Review

Topics

1. z Transform

- Properties

2. Inverse z Transform by:
(a) Direct division method
(b) Computational method
(c) Partial-fraction expansion
(d) Inversion integral
3. Given difference equation, find:
(a) Pulse-transfer function (weighting sequence)
(b) Solution
4. (a) Impulse sampling
(b) Data hold

- $\left.\begin{array}{l}\text { ZOH } \\ \text { - FOH }\end{array}\right\}$ Transferfunctions.
(c) Data reconstruction
- Sampling theorem
- Aliasing

5. (a) Convolution summation
(b) Starred Laplace transform and pulse transfer function

$$
X^{\star}(s)=X(z)
$$

(c) Methods for obtaining the z transform
i. Definition
ii. Using partial fractions
iii. Using residues
6. Block diagram reduction of sampled data system

- Feedback systems

7. Obtaining response between consecutive sampling instants
(a) Laplace transform
(b) Modified Z transform
8. Stability tests
(a) Jury test
(b) Bilinear transformation and Routh criterion

Typical Model

1. The z Transform

$$
\begin{aligned}
X(z) & =\mathcal{Z}[x(t)]=\mathcal{Z}[x(k T)]=\mathcal{Z}[x(k)] \\
& =\sum_{k=0}^{\infty} x(k T) z^{-k}=\sum_{k=0}^{\infty} x(k) z^{-k}
\end{aligned}
$$

Geometric Series:

$$
a+a r+a r^{2}+a r^{3}+\ldots=\frac{a}{1-r} \quad|r|<1
$$

2. Inverse z Transform

$$
\mathcal{Z}^{-1}[X(z)]=x(k T)=x(k)
$$

(a) Inversion integral

$$
\begin{aligned}
x(k)= & \frac{1}{2 \pi j} \oint_{c} X(z) z^{k-1} d z \\
= & \sum_{i=1}^{M}\left[\text { residue of } X(z) z^{k-1} \text { at pole } z=z_{i} \text { of } X(z) z^{k-1}\right] \\
& \quad \text { assuming } M \text { poles }
\end{aligned}
$$

Residues, K
i. For simple pole

$$
K=\lim _{z \rightarrow z_{i}}\left[\left(z-z_{i}\right) X(z) z^{k-1}\right]
$$

ii. For multiple pole z_{j} of order q

$$
K=\frac{1}{(q-1)!} \lim _{z \rightarrow z_{j}} \frac{d^{q-1}}{d z^{q-1}}\left[\left(z-z_{j}\right)^{q} X(z) z^{k-1}\right]
$$

(b) Direct division

Note

$$
\begin{aligned}
X(z) & =\sum_{k=0}^{\infty} x(k) z^{-k} \\
& =x(0)+x(T) z^{-1}+x(2 T) z^{-2}+\ldots+x(k T) z^{-k}+\ldots
\end{aligned}
$$

(c) Computational method

Express as a difference equation and use it along with initial conditions to give response.
(d) Partial fractions

Given $G(\mathrm{z})$, express $\frac{G(z)}{z}$ as a sum of simpler terms for which the inverse transform is available in tables.
3. (a) Pulse transfer function

$$
G(z)=\frac{X(z)}{U(z)} \frac{\leftarrow \text { Output }}{\leftarrow \text { Input }}
$$

If $u(k T)=\delta_{o}(k T) \leftarrow$ Kronecker delta
$\Rightarrow U(z)=1$
$\Rightarrow G(z)=\mathcal{Z}$ [unit impulse response]
Also
$g(k)=\mathcal{Z}^{-1}\{G(z)\} \leftarrow$ weighting sequence
Convolution Summation

Digital system

$$
\begin{aligned}
y(k T) & =\sum_{h=0}^{\infty} g(k T-h T) x(h T) \\
& =\sum_{h=0}^{\infty} x(k T-h T) g(h T) \\
& =x(k T) * g(k T)
\end{aligned}
$$

