Chapter 5
State Space

Continuous-time
z=Fz+Gu (1)

y=Hz (2)
The solution of (1) is

¢
x(t) = eFt=to) x(to) + eF(t=7) Gu(r)dr

to

the solution over one sample period is obtained by setting ¢t = kT + T
and tog = kT

KT+T
=  2kT+T)=e"Ta(kT) + I KTHT=T) Gy (1) dr
kT

Perform a change of variable in the integral from 7 to n such that
n=kr'+T—-1
T
=  2(kT+T)=e"Ta(kT) +/ et dn Gu(kT)

0

where we have also assumed a ZOH on the input so that

u(r) =uw(kT), kT <7<kT+T
The final difference equations are

z(k+1) = px(k) + Tu(k)

y(k) = H x(k)
where
¢ — €FT
T
= / et dnG
0
Note that Fep2 s
o= =T+ FT+—7—+ A

"\ state transition matrix

The discrete-time state equations are thus
z(k + 1) = ¢px(k) + Tu(k)

y(k) = H x(k)



Solution by recursion

z(1) = ¢z(0) + 'u(0)
2(2) = ¢x(1) + Tu(l) = ¢*x(0) + ¢T'u(0) + Tu(l)
z(3) = ¢(2) + Tu(2) = ¢*x(0) + ¢?*Tu(0) + pT'u(l) + T'u(2)

Repeating, we obtain

k—1
I . L. j=0
contribution due to initial condition

contribution due to the input

The output is
k—1

y(k) = Hekx(0) + H Y ¢" 7' Tu(j)

7=0

Let us write the solution in terms of the state transition matrix

(k) = ¢
=
x(k) = +Z@/} —j—1) Tu(y)
= +Z¢ (k—j—1)

Solution by using z-transform

2(k+1) = ¢ x(k) + Du(k)
Taking the z transform of both sides

2 X(2) — 2 2(0) = ¢ X(2) +T U(2)
where X (2) = Z[z(k)] and U(z) = Z[u(k)]

= (:1-¢) X(2) =2 2(0)+T U(2)

= X(2)=(:T—¢) 2 2(0)+ (2 [ — ¢)"'T U(2)
Taking 2! transform

w(k) = Z7 (= I = ¢)"'2J2(0) + 27[(2 I — ¢)"'T U(2)]

Comparing these terms with those obtained in the previous solution
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¢ =Z7M(z I —¢) ']

and
k-1

YT Tu(j) =27 (2 1 —¢)7 T U(2)]

J=0

Pulse transfer function matrix

From above, we see that if we set the initial conditions to zero, then
X(z)=0rE1-¢)7"'TU®

and
Y(2)=H (2 I —¢)"'T U(z)

let
T(z)=H(zI—¢)"'T" is The Pulse Transfer Function Matrix

_ adit =)
=H= 75 T

So the poles of T(z) are the zeros of the characteristic equation |z I —¢| =0

|zl —¢|=2"+a2" '+ a2+t a, 12+ a, =0

The roots of the characteristic equation are the eigenvalues of ¢
MIMO System Zeros

For the system defined, the above stated state and output equations,
the (n +m) x (n+r) matrix
(n is number of states, m is number of outputs, and r is number of inputs)

E(z) = [ ¢ ;{ZI 1(; ] is called the system matrix

The values of z that make

rank E(z) < n+ min(m,r)
are called the zeros of the system.
If u(k) and y(k) are scalar (r =1, m = 1), then
E(z) is an (n + 1) x (n + 1) matrix. The determinant of which is

pe=| * 5 o
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A B| [ |Al|D=CA'B| if|Al#0
C D|~ 1 |D||A-BD™C| if|D|#0

= l¢p—=zI|| - H(¢— =)'
= (=1)"|2zI —¢| |H(zI —¢)"'T'|  since |kA| = k"|A]
adj(=I — gb)F‘
|21 = 9|
= (—1)" H adj(z] — ¢)T

(1) - ‘H

The values of z that make the rank of E(z) less than n + 1, that is the
values that make |FE(z)| = 0, are the zeros of the system.

= the values of z that satisfy
Hadj(z1—¢)I'=0  are the system zeros.

Weighting sequence matrix

Y(2) =T(2) U(z), where T(z)=H (zI—¢)'T

or

Yi(2) Tu(z) Ti(z) -+ Tu(2) Ui(z)
Yol2) | _ | Tu(2) T(2) - Ta(2) Us(2)
You(2) Ton(2) Toa(2) - Ton(2) | | UL(2)
thus, the i-th output Y;(z) is given by
V()= LTy U i=1 2 m
Now

(2l —p) P =T+ 22+ g2 4 -
= T(:)=HTz '+ H¢l'2>+ HY’Tz7> + - -

The wighting sequence matrix T(k) is given by
T(k) = 27T (=)}

now

(e 9]

T(z) = > T(k)z*

= T:(O) + Tz P 4+ T2z 24+ +T(k)z "+ - -



=
T(0) =0
T(1) = HT
T(2) = H¢l
h@zH&”F

=

the weighting sequence matrix is given by

0 k<0
(k) _{ He*'T' k=1, 2, 3,



