Chapter 5
 State Space

Continuous-time

$$
\begin{gather*}
\dot{x}=F x+G u \tag{1}\\
y=H x \tag{2}
\end{gather*}
$$

The solution of (1) is

$$
x(t)=e^{F\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{F(t-\tau)} G u(\tau) d \tau
$$

the solution over one sample period is obtained by setting $t=k T+T$ and $t_{0}=k T$

$$
\Rightarrow \quad x(k T+T)=e^{F T} x(k T)+\int_{k T}^{k T+T} e^{F(k T+T-\tau)} G u(\tau) d \tau
$$

Perform a change of variable in the integral from τ to η such that

$$
\begin{gathered}
\eta=k T+T-\tau \\
\Rightarrow \quad x(k T+T)=e^{F T} x(k T)+\int_{0}^{T} e^{F \eta} d \eta G u(k T)
\end{gathered}
$$

where we have also assumed a ZOH on the input so that

$$
u(\tau)=u(k T), \quad k T \leq \tau<k T+T
$$

The final difference equations are

$$
\begin{gathered}
x(k+1)=\phi x(k)+\Gamma u(k) \\
y(k)=H x(k)
\end{gathered}
$$

where

$$
\begin{gathered}
\phi=e^{F T} \\
\Gamma=\int_{0}^{T} e^{F \eta} d \eta G
\end{gathered}
$$

Note that

$$
\begin{gathered}
\phi=e^{F T}=I+F T+\frac{F^{2} T^{2}}{2!}+\frac{F^{3} T^{3}}{3!}+\cdots \\
\\
\nwarrow \text { state transition matrix }
\end{gathered}
$$

The discrete-time state equations are thus

$$
\begin{gathered}
x(k+1)=\phi x(k)+\Gamma u(k) \\
y(k)=H x(k)
\end{gathered}
$$

Solution by recursion

```
\(x(1)=\phi x(0)+\Gamma u(0)\)
\(x(2)=\phi x(1)+\Gamma u(1)=\phi^{2} x(0)+\phi \Gamma u(0)+\Gamma u(1)\)
\(x(3)=\phi x(2)+\Gamma u(2)=\phi^{3} x(0)+\phi^{2} \Gamma u(0)+\phi \Gamma u(1)+\Gamma u(2)\)
    \(\vdots\)
```

Repeating, we obtain

$$
x(k)=\underbrace{\phi^{k} x(0)}_{\text {contribution due to initial condition }}+\underbrace{\sum_{j=0}^{k-1} \phi^{k-j-1} \Gamma u(j), \quad k=1,2,3, \cdots}_{\text {contribution due to the input }}
$$

The output is

$$
y(k)=H \phi^{k} x(0)+H \sum_{j=0}^{k-1} \phi^{k-j-1} \Gamma u(j)
$$

Let us write the solution in terms of the state transition matrix

$$
\begin{gathered}
\psi(k)=\phi^{k} \\
\Rightarrow \quad x(k)=\psi(k) x(0)+\sum_{j=0}^{k-1} \psi(k-j-1) \Gamma u(j) \\
=\psi(k) x(0)+\sum_{j=0}^{k-1} \psi(j) \Gamma u(k-j-1)
\end{gathered}
$$

Solution by using z-transform

$$
x(k+1)=\phi x(k)+\Gamma u(k)
$$

Taking the z transform of both sides

$$
z X(z)-z x(0)=\phi X(z)+\Gamma U(z)
$$

where $X(z)=\mathcal{Z}[x(k)]$ and $U(z)=\mathcal{Z}[u(k)]$

$$
\begin{aligned}
& \Rightarrow \quad(z I-\phi) X(z)=z x(0)+\Gamma U(z) \\
& \Rightarrow \quad X(z)=(z I-\phi)^{-1} z x(0)+(z I-\phi)^{-1} \Gamma U(z)
\end{aligned}
$$

Taking \mathcal{Z}^{-1} transform

$$
x(k)=\mathcal{Z}^{-1}\left[(z I-\phi)^{-1} z\right] x(0)+\mathcal{Z}^{-1}\left[(z I-\phi)^{-1} \Gamma U(z)\right]
$$

Comparing these terms with those obtained in the previous solution

$$
\phi^{k}=\mathcal{Z}^{-1}\left[(z I-\phi)^{-1} z\right]
$$

and

$$
\sum_{j=0}^{k-1} \phi^{k-j-1} \Gamma u(j)=\mathcal{Z}^{-1}\left[(z I-\phi)^{-1} \Gamma U(z)\right]
$$

