Chapter 2 z-TRANSFORM

$One\mbox{-}sided$ $z\mbox{-}transform$

$$X(z) = Z[x(t)] = Z[x(kT)] = Z[x(k)]$$
$$= \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} x(k)z^{-k}$$

Two-sided z-transform

$$X(z) = \sum_{k=-\infty}^{\infty} x(kT)z^{-k} = \sum_{k=-\infty}^{\infty} x(k)z^{-k}$$

Note that
$$X(z) = x(0) + x(T)z^{-1} + x(2T)z^{-2} + \dots + x(kT)z^{-k} + \dots$$

$Inverse\ z ext{-}transform$

$$\mathcal{Z}^{-1}[X(z)] = x(kT) = x(k)$$
$$= \frac{1}{2\pi i} \oint_c X(z) z^{k-1} dz$$

Where c is a circle with its center at the origin of the z plane such that all poles of $X(z)z^{k-1}$ are inside it

Z Transform of elementary functions:

Unit step function

$$x(t) = \begin{cases} 1(t) & 0 \le t \\ 0 & t < 0 \end{cases}$$
$$\Rightarrow X(z) = \mathcal{Z}[1(t)] = \sum_{k=0}^{\infty} 1 \ z^{-k} = \sum_{k=0}^{\infty} z^{-k} = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

Region of convergence |z| > 1

Geometric series
$$a + ar + ar^2 + ar^3 + \dots = \frac{a}{1-r}$$
 $|r| < 1$

Exponential Function

$$x(t) = \begin{cases} e^{-at} & 0 \le t \\ 0 & t < 0 \end{cases}$$

$$x(kT) = e^{-akT}, \ k = 0, 1, 2, \cdots$$

$$X(z) = \mathcal{Z}[e^{-at}] = \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} e^{-akT}z^{-k}$$

$$= \frac{1}{1 - e^{-aT}z^{-1}}$$

$$= \frac{z}{z - e^{-at}}$$

• See table of z-transforms on page 29 and 30 (new edition), or page 49 and 50 (old edition).

The z-transform X(z) and its inverse x(k) have a one-to-one correspondence, however, the z-transform X(z) and its inverse z-transform x(t) do not have a unique correspondence.

Properties and theorems of the z-transform

- Multiplication by a constant: $\mathcal{Z}[ax(t)] = aX(z)$
- Linearity: $\mathcal{Z}[\alpha f(k) + \beta g(k)] = \alpha F(z) + \beta G(z)$
- Multiplication by a^k : $\mathcal{Z}[a^k x(k)] = X(a^{-1}z)$
- Real translation theorem (shifting theorem):

If
$$x(t) = 0$$
 for $t < 0$

$$\mathcal{Z}[x(t - nT)] = z^{-n}X(z)$$

and

$$\mathcal{Z}[x(t+nT)] = z^n [X(z) - \sum_{k=0}^{n-1} x(kT)z^{-k}]$$

• Initial value theorem:

$$x(0) = \lim_{z \to \infty} X(z)$$

• Final value theorem:

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} \left[(1 - z^{-1}) X(z) \right]$$

• Real convolution Theorem:

let

$$x_1(t) = 0 \text{ for } t < 0$$

$$x_2(t) = 0 \text{ for } t < 0$$

then

$$X_1(z) \ X_2(z) = \mathcal{Z}[\sum_{h=0}^k x_1(hT) \ x_2(kT - hT)]$$

INVERSE z TRANSFORM

Different Methods

- 1. Direct division method (Power Series Method)
- 2. Computational method
- 3. Partial-fraction-expansion method
- 4. Inversion integral method
- Direct division method

Express X(z) in powers of z^{-1}

Example 1

Find
$$Z^{-1}$$
 of $X(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$

Solution:

$$x(0) = 1;$$
 $x(1) = 2;$ $x(2) = 3;$ $x(3) = 4$

Example 2

Find
$$Z^{-1}$$
 of $X(z) = \frac{10z + 5}{(z - 1)(z - 0.2)}$

Solution:

$$X(z) = \frac{10 \ z^{-1} + 5 \ z^{-2}}{1 - 1.2 \ z^{-1} + 0.2 \ z^{-2}}$$

$$\Rightarrow X(z) = 10z^{-1} + 17 z^{-2} + 18.4 z^{-3} + 18.68 z^{-4} + \cdots$$

$$x(0) = 0$$

$$x(1) = 10$$

$$x(2) = 17$$

$$x(3) = 18.4$$

$$x(4) = 18.68$$

• Computational method

$$X(z) = \frac{10 \ z + 5}{(z - 1)(z - 0.2)}$$

Solution:

