Chapter 2
z-TRANSFORM

One-sided z-transform
X(z) = Zlz(t)] = Z[z(kT)] = Z]x (k)]
= z_: (kT)z"F =3 a(k)z*

k=0

Two-sided z-transform

Note that X (z) = z(0) + z(T)z ' +z(2T) 22 + - -+ 2(kT)zF 4 - --
Inverse z-transform
ZX(2)] = a(kT)=x(k)

1
= —,fX(z)zk_ldz
27'('] c

Where ¢ is a circle with its center at the origin of the z plane such that
all poles of X (2)z*~1 are inside it

Z Transform of elementary functions:
Unait step function
<
x(t):{ 1(t) 0<t

0 t<O0

1 z

= X() = 200 =1t =Yt =

Region of convergence |z| > 1

Geometric series  a+ar +ar®*+ar® + .-+ = —lfr Ir| <1

Exponential Function

e”® <t
‘”(t)_{o <0

z(kT) = e k=0,1,2,---

X(2)=Zle™™ = Y a(kD)zF=> e *7F
k=0 k=0
B 1
1 —eaTyl
B z
 z—e



e See table of z-transforms on page 29 and 30 (new edition), or page 49 and
50 (old edition).

The z-transform X(z) and its inverse x(k) have a one-to-one correspondence,
however, the z-transform X(z) and its inverse z-transform x(t) do not have a
unique correspondence.

Properties and theorems of the z-transform
e Multiplication by a constant: Z[ax(t)] = aX(2)
e Linearity: Z[af(k) + Bg(k)] = aF'(2) + BG(2)
e Multiplication by a* : Z[a*z(k)] = X (a'2)

e Real translation theorem (shifting theorem):

Ifx(t)=0 fort <0

Zlz(t —nT)] =2"X(2)

and
Zlz(t +nT)] = 2" [X(2) — S5 x(kT)z7¥]

e Initial value theorem:

z(0) = lim X(2)

Z—00

e Final value theorem:

lim z(k) = lim [(1 — 271) X (2)]

k—oo z—1

e Real convolution Theorem:
let

x1(t) =0 fort <0
xo(t) =0 fort <0

then
k



INVERSE z TRANSFORM
Different Methods
1. Direct division method (Power Series Method)
2. Computational method
3. Partial-fraction-expansion method
4. Inversion integral method

e Direct division method

Express X (z) in powers of 27!

Example 1

Find Z7'of X(2) =142z +3224+427°
Solution:

z(0)=1 =z(1)=2 =z(2)=3; =xz(3)=4
Example 2

10z 45
Find Z7' of X(2) =
" of X&) = T o0
Solution:
10 271 +5 272

X (2) =
B =T o702

= X(2) =102 4+1722+184 23+ 1868 24 + - --

4
.68

e Computational method

1
X(z) _ 0z+5
(z—=1)(z—0.2)
Solution: 102 +5
z
Let X(z) =
et X(2) 22—-12240.2 U(z)

where U(z) =1
now, U(z) = u(0) +u(1)2" +u(2)22 4+ +u(k)z ™"+



= forU(z) =1
= u(0) =1
=u(k)=0, fork=1,23---

Converting to difference equation

rk+2)—122(k+1)+022(k) =10 u(k+1)+5uk)  (*)

now, let k= -2

= 2(0) — 1.2 z(—1) + 0.2 2(—2)
now, a(—1)=x(-2)=0 and u(—1) =u(-2) =0
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Similarly, we find
z(1) =10

We may continue the process to find z(k), k=2, 3,--- using (x)

e Partial Fraction Expansion

To find the Z71X (z), we may expand @or X(z) into partial fractions.
@ is expanded since each of the expanded terms is generally available in

z-transform tables.

Alternatively, X(z) may be expanded and use of the shifting theorem may
be made.

Example

now,

thus,



General procedure for partial fraction expansion:

Given X (z), find @
let
X(2) ao+ az+ -+ anz

X(Z)

If M > N, no adjustment need be made to
If N > M, we divide through

X(2)
N-—-M N—-M-1
=CN-M % + CN_M-1 % + -+ 1 2+ ¢
z

d() + diz+ -+ dM_l,Z]V[il
=1(2)

Factoring ¢(z) where we have one repeated pole of order £, call it z,, and
the rest unique, zxy1, Zki2, -+, 2m

Air Apq A A AJ
¥(z) (z—zr)’“+ (2 — 2z, )F1 - + Z—zr—i_ j:zk;rlz_zj (2)
Where Ay, = = ]) [dikkijj (2 — z;)F ¥(2)] lo=eyy  J=1,2, - k
Aj=(2—2) ¥(2) o=y, J=k+1,k+2, -+ M

Substituting (3) into (2) and multiplying by z and taking inverse transform
gives us:

ZX(2)] = z(n
= Zl[cN v 2N TMAL L ey e AN e 2P coz}
X zk: Al] 4 Zil i/[: A]’ z
=1 (z —z) j=kt1 < T Ar
N
=z(n) = > COnv_md(n+(N—-M+1))
n=M

Agn(n—1)-(n— (k—2)) 2n -k

+ [Apn 2N+ Apn 24 ot

M
+ Y A4 u(n

j=h+1

Where the following has been used

o 2 n(n—=1)- (n—(k—2)) a” """ u(n)
= o) - G- 1)

where u(n) is the unit step function.