Pulse transfer function matrix

From above, we see that if we set the initial conditions to zero, then

$$
X(z)=(z I-\phi)^{-1} \Gamma U(z)
$$

and

$$
Y(z)=H(z I-\phi)^{-1} \Gamma U(z)
$$

let
$T(z)=H(z I-\phi)^{-1} \Gamma \quad$ is The Pulse Transfer Function Matrix

$$
=H \frac{\operatorname{adj}(z I-\phi)}{|z I-\phi|} \Gamma
$$

So the poles of $\mathrm{T}(\mathrm{z})$ are the zeros of the characteristic equation $|z I-\phi|=0$

$$
|z I-\phi|=z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\cdots+a_{n-1} z+a_{n}=0
$$

The roots of the characteristic equation are the eigenvalues of ϕ

MIMO System Zeros

For the system defined, the above stated state and output equations, the $(n+m) \times(n+r)$ matrix
(n is number of states, m is number of outputs, and r is number of inputs)

$$
E(z)=\left[\begin{array}{cc}
\phi-z I & \Gamma \\
H & 0
\end{array}\right] \quad \text { is called the system matrix }
$$

The values of z that make

$$
\operatorname{rank} E(z)<n+\min (m, r)
$$

are called the zeros of the system.
If $u(k)$ and $y(k)$ are scalar $(r=1, m=1)$, then
$\mathrm{E}(\mathrm{z})$ is an $(n+1) \mathrm{x}(n+1)$ matrix. The determinant of which is

$$
|E(z)|=\left|\begin{array}{cc}
\phi-z I & \Gamma \\
H & 0
\end{array}\right|
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
A & B \\
C & D
\end{array} \left\lvert\,=\left\{\begin{array}{cc}
|A|\left|D-C A^{-1} B\right| & i f|A| \neq 0 \\
|D|\left|A-B D^{-1} C\right| & i f|D| \neq 0
\end{array}\right)\right.\right. \\
= & |\phi-z I|\left|-H(\phi-z I)^{-1} \Gamma\right| \\
= & (-1)^{n}|z I-\phi|\left|H(z I-\phi)^{-1} \Gamma\right| \quad \text { since }|k A|=k^{n}|A| \\
= & (-1)^{n}|z I-\phi|\left|H \frac{\operatorname{adj}(z I-\phi) \Gamma}{|z I-\phi|}\right| \\
= & (-1)^{n} H \operatorname{adj}(z I-\phi) \Gamma
\end{aligned}
$$

The values of z that make the rank of $\mathrm{E}(\mathrm{z})$ less than $n+1$, that is the values that make $|E(z)|=0$, are the zeros of the system.
\Rightarrow the values of z that satisfy
$H \operatorname{adj}(z I-\phi) \Gamma=0 \quad$ are the system zeros.

Weighting sequence matrix

$$
Y(z)=T(z) U(z), \quad \text { where } \quad T(z)=H(z I-\phi)^{-1} \Gamma
$$

or

$$
\left[\begin{array}{c}
Y_{1}(z) \\
Y_{2}(z) \\
\vdots \\
Y_{m}(z)
\end{array}\right]=\left[\begin{array}{cccc}
T_{11}(z) & T_{12}(z) & \cdots & T_{1 r}(z) \\
T_{21}(z) & T_{22}(z) & \cdots & T_{2 r}(z) \\
\vdots & \vdots & \vdots & \vdots \\
T_{m 1}(z) & T_{m 2}(z) & \cdots & T_{m r}(z)
\end{array}\right]\left[\begin{array}{c}
U_{1}(z) \\
U_{2}(z) \\
\vdots \\
U_{r}(z)
\end{array}\right]
$$

thus, the i-th output $Y_{i}(z)$ is given by

$$
Y_{i}(z)=\sum_{j=1}^{r} T_{i j}(z) U_{j}(z) \quad i=1,2, \cdots, m
$$

Now

$$
\begin{gathered}
\\
\quad(z I-\phi)^{-1}=I z^{-1}+\phi z^{-2}+\phi^{2} z^{-3}+\cdots \\
\Rightarrow \quad
\end{gathered} \quad T(z)=H \Gamma z^{-1}+H \phi \Gamma z^{-2}+H \phi^{2} \Gamma z^{-3}+\cdots .
$$

The wighting sequence matrix $T(k)$ is given by

$$
T(k)=\mathcal{Z}^{-1}\{T(z)\}
$$

now

$$
\begin{aligned}
T(z) & =\sum_{k=0}^{\infty} T(k) z^{-k} \\
& =T(0)+T(1) z^{-1}+T(2) z^{-2}+\cdots+T(k) z^{-k}+\cdots
\end{aligned}
$$

$$
\Rightarrow
$$

$$
T(0)=0
$$

$$
T(1)=H \Gamma
$$

$$
T(2)=H \phi \Gamma
$$

$$
\vdots
$$

$$
T(k)=H \phi^{k-1} \Gamma
$$

$\Rightarrow \quad$ the weighting sequence matrix is given by

$$
T(k)=\left\{\begin{array}{lr}
0 & k \leq 0 \\
H \phi^{k-1} \Gamma & k=1,2,3, \cdots
\end{array}\right.
$$