Let
$$X(z) = \frac{10z + 5}{z^2 - 1.2 z + 0.2} U(z)$$

where
$$U(z)=1$$
 now, $U(z)=u(0)+u(1)z^{-1}+u(2)z^{-2}+\cdots+u(k)z^{-k}+\cdots$

$$\Rightarrow for U(z) = 1$$

\Rightarrow u(0) = 1
\Rightarrow u(k) = 0, for k = 1, 2, 3 \cdots

Converting to difference equation

$$x(k+2) - 1.2 \ x(k+1) + 0.2 \ x(k) = 10 \ u(k+1) + 5 \ u(k) \qquad (*)$$
 now, let $k = -2$
$$\Rightarrow x(0) - 1.2 \ x(-1) + 0.2 \ x(-2) = 10 \ u(-1) + 5 \ u(-2)$$
 now,
$$x(-1) = x(-2) = 0 \ \text{ and } u(-1) = u(-2) = 0$$

$$\Rightarrow x(0) = 0$$

Similarly, we find

$$x(1) = 10$$

We may continue the process to find x(k), $k = 2, 3, \cdots$ using (*)

• Partial Fraction Expansion

To find the $\mathcal{Z}^{-1}X(z)$, we may expand $\frac{X(z)}{z}$ or X(z) into partial fractions. $\frac{X(z)}{z}$ is expanded since each of the expanded terms is generally available in z-transform tables.

Alternatively, X(z) may be expanded and use of the shifting theorem may be made.

Example

$$X(z) = \frac{z^{-1}}{1 - az^{-1}}$$
 let
$$Y(z) = z \ X(z) = \frac{1}{1 - az^{-1}}$$

$$\Rightarrow \mathcal{Z}^{-1}\{Y(z)\} = y(k) = a^k$$
 now,
$$X(z) = z^{-1} \ Y(z)$$

$$\Rightarrow \mathcal{Z}^{-1}\{X(z)\} = x(k) = y(k-1) = a^{k-1}$$
 thus,
$$x(k) = \begin{cases} a^{k-1} & k = 1, 2, 3, \cdots \\ 0 & k \le 0 \end{cases}$$

General procedure for partial fraction expansion:

Given X(z), find $\frac{X(z)}{z}$

let

$$\frac{X(z)}{z} = \frac{a_0 + a_1 z + \dots + a_N z^N}{b_0 + b_1 z + \dots + b_M z^M}$$
(1)

If M > N, no adjustment need be made to $\frac{X(z)}{z}$, If N > M, we divide through

$$\frac{X(z)}{z} = c_{N-M} z^{N-M} + c_{N-M-1} z^{N-M-1} + \dots + c_1 z + c_0$$

$$+ \frac{d_0 + d_1 z + \dots + d_{M-1} z^{M-1}}{b_0 + b_1 z + \dots + b_M z^M}$$

Factoring $\psi(z)$ where we have one repeated pole of order k, call it z_r , and the rest unique, $z_{k+1}, z_{k+2}, \dots, z_m$

$$\psi(z) = \frac{A_{1k}}{(z - z_r)^k} + \frac{A_{1k-1}}{(z - z_r)^{k-1}} + \dots + \frac{A_{11}}{z - z_r} + \sum_{j=k+1}^M \frac{A_j}{z - z_j}$$
(2)
Where $A_{1j} = \frac{1}{(k-j)!} \left[\frac{d^{k-j}}{dz^{k-j}} (z - z_j)^k \psi(z) \right] |_{z=z_j}, \quad j = 1, 2, \dots, k$
 $A_j = (z - z_j) \psi(z) |_{z=z_j}, \quad j = k+1, k+2, \dots, M$

Substituting (3) into (2) and multiplying by z and taking inverse transform gives us:

$$\mathcal{Z}^{-1}[X(z)] = x(n)
= \mathcal{Z}^{-1} \left[c_{N-M} z^{N-M+1} + c_{N-M-1} z^{N-M} + \dots + c_1 z^2 + c_0 z \right]
+ \mathcal{Z}^{-1} \left[\sum_{j=1}^k \frac{A_{1j} z}{(z - z_r)^j} \right] + \mathcal{Z}^{-1} \left[\sum_{j=k+1}^M \frac{A_j z}{z - z_r} \right]$$

$$\Rightarrow x(n) = \sum_{n=M}^{N} C_{N-M} \, \delta(n + (N - M + 1))$$

$$+ \left[A_{11} \, z_r^N + A_{12} \, n \, z_r^{n-1} + \dots + \frac{A_{1k} \, n(n-1) \cdots (n - (k-2)) \, z_r^{n-k+1}}{(k-1)!} \right]$$

$$+ \sum_{j=k+1}^{M} A_j \, z_j^n \, u(n)$$

Where the following has been used

$$\mathcal{Z}^{-1}\left\{\frac{z}{(z-a)^k}\right\} = \frac{n\ (n-1)\cdots\ (n-(k-2))\ a^{n-k+1}\ u(n)}{(k-1)!}$$

where u(n) is the unit step function.