(b) Solving difference equations

Take Z transform, partial fraction expansion, sum up \mathcal{Z}^{-1} of terms
4. (a) Impulse Sampling

$$
\begin{aligned}
x^{*}(t) & =\sum_{k=-\infty}^{\infty} x(t) \underbrace{\delta(t-k T)}_{\text {Dirac delta }} \\
& =x(t) \sum_{k=-\infty}^{\infty} \delta(t-k T)
\end{aligned}
$$

Or

$$
\begin{gathered}
x^{*}(t)=\sum_{k=-\infty}^{\infty} x(k T) \delta(t-k T) \\
X^{*}(s)=\mathcal{L}\left[x^{*}(t)\right]=\sum_{k=0}^{\infty} x(k T) e^{-k T s} \\
\text { c.f. } z \text { transform } \Rightarrow \text { if } e^{T s}=z
\end{gathered}
$$

then

$$
\left.X^{*}(s)\right|_{s=\frac{1}{T} \ln z}=X(z)
$$

(b) Data hold

$$
\text { - } Z O H \text { - } F O H \text { Transfer functions. }
$$

(c) Data reconstruction

$$
X^{*}(j w)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j w+j w_{s} k\right)
$$

where $w_{s}=\frac{2 \pi}{T}$

- Aliasing
- Low-Pass Filtering
- ZOH as a LPF

5. (a) Convolution Summation
(b) Starred Laplace transform

$$
X^{*}(s)=\mathcal{L}\left(x^{*}(t)\right)
$$

$$
\begin{aligned}
& \mathbf{Y}(\mathrm{s})=\mathbf{G}(\mathrm{s}) \mathrm{X}^{*}(\mathbf{s})
\end{aligned}
$$

$$
\begin{aligned}
Y^{*}(s) & =\left[G(s) X^{*}(s)\right]^{*} \\
& =G^{*}(s) X^{*}(s) \\
& =G(z) X(z)
\end{aligned}
$$

$$
\begin{gathered}
Y(s)=G(s) X(s) \\
Y^{*}(s)=[G(s) X(s)]^{*}=[G X(s)]^{*}=G X(z)
\end{gathered}
$$

(c) Methods of obtaining z transform
i. definition

$$
X(z)=\sum_{k=0}^{\infty} x(k T) z^{-k}
$$

ii. partial fractions

$$
\begin{aligned}
X(z) & =\mathcal{Z}\left[X(s) \text { expanded into partial fractions } X_{i}(s)\right] \\
& =\sum_{i} \mathcal{Z}\left[X_{i}(s)\right] \rightarrow \text { use tables }
\end{aligned}
$$

iii. residues

$$
X(s)=\sum\left[\text { residues of } \frac{X(s) z}{z-e^{T s}} \text { at pole of } X(s)\right]
$$

6. Block diagram reduction

$$
C(z)=\frac{G_{1}(z) G_{2}(z) R(z)}{1+G_{1}(z) G_{2} H(z)}
$$

7. Response between sampling instants

- Laplace transform
e.g.

$$
c(t)=\mathcal{L}^{-1}[C(s)]=\mathcal{L}^{-1}\left[G(s) \frac{R^{*}(s)}{1+G H^{*}(s)}\right]
$$

- Modified z transform
(a) $G(z, m)=\mathcal{Z}^{-1} \sum\left[\right.$ residue of $\frac{G(s) e^{m T s} z}{z-e^{T s}}$ at pole of $\left.G(s)\right]$

$$
G(z)=\lim _{m \rightarrow 0} z G(z, m)
$$

(b) Inverse transform using division

$$
Y(z, m)=y_{0}(m) z^{-1}+y_{1}(m) z^{-2}+y_{2}(m) z^{-3}+\ldots
$$

8. Stability

(a) Jury test

- be able to set up table and read results
(b) Bilinear transformation and Routh criterion

$$
z=\frac{w+1}{w-1}
$$

Summary: Design of discrete time control systems via transform methods

Obtaining discrete time equivalents of continuous time controllers

continuous-time control system modified to allow for time lag of hold

Design Procedure:

