ECE452/552

Review
Topics

1. z Transform
e Properties

2. Inverse z Transform by:

a) Direct division method

(
(

)
b) Computational method
(c) Partial-fraction expansion
)

(d) Inversion integral
3. Given difference equation, find:

a) Pulse-transfer function (weighting sequence)

b) Solution

(a)
(b)
4. (a) Impulse sampling
(b) Data hold

e /OH

o FOH } Transfer functions.

(c) Data reconstruction

e Sampling theorem
e Aliasing

5. (a) Convolution summation

(b) Starred Laplace transform and pulse transfer function

X*(s) = X(2)
(¢) Methods for obtaining the z transform

i. Definition
ii. Using partial fractions

iii. Using residues

6. Block diagram reduction of sampled data system
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e Feedback systems

7. Obtaining response between consecutive sampling instants

(a) Laplace transform
(b) Modified Z transform

8. Stability tests

(a) Jury test

(b) Bilinear transformation and Routh criterion



Sampled data systems

Typical Model

Input 4~ eft) Digital

. : Flant
AD Computer| *| D/A ¥ G}; * Cutput
Sampler Hold

b 4

1. The z Transform

X(z) = Zlz)] = Z[z(kT)] = Z[z(k)]

= Y 2(kT)zF = a(k)z"
k=0 k=0
Geometric Series:
a+ar+ar2+ar3+...:1L Ir] <1
—r

2. Inverse z Transform
Z7X(2)] = x(kT) = (k)

(a) Inversion integral

1
B — — 7{ X(2)25"1d
x(k) il ()2 dz
M
= > [residue of X(z) 2" at pole z = z of X(2)z"]
i=1
assuming M poles

Residues, K

i. For simple pole

K = lim[(z — 2)X(2)2" ]

2—2;
ii. For multiple pole z; of order g

1 . dr!
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(b) Direct division

Note

X(2)

= > a(k)z""

k=0

= 2(0) +2(T)z "t + 22Tz 2 + ... +a(kT)z " + ...

Computational method

Express as a difference equation and use it along with initial con-
ditions to give response.

Partial fractions

G(2)

Given G(z), express — > as a sum of simpler terms for which the
inverse transform is available in tables.

Pulse transfer function

X(z) < Output

G(z) = U(z) <« Input

If w(kT) = 0,(kT) « Kronecker delta
=U(z) =1
= (/(z) = Z]unit impulse response]

Also

g(k)=Z

“HG(2)} + weighting sequence

Convolution Summation

XKT) = gkT) >y(KT)

!

Digital system

y(kT) = i g(KT — hT) x(hT)
= i 2(KT — hT) g(hT)

= z(kT) * g(kT)

(b) Solving difference equations

Take Z transform, partial fraction expansion, sum up Z~! of terms
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(a) Impulse Sampling

[e. 9]

() = Y x(t) 6(t—KkT)
k= —o00 N—————
Dirac delta

— 2() S 8(t— kT)

k=—0c0

Or .

z*(t) = Z x(kT) 6(t — kT)

k=—0c0
X*(s) = Llz*t)] =Y x(kT) e *'*
k=0
c.f. z transform = if e'* = z
then
X*(S) ‘5:% Inz — X(Z)
(b) Data hold
e /OH

« FOH }Tmnsfer functions.

(c) Data reconstruction

. 1 & ) .
X*(jw) = 7 > X(jw + jwsk)

k=—o00

where wy, = 2%

e Aliasing
e Low-Pass Filtering
e ZOH as a LPF

(a) Convolution Summation

(b) Starred Laplace transform



Y(8) = G(5) X*(3)

- e .
Xty - x7(H) G(S) ¥(©)

X(s) X*(8) Y(s) @
v'.E'
u_';*(s.)
Yi(s) = [G(s) X*(s))"
= G*(s) X*(s)
= G(z) X(z
x(t) yit)
X(s) Gmrm )
ey
Y*(8)

Y(s) = G(s) X(s)
Yi(s) = [G(s)X(s)]" = [G X(s)]" = G X(2)
(¢c) Methods of obtaining z transform

1. definition
[o@)

X(2) =Y a(kT)z""

k=0

ii. partial fractions

X(z) = Z[X(s) expanded into partial fractions X;(s)]
= Y Z[X(s)] — use tables

ili. residues

X(s) = [residues of XESiTi at pole of X(s)]

z

6. Block diagram reduction

+ Cisl. C
R[S)__.T_/'D__{ G }—/o—- G TP(H

His)

_ Gi(2) Ga(2) R(2)
B =TV a0 GaG)
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7. Response between sampling instants

e Laplace transform
e.g.