Example

Find $\mathcal{Z}^{-1}\{X(z)\}$ where,

$$X(z) = \frac{z^4 + z^2}{(z - \frac{1}{2})(z - \frac{1}{4})}$$

Solution

$$\frac{X(z)}{z} = \frac{z^3 + z}{z^2 - \frac{3}{4}z + \frac{1}{8}} = z + \frac{3}{4} + \frac{\frac{23}{16}z - \frac{3}{32}}{z^2 - \frac{3}{4}z + \frac{1}{8}}$$

now,

$$\frac{\frac{23}{16}z - \frac{3}{32}}{z^2 - \frac{3}{4}z + \frac{1}{8}} = \frac{A_1}{z - \frac{1}{2}} + \frac{A_2}{z - \frac{1}{4}}$$

Where

$$A_1 = \frac{\frac{23}{16} z - \frac{3}{32}}{z - \frac{1}{4}} \mid_{z = \frac{1}{2}} = \frac{\frac{5}{8}}{\frac{1}{4}} = \frac{5}{2}$$

$$A_2 = \frac{\frac{23}{16} z - \frac{3}{32}}{z - \frac{1}{2}} \mid_{z = \frac{1}{4}} = \frac{\frac{17}{64}}{-\frac{1}{4}} = -\frac{17}{16}$$

Thus

$$\frac{X(z)}{z} = z + \frac{3}{4} + \frac{\frac{5}{2}}{z - \frac{1}{2}} - \frac{\frac{17}{16}}{z - \frac{1}{4}}$$

$$x(n) = \mathcal{Z}^{-1} \left[z^2 + \frac{3}{4} z \right] + \mathcal{Z}^{-1} \left[\frac{\frac{5}{2} z}{z - \frac{1}{2}} - \frac{\frac{17}{16} z}{z - \frac{1}{4}} \right]$$
$$= \delta(n+2) + \frac{3}{4} \delta(n+1) + \left[\frac{5}{2} \left(\frac{1}{2} \right)^n - \frac{17}{16} \left(\frac{1}{4} \right)^n \right] u(n)$$

• Inversion integral method

Background material:

Suppose z_0 is an isolated singular point (pole) of F(z). Expand F(z) in a Laurent series about $z=z_0$

$$F(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

where

$$a_n = \frac{1}{2\pi j} \oint_{\Gamma_1} \frac{F(z)}{(z - z_0)^{n+1}} dz \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{1}{2\pi j} \oint_{\Gamma_2} \frac{F(z)}{(z - z_0)^{-n+1}} dz \qquad n = 1, 2, 3, \dots$$

where Γ_1 and Γ_2 are closed paths around z_0 and

$$b_1 = \frac{1}{2\pi j} \oint_{\Gamma} F(z) \ d(z)$$

where Γ is any closed path within and on which F(z) is analytic except at $z = z_0$, and b_1 is called the *residue* of F(z) at the pole z_0 .

Now

$$\oint_{\Gamma} F(z) dz = \oint_{\Gamma_1} F(z) dz + \oint_{\Gamma_2} F(z) dz + \dots + \oint_{\Gamma_m} F(z) dz$$

$$= 2\pi j (b_{1_1} + b_{1_2} + \dots + b_{1_m}) \quad \Leftarrow Residue \ theorem$$

• Inversion integral

$$X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k} = x(0) + x(T)z^{-1} + x(2T)z^{-2} + \dots + x(kT) z^{-k} + \dots$$

$$X(z)z^{k-1} = x(0)z^{k-1} + x(T)z^{k-2} + x(2T)z^{k-3} + \dots + x(kT)z^{-1} + \dots$$

Note, this \nearrow is the Laurent series expression of $X(z)z^{k-1}$ around point z=0, and x(kT) is the residue

$$\Rightarrow x(kT) = \frac{1}{2\pi j} \oint_c X(z) z^{k-1} dz$$

the inverse \nearrow integral for the z-transform

Inverse z transform using inversion integral

$$x(k) = x(kT) = \sum_{i=1}^{M} \left[residue \ of \ X(z)z^{k-1} \ at \ pole \ z = z_i \ of \ X(z)z^{k-1} \right]$$

assuming M poles.