1. Design analog controller for the above system
2. Digitize the controller using one of s to z transformations
3. Perform computer simulation of system to check performance
4. If performance is not adequate, use a different s-to-z mapping
5. Iterate steps (3) and (4) until adequate performance is achieved

TABLE 4-1 EQUIVALENT DISCRETE-TIME FILTERS FOR A CONTINUOUS-
TIME FILTER $G(s)=a /(s+a)$

Mapping method	Mapping equation	Equivalent discrete-time filter for $G(s)=\frac{a}{s+a}$
Backward difference method	$s=\frac{1-z^{-1}}{T}$	$G_{D}(z)=\frac{a}{\frac{1-z^{-1}}{T}+a}$
Forward difference method	$s=\frac{1-z^{-1}}{T z^{-1}}$	This method is not recommended, because the discrete-time equivalent may become unstable.
Bilinear transformation method	$s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$	$G_{D}(z)=\frac{a}{\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}+a}$
Bilinear transformation method with frequency prewarping	$\begin{gathered} s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}} \\ \left(\omega_{A}=\frac{2}{T} \tan \frac{\omega_{D} T}{2}\right) \end{gathered}$	$G_{D}(z)=\frac{\tan \frac{a T}{2}}{\frac{1-z^{-1}}{1+z^{-1}}+\tan \frac{a T}{2}}$
Impulseinvariance method	$G_{D}(z)=T \mathscr{\mathscr { Z }}[G(s)]$	$G_{D}(z)=\frac{T a}{1-e^{-a T_{z}-1}}$
Stepinvariance method	$G_{D}(z)=\mathscr{F}\left[\frac{1-e^{-T s}}{s} G(s)\right]$	$G_{D}(z)=\frac{\left(1-e^{-a T}\right) z^{-1}}{1-e^{-a z^{-1}}}$
Matched polezero mapping method	A pole or zero at $s=-a$ is mapped to $z=e^{-a T}$. An infinite pole or zero is mapped to $z=-1$.	$G_{D}(z)=\frac{1-e^{-a T}}{2} \frac{1+z^{-1}}{1-e^{-a z^{-1}}}$

Design based on the frequency response method

- Bilinear transformation and the w-plane

$$
\text { let } z=\frac{1+\frac{T}{2} \mathrm{w}}{1-\frac{T}{2} \mathrm{w}}, T \text { is the sampling period }
$$

The inverse transformation is

$$
\mathrm{w}=\frac{2}{T} \frac{z-1}{z+1}
$$

The w plane resembles the s plane geometrically, however the frequency axis in the w plane is distorted.

$$
\begin{aligned}
\left.\mathrm{w}\right|_{\mathrm{w}=j \nu} & =j \nu=\left.\frac{2}{T} \frac{z-1}{z+1}\right|_{z=e} j \omega T \\
& =\frac{2}{T} \frac{e^{j \omega T}-1}{e^{j \omega T}+1} \\
& =\frac{2}{T} \frac{e^{j \frac{\omega T}{2}}-e^{-j \frac{\omega T}{2}}}{e^{j \frac{\omega T}{2}}+e^{-j \frac{\omega T}{2}}}=\frac{2}{T} j \tan \frac{\omega T}{2}
\end{aligned}
$$

ν is a fictitious frequency

Design procedure in the w-plane

1. Obtain $G(z)$, the z transform of the plant preceded by a hold. Then transform $\mathrm{G}(\mathrm{z})$ into a transfer function $\mathrm{G}(\mathrm{w})$

$$
G(\mathrm{w})=\left.G(z)\right|_{z=\frac{1+\frac{T}{2} \mathrm{~W}}{1-\frac{T}{2} \mathrm{~W}}}
$$

Choose a T about 10 times the bandwidth of the closed loop system.
2. Substitute $\mathrm{w}=j \nu$ into $G(\mathrm{w})$ and plot the Bode diagram for $G(j \nu)$.
3. Read from the plot the gain and phase margins and the low frequency gain (which will determine static accuracy).
4. Design $G_{D}(\mathrm{w})$ to achieve desired loop transfer function.
5. Transform the $G_{D}(\mathrm{w})$ into $G_{D}(z)$.