Example

Find Z=Y X (2)} where,

4 2
X(Z)_ 21+Z 1
(z=3)(z—73)
Solution
23 3
XG _ A+ 16° _ 37
z 22— 324 2 2P - qrt
4 8 4
now,
23 3
=z — = Al A2
16 32 = T+

Where 23 3 5
A=BET5) 502
1= 1 lz=5 7 17 9
z— 3 1
23 3 17
PP - R - SR 1
N ! 16
5 4
Thus 5 17
(Z):Z+§+ 51_ 1_61
z 4 —2 FT
3 7 17
z(n) = z-1 [22+—z]+21 2_1_ 16 -
4 =5 2Ty

_ 5(n+2)+25(n+1)+[g @“E (3



e Inversion integral method

Background material:

Suppose zp is an isolated singular point (pole) of F(z). Expand F(z) in a
Laurent series about z = z

F(z) = ian(z —20)" + 2 z _anO)n

where

1 F(z)
ay, ,7€ ( anz n=20,1, 2, ---

- 2r5 Jry (2 — 20)
B 1 ]{ F(z)
2w Uy (2 — )

where I'; and I'y are closed paths around z
and

dz n=1,2 3,---

b = % R de)

where I' is any closed path within and on which F(z) is analytic except at
z = 2, and by is called the residue of F(z) at the pole z.

fw )

y ////// -
© o

N

N

Now

§F@)de = ﬁlF(z)dsz]éQF(z)dz—l— ~-~+]€mF(z)dz

r
= 2mj(by, + b1, +---+b,,) < Residue theorem



e Inversion integral

X(z) = i e(kT)z ™% = 2(0) + o(T)z  +2(2T)z 2 + -+ 2(kT) 277 4 - -
=

X(2)2" 7 =2(0) " 4 a(T) 2+ 22T -+ (BT 27 4 - -

Note, this " is the Laurent series expression of X (z)2*~! around point z = 0,
and x(kT) is the residue

=  2(kT) = 5= 6, X (2)2F 1 dz

21y

the inverse " integral for the z-transform

Inverse z transform using inversion integral

v(k) = z(kT) = [residue of X (2)2"* at pole z = z; of X(2)2F7"]

=

I
i

(2

assuming M poles.

The residue K, for simple pole is given by

K = lim [(z — %)X (2)2" 7]

z— 2z

The residue K, for multiple pole z; of order q is given by

1 dr!
K=—— lim

(g—1)! === dzi-1 [(z — 2)7X (2) 2"



Example
Find Z71X(2)],

Solution:

Simple pole at z
Double pole at z

where X (z) =

22

k+1

2 k41
z(k) = z:l [Teszdue of Y p—— at pole z = ZZ‘|
= K+
where
. k1 p—a(k+1)T
K, = 1 —e =
T e [(Z SR prvy T P eaT)] (1— eaT)2
1 Zk+1
Ky = — lim — —1)?
? (2-1)! 1 4z [(2 ) (z —1)%(z — e—aT)l
h c teps bel
= — — see steps below
l—e T (1—eaT)? p
kT (1 — e )
= (kT = — = _ p=aT k=01, 2
©(kT) T(1 —eaT) (1 —eaT)2 o
e Steps
JY udv —;}du
u U
. d Zk:—i—l
»lzllg dz (2 — e“T>
k —aTy\ _ Jk+1
— m (k+1)zF(z—e) -2z
por (z — e—oT)2
= lim
z—1 | 7z — g—aTl’ (Z e—aT)Q
k1 1
- 1 efaT (1 efaT)Q
B k 1 —e 9T 1
T 1 — e—aT (1—eaT)2 (1 —eal)2
B k el
I (1 —e—aT)2




e Pulse-Transfer Function

Difference equation:

z(k)+ax(k—1)+ -+ a,z(k —n)
= bou(k) + byu(k — 1) + - - - + byu(k — n)

Taking z transform
X(2)+arz ' X(2) + - + a2 " X(2)

= boU(2) + b1z 'U(2) + -+ + bz "U(2)

X(z) bo+biz "4+ byz
Uz) 14+az 4 +a,z"
. Pulse Transfer Function

G(2)

Now, Kronecker delta function dy(kT")

i) ={ 5 20
Z [6(kT)] =1

= G(z) is the z transform of the response to do(kT"). It is called the pulse
transfer function

g(k) = Z7YG(2)} is called the weighting sequence.
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z transform method of solving difference equations

Example
Solve:  x(k +2) + 3x(k + 1) + 2z(k) = 0; z(0) =0, z(1) =1

Solution
taking the z transform

22 X(2)— 22 2(0) — 2 2(1) + 32 X(2) — 32z 2(0) + 2X(2) =0
Substituting initial data

X(2) z z z z
zZ) = = — —
2243242z (2+1)(2+2) z4+1 z+2
1 1
Tl 142270
1 1
R,
1+ 271 (=15 142271 (=2)
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