The residue K, for simple pole is given by

$$K = \lim_{z \to z_i} [(z - z_i)X(z)z^{k-1}]$$

The residue K, for multiple pole z_i of order q is given by

$$K = \frac{1}{(q-1)!} \lim_{z \to z_j} \frac{d^{q-1}}{dz^{q-1}} \left[(z - z_j)^q X(z) z^{k-1} \right]$$

Example

Find
$$\mathcal{Z}^{-1}[X(z)]$$
, where $X(z) = \frac{z^2}{(z-1)^2(z-e^{-aT})}$

Solution:

$$X(z)z^{k-1} = \frac{z^{k+1}}{(z-1)^2(z-e^{-aT})}$$

Simple pole at $z = e^{-aT}$ Double pole at z = 1

$$x(k) = \sum_{i=1}^{2} \left[residue \ of \frac{z^{k+1}}{(z-1)^{2}(z-e^{-aT})} \ at \ pole \ z = z_{i} \right]$$

= $K_{1} + K_{2}$

where

$$K_{1} = \lim_{z \to e^{-aT}} \left[(z - e^{-aT}) \frac{z^{k+1}}{(z-1)^{2}(z-e^{-aT})} \right] = \frac{e^{-a(k+1)T}}{(1 - e^{-aT})^{2}}$$

$$K_{2} = \frac{1}{(2-1)!} \lim_{z \to 1} \frac{d}{dz} \left[(z-1)^{2} \frac{z^{k+1}}{(z-1)^{2}(z-e^{-aT})} \right]$$

$$= \frac{k}{1 - e^{-aT}} - \frac{e^{-aT}}{(1 - e^{-aT})^{2}} \longrightarrow see \ steps \ below$$

$$\Rightarrow x(kT) = \frac{kT}{T(1 - e^{-aT})} - e^{-aT} \frac{(1 - e^{-akT})}{(1 - e^{-aT})^2} \qquad k = 0, 1, 2, \dots$$

• Steps

$$d\frac{v}{u} = \frac{udv - vdu}{u^2}$$

$$\lim_{z \to 1} \frac{d}{dz} \left(\frac{z^{k+1}}{z - e^{-aT}} \right)$$

$$= \lim_{z \to 1} \frac{(k+1)z^k (z - e^{-aT}) - z^{k+1}}{(z - e^{-aT})^2}$$

$$= \lim_{z \to 1} \left[\frac{(k+1)z^k}{z - e^{-aT}} - \frac{z^{k+1}}{(z - e^{-aT})^2} \right]$$

$$= \frac{k+1}{1 - e^{-aT}} - \frac{1}{(1 - e^{-aT})^2}$$

$$= \frac{k}{1 - e^{-aT}} + \frac{1 - e^{-aT}}{(1 - e^{-aT})^2} - \frac{1}{(1 - e^{-aT})^2}$$

$$= \frac{k}{1 - e^{-aT}} - \frac{e^{-aT}}{(1 - e^{-aT})^2}$$

• Pulse-Transfer Function

Difference equation:

$$x(k) + a_1 x(k-1) + \dots + a_n x(k-n)$$

= $b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$

Taking z transform

$$X(z) + a_1 z^{-1} X(z) + \dots + a_n z^{-n} X(z)$$
$$= b_0 U(z) + b_1 z^{-1} U(z) + \dots + b_n z^{-n} U(z)$$

Now, Kronecker delta function $\delta_0(kT)$

$$\delta_0(kT) = \begin{cases} 1 & \text{for } k = 0 \\ 0 & \text{for } k \neq 0 \end{cases}$$
$$\mathcal{Z} \left[\delta_0(kT) \right] = 1$$

 \Rightarrow G(z) is the z transform of the response to $\delta_0(kT)$. It is called the **pulse** transfer function

 $g(k) = \mathcal{Z}^{-1}\{G(z)\}$ is called the **weighting sequence**.

z transform method of solving difference equations

Example

Solve:
$$x(k+2) + 3x(k+1) + 2x(k) = 0;$$
 $x(0) = 0, x(1) = 1$

Solution

taking the z transform

$$z^2 X(z) - z^2 x(0) - z x(1) + 3z X(z) - 3z x(0) + 2X(z) = 0$$

Substituting initial data

$$X(z) = \frac{z}{z^2 + 3z + z} = \frac{z}{(z+1)(z+2)} = \frac{z}{z+1} - \frac{z}{z+2}$$
$$= \frac{1}{1+z^{-1}} - \frac{1}{1+2z^{-1}}$$

$$\mathcal{Z}^{-1}\left[\frac{1}{1+z^{-1}}\right] = (-1)^k, \quad \mathcal{Z}^{-1}\left[\frac{1}{1+2z^{-1}}\right] = (-2)^k$$

$$\Rightarrow$$
 $x(k) = (-1)^k - (-2)^k$, $k = 0, 1, 2, \cdots$