$$
G_{D}(z)=\left.G_{D}(\mathrm{w})\right|_{\mathrm{w}=\frac{2}{T}} \frac{z-1}{z+1}
$$

6. Realize $G_{D}(z)$ by a computational algorithm.

STATE-SPACE SUMMARY

For ZOH

$$
u(t)=u(k) ; \quad k T<t<(k+1) T
$$

Difference equation

$$
\begin{gathered}
x(k+1)=\Phi x(k)+\Gamma u(k) \\
y(t)=H x(k) \\
\Phi=e^{F T}=I+F T+\frac{F^{2} T^{2}}{2!}+F T+\frac{F^{3} T^{3}}{3!}+\cdots \\
\Gamma=\int_{0}^{T} e^{F \eta} d \eta G
\end{gathered}
$$

Solution of the state equation

$$
\text { let } \begin{gathered}
\psi(k)=\Phi(k) \leftarrow \text { the state transition matrix } \\
x(k)=\Psi(k) x(0)+\sum_{j=0}^{k-1} \Psi(k-j-1) \Gamma u(j) \\
y(k)=H \Psi(k) x(0)+H \sum_{j=0}^{k-1} \Psi(k-j-1) \Gamma u(j)
\end{gathered}
$$

Pulse Transfer Function

$$
\begin{gathered}
x(k+1)=\Phi x(k)+\Gamma u(k) \\
\Rightarrow \quad X(z)=(z I-\Phi)^{-1} \Gamma U(z) \\
y(k)=H x(k) \\
\Rightarrow \quad Y(z)=H(z I-\Phi)^{-1} \Gamma U(z)
\end{gathered}
$$

\Rightarrow
pulse transfer function matrix $\mathrm{T}(\mathrm{z})$ is

$$
\begin{aligned}
T(z) & =H(z I-\Phi)^{-1} \Gamma \\
& =H \frac{\operatorname{adj}(z I-\Phi)}{|z I-\Phi|} \Gamma
\end{aligned}
$$

$$
\begin{aligned}
T(k) & =\mathcal{Z}^{-1}\{T(z)\} \\
& =\mathcal{Z}^{-1}\left\{H \Gamma z^{-1}+H \Phi \Gamma z^{-2}+H \Phi^{2} \Gamma z^{-3}+\cdots\right\} \\
& \Rightarrow \quad T(k)=\left\{\begin{array}{lc}
0, & k \leq 0 \\
H \Phi^{k-1} \Gamma, & k=1,2,3
\end{array}\right. \\
\text { recall } T(z)= & \sum_{k=0}^{\infty} T(k) z^{-k}
\end{aligned}
$$

State-Space Design Summary

Design: Two steps:

1. Control law design assuming full state feedback
2. Estimator or observer design (considered full state estimator design)

Control Law:

$$
u=-K x
$$

state equation $\quad x(k+1)=\Phi x(k)+\Gamma u(k)$
$\Rightarrow \quad$ For closed loop

$$
x(k+1)=(\Phi-\Gamma K) x(k)
$$

Poles are given by the eigenvalues of $(\Phi-\Gamma K)$
i.e. characteristic equation is $\operatorname{det}(z I-\Phi+\Gamma K)=0$

Pole placement

1. Matching coefficients of

$$
\operatorname{det}(z I-\Phi+\Gamma K)
$$

with the desired characteristic equation

$$
\alpha_{c}(z)=\left(z-\beta_{1}\right)\left(z-\beta_{2}\right)\left(z-\beta_{3}\right) \cdots
$$

where $\beta_{1}, \beta_{2}, \cdots$ are pole locations.
2. Use control canonical form to ease computations
3. Ackerman's formula

$$
K=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
\Gamma & \Phi \Gamma & \Phi^{2} \Gamma & \cdots & \Phi^{n-1} \Gamma
\end{array}\right]^{-1} \alpha_{c}(\Phi)
$$

where $\mathcal{C}=\left[\begin{array}{lll}\Gamma & \Phi \Gamma & \cdots\end{array}\right]$ is the controllability matrix, n is the order of the system and $\alpha_{c}(z)$ is the desired characteristic equation.