+
R(s) —_'O—/D—'* GG > C()

b

H(s)

R (s)

et) = L0 = L7 GO T agm

]

e Modified z transform
(a) G(z,m) = Z713 [residue of G2 ot pole of G(s)]

z—eT's

G(z) = lim z G(z,m)

m—0

(b) Inverse transform using division
Y(z,m) =yo(m)z"" + y1(m)z"? + ya(m)z> + ...
8. Stability

(a) Jury test
- be able to set up table and read results

(b) Bilinear transformation and Routh criterion

w—+1

w—1

z-plane /_..-r w-plane
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Summary: Design of discrete time control systems via transform

methods
R(Z)_t | Digital : C(@)
: N N
- T Controller Hold i Plant >
] -

Obtaining discrete time equivalents of continuous time controllers

R(z) + Analog 1 €@
_I ( :] ™ Controller [ | %S"' 1 [* Flant -
Hold
I G®) Approximation Gps)

continuous-time control system modified to allow for time lag of hold
Design Procedure:

1. Design analog controller for the above system

2. Digitize the controller using one of s to z transformations

3. Perform computer simulation of system to check performance

4. If performance is not adequate, use a different s-to-z mapping

5. Iterate steps (3) and (4) until adequate performance is achieved



TABLE 4-1 EQUIVALENT DISCRETE-TIME FILTERS FOR A CONTINUOUS-
TIME FILTER G(s)=a/ls + a)

Equivalent discrete-time filter
Mapping Mapping for
method equation __a_
GG) s+a
Backward - — a
— Gy (2) =
difference S=l Tz b(2) E—}-a
method T
This method is not
Ff)rward 1—z recommended, because the
difference § Tz™? discrete-time equivalent
method may become unstable.
Bilinear -1 - a
— G =
transformation s :% : - ;_1 b(@) 21—z
method Ti+z7
Bilinear 21—z1 T
transformation STT1+z1 tan 22-
method with Gp(z)= e m—
frequency (oa =2 an 2T Tt
prewarping T 2
Impulse- Ta
invariance Go(z)=T Z[G(s)] Go@) =T e
method
Step- -
: . - (1—eoM)zt
invariance Gp(z)=¢ [1 = G(S)] Gp(z)= 1 —e-arz-1
method
A pole or zero at s = —a
e p‘nle- is mapped to z = ™97, _l—e™T 1+4z71
ZEro mapping An infinite pole or zero is Go(2)= 2 1—emaTz™1
method -
mapped to z = —1.

Design based on the frequency response method

- Bilinear transformation and the w-plane

14+ W
let z= ——=—, T is the sampling period
- 5
The inverse transformation is
22—1
Tz+1

The w plane resembles the s plane geometrically, however the frequency axis
in the w plane is distorted.

2 z2—1 2 el 1

W w=ju Jv TZ+1|Z€]T:TW
2 €T —e T 2 wT
S T o Sy

v is a fictitious frequency



Design procedure in the w-plane

R(z) + C(@)
—+(—— G@ |+ Hold | Plant =
[ b
G(2)

1. Obtain G(z), the z transform of the plant preceded by a hold. Then
transform G(z) into a transfer function G(w)

Gw) = G2) | _zw

z=
T
1-Lw

Choose a T about 10 times the bandwidth of the closed loop system.
2. Substitute w = jv into G(w) and plot the Bode diagram for G(jv).

