 + 0.68y(k)

x̂2(k) = x′
2 + 5.2y(k)

Reduced-Order Estimator

Not enough time to cover it.
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Regulator Design: Combined Control Law and Estimator

The Separation Principle

Setting u = −Kx̄

x(k + 1) = Φx(k) − ΓKx̃(k)

= Φx(k) − ΓK(x(k) + x̃(k))

Combining this with the estimator-error equation gives[
x̃(k + 1)
x(k + 1)

]
=

[
Φ − LpH 0
−ΓK Φ − ΓK

] [
x̃(k)
x(k)

]

The characteristic equation is∣∣∣∣∣ zI − Φ + LpH 0
−ΓK zI − Φ + ΓK

∣∣∣∣∣ = 0

⇒ |zI − Φ + LpH||zI − Φ + ΓK| = αe(z)αc(z) = 0

i.e. the characteristic roots of the complete system consist of the combination
of the estimator roots and the control roots that are unchanged from those
obtained assuming actual state feedback.
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It is interesting to compare the results of the ”state-space designed com-
pensator” to that of classical compensation.

Prediction estimator

x̄(k) = (Φ − ΓK − LpH)x̄(k − 1) + Lpy(k − 1)

u(k) = −Kx̄(k)

Current estimator

x̂(k) = (Φ − ΓK − LcHΦ + LcHΓK)x̂(k − 1) + Lcy(k)

u(k) = −Kx̂(k)

The poles of the controllers above are obtained from

|zI − Φ + ΓK + LpH| = 0

or
|zI − Φ + ΓK + LcHΦ − LcH ΓK| = 0

and are neither the control law poles nor the estimator poles.

Converting the difference equations to transfer functions results in

Prediction estimator

U(z)

Y (z)
= Dp(z) = −K[zI − Φ + ΓK + LpH ]−1Lp

Current estimator

U(z)

Y (z)
= Dc(z) = −K[zI − Φ + ΓK + LcHΦ − LcHΓK]−1Lcz
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