Controllability: \mathcal{C} must be rank n .
where u is scalar, \mathcal{C} is an $n \times n$ matrix and if its determinant is nonzero, then the rank of \mathcal{C} is n.
For multi-input system, $\mathcal{C C}^{T}$ will give an $n \mathrm{x} n$ matrix, and if its determinant is non-zero, then the rank of \mathcal{C} is $\mathrm{n} . \mathcal{C}=n \mathrm{x} n m$, where n is $\#$ of states, and $n m$ is \# of inputs

FULL STATE ESTIMATOR DESIGN

Two kinds:

1. prediction estimator, $\bar{x}(k)$ is based on measurements up to $y(k-1)$
2. Current estimator, $\hat{x}(k)$ is based on measurements up to $y(k)$

FULL STATE ESTIMATOR DESIGN

$$
\bar{x}(k+1)=\Phi \bar{x}(k)+\Gamma u(k)+L_{p}[y(k)-H \bar{x}(k)]
$$

error: $\quad \equiv \bar{x}-x$
error estimate: $\quad \tilde{x}(k+1)=\left[\Phi-L_{p} H\right] \tilde{x}(k)$
The dynamics of the error is dependent on the poles of the closed loop estimator and are given by the eigenvalues of $\left(\Phi-L_{p} H\right)$ which satisfy the characteristic equation

$$
\operatorname{det}\left(z I-\Phi+L_{p} H\right)=0
$$

Selection of L_{p}

Ackerman's formula

$$
L_{p}=\alpha_{e}(\Phi)\left[\begin{array}{c}
H \\
H \Phi \\
H \Phi^{2} \\
\vdots \\
H \Phi^{n-1}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Observability

$$
O=\left[\begin{array}{c}
H \\
H \Phi \\
H \Phi^{2} \\
\vdots \\
H \Phi^{n-1}
\end{array}\right] \quad \text { must be of rank } n \text {. }
$$

Current Estimator

$$
\hat{x}(k)=\bar{x}(k)+L_{c}(y(k)-H \bar{x}(k))
$$

where

$$
\bar{x}(k)=\Phi \hat{x}(k-1)+\Gamma u(k-1)
$$

$\bar{x}(k)$ is the predicted estimate based on a model prediction from the previous time estimate

$$
\Rightarrow \quad \bar{x}(k+1)=\Phi \bar{x}(k)+\Gamma u(k)+\Phi L_{c}[y(k)-H \bar{x}(k)]
$$

compare that result with the prediction estimator.
The estimation-error equation for $\bar{x}(k)$ is

$$
\begin{gathered}
\tilde{x}(k+1)=\left[\Phi-\Phi L_{c} H\right] \tilde{x}(k) \quad \text { where } \tilde{x}=\bar{x}-x . \\
L_{p}=\Phi L_{c}
\end{gathered}
$$

The estimation-error equation for $\hat{x}(k)$ is

$$
\tilde{x}(k+1)=\left[\Phi-L_{c} H \Phi\right] \tilde{x}(k) \quad \text { where } \tilde{x}=\hat{x}-x
$$

Using Ackerman's formula

$$
L_{c}=\alpha_{e}(\Phi)\left[\begin{array}{c}
H \Phi \tag{1}\\
H \Phi^{2} \\
H \Phi^{3} \\
\vdots \\
H \phi^{n}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Combined Control Law and Estimator

$$
\left[\begin{array}{c}
\tilde{x}(k+1) \\
x(k+1)
\end{array}\right]=\left[\begin{array}{cc}
\Phi-L_{p} H & 0 \\
-\Gamma K & \Phi-\Gamma K
\end{array}\right]\left[\begin{array}{c}
\tilde{x}(k) \\
x(k)
\end{array}\right]
$$

- Separation principle
- Controller transfer function