3. Read from the plot the gain and phase margins and the low frequency
gain (which will determine static accuracy).

4. Design Gp(w) to achieve desired loop transfer function.

5. Transform the Gp(w) into Gp(z).

GD(Z) = GD(W) ‘W:% z—1

z+1

6. Realize Gp(z) by a computational algorithm.
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STATE-SPACE SUMMARY

For ZOH
u(t) =u(k); kI <t<(k+1)T
E Loyt
U, 7oy U Plant xQ ;—>Y()
x=Fx+Gu
y=HXx
Difference equation
z(k + 1) = ®x(k) + Tu(k)
y(t) = H (k)
22 F3T3
d=e"T =T+FT+ o T+ +

T
= / et dn G
0
Solution of the state equation

let (k) =®(k) <« the state transition matrizx

z(k) = VU(k) z(0) + z_:lllf(k —j—1) Tu(j)

y(k) = H W(k) 2(0) + H f Wk —j — 1) Tu(j)

§=0
Pulse Transfer Function

z(k+1) = ®x(k) + Tu(k)
= X(2)= (2 —®) ' TU(z)
y(k) = H (k)
=  Y(2)=H (2 —®)"'TU(2)

=
pulse transfer function matrix T(z) is
T(z) = H(z2[—-®)'T
adj(zI — @)

= H——"7--T
|21 — 9|
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Weighting sequence matrix
T(k) = 27 {T(2)}
= ZYHHTz '+ HO®Tz 2+ H Tz 4.}

0, k<0
= T(k):{chk—lr k=12 3

recall T(z)=Y,T(k)z"*

State-Space Design Summary

Design: Two steps:

1. Control law design assuming full state feedback

2. Estimator or observer design (considered full state estimator design)

Control Law:

u=—-Kux

state equation  z(k+1) = ® z(k) + T u(k)
= For closed loop

zk+1)=(®-T K)z(k)

Poles are given by the eigenvalues of (¢ —I' K)
i.e. characteristic equation is det(2] — P +1' K) =0

Pole placement

1. Matching coefficients of
det(zl — ® +T'K)
with the desired characteristic equation
ac(2) = (2= B)(z — B2) (2 = B3) -
where 31, (5, --- are pole locations.
2. Use control canonical form to ease computations
3. Ackerman’s formula

K=[00 0 1][T o @T ... o 'T] a @)

where C = [ r or ... } is the controllability matrix,

n is the order of the system and a.(2) is the desired characteristic equa-
tion.
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Controllability: C must be rank n.

where u is scalar, C is an n x n matrix and if its determinant is nonzero,
then the rank of C is n.
For multi-input system, CCT will give an n x n matrix, and if its determinant
is non-zero, then the rank of C is n. C = n x nm, where n is # of states, and
nm is # of inputs

FULL STATE ESTIMATOR DESIGN
Two kinds:

1. prediction estimator, Z(k) is based on measurements up to y(k — 1)

2. Current estimator, (k) is based on measurements up to y(k)

FULL STATE ESTIMATOR DESIGN

u(a) Rl EEC NN I O
Yoo >
»  model xX(n) v(n) *
J o er » H \
Lp “

Closed-loop Estimator

z(k+1) = 0z(k) + T w(k) + L,ly(k) — H z(k)]

error estimate: (k+1)=[®—- L, H] (k)

The dynamics of the error is dependent on the poles of the closed loop
estimator and are given by the eigenvalues of (& — L, H) which satisfy the
characteristic equation

det(zI —®+ L, H) =0
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Selection of L,

Ackerman’s formula

- -1 0

a 0

Ho 0

’ 0

n—1
| H O Iy
Observability
T
Ho
0= H o2 must be of rank n.

- H énil -

Current Estimator

#(k) = Z(k) + Le(y(k) — H z(k))

where

Zk)=® 2(k— 1)+ T u(k — 1)

Z(k) is the predicted estimate based on a model prediction from the previous
time estimate

=  T(k+1)=o z2(k)+T uk)+ P LJy(k) — H z(k)]
compare that result with the prediction estimator.
The estimation-error equation for (k) is
z(k+1)=[® - L.H|z(k) wherez =7 — .

L,=® L,

The estimation-error equation for (k) is

(k+1)=[®— L.H ®|z(k) wherei=21— .
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Using Ackerman’s formula

[ HD ] (0]
Ho? 0
L. = a.(®) | HP® 0 (1)
| He™ | [ 1]

Combined Control Law and Estimator

Plant Sensor
x) y(k)
—2E 1) = @ x() < T u(k) -

Estimator

; Control Law :T:(kj :
i ) W)= o)+ T uk) ——

K + L [y(k) - HX(K)]

CONTROLLER

e Separation principle

e Controller transfer function
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