
ECE452/552

Review

Topics

1. z Transform

• Properties

2. Inverse z Transform by:

(a) Direct division method

(b) Computational method

(c) Partial-fraction expansion

(d) Inversion integral

3. Given difference equation, find:

(a) Pulse-transfer function (weighting sequence)

(b) Solution

4. (a) Impulse sampling

(b) Data hold
• ZOH
• FOH

}
Transferfunctions.

(c) Data reconstruction

• Sampling theorem

• Aliasing

5. (a) Convolution summation

(b) Starred Laplace transform and pulse transfer function

X�(s) = X(z)

(c) Methods for obtaining the z transform

i. Definition

ii. Using partial fractions

iii. Using residues

6. Block diagram reduction of sampled data system
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• Feedback systems

7. Obtaining response between consecutive sampling instants

(a) Laplace transform

(b) Modified Z transform

8. Stability tests

(a) Jury test

(b) Bilinear transformation and Routh criterion
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Sampled data systems

Typical Model

1. The z Transform

X(z) = Z[x(t)] = Z[x(kT )] = Z[x(k)]

=
∞∑

k=0

x(kT )z−k =
∞∑

k=0

x(k)z−k

Geometric Series:

a+ ar + ar2 + ar3 + . . . =
a

1− r |r| < 1

2. Inverse z Transform

Z−1[X(z)] = x(kT ) = x(k)

(a) Inversion integral

x(k) =
1

2πj

∮
c
X(z)zk−1dz

=
M∑
i=1

[residue of X(z) zk−1 at pole z = zi of X(z)zk−1]

assuming M poles

Residues, K

i. For simple pole

K = lim
z→zi

[(z − zi)X(z)zk−1]

ii. For multiple pole zj of order q

K =
1

(q − 1)!
lim
z→zj

dq−1

dzq−1 [(z − zj)
q X(z)zk−1]
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(b) Direct division
Note

X(z) =
∞∑

k=0

x(k)z−k

= x(0) + x(T )z−1 + x(2T )z−2 + . . .+ x(kT )z−k + . . .

(c) Computational method
Express as a difference equation and use it along with initial con-
ditions to give response.

(d) Partial fractions

Given G(z), express G(z)
z

as a sum of simpler terms for which the
inverse transform is available in tables.

3. (a) Pulse transfer function

G(z) =
X(z)

U(z)

← Output

← Input

If u(kT ) = δo(kT ) ← Kronecker delta
⇒ U(z) = 1
⇒ G(z) = Z[unit impulse response]
Also
g(k) = Z−1{G(z)} ← weighting sequence

Convolution Summation

 
x(kT) 

Digital system 

y(kT) g(kT) 

y(kT ) =
∞∑

h=0

g(kT − hT ) x(hT )

=
∞∑

h=0

x(kT − hT ) g(hT )

= x(kT ) ∗ g(kT )

(b) Solving difference equations

Take Z transform, partial fraction expansion, sum up Z−1 of terms
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4. (a) Impulse Sampling

x∗(t) =
∞∑

k=−∞
x(t) δ(t− kT )︸ ︷︷ ︸

Dirac delta

= x(t)
∞∑

k=−∞
δ(t− kT )

Or

x∗(t) =
∞∑

k=−∞
x(kT ) δ(t− kT )

X∗(s) = L[x∗(t)] =
∞∑

k=0

x(kT ) e−kTs

c.f. z transform⇒ if eTs = z

then
X∗(s) |s= 1

T
lnz = X(z)

(b) Data hold

• ZOH
• FOH

}
Transfer functions.

(c) Data reconstruction

X∗(jw) =
1

T

∞∑
k=−∞

X(jw + jwsk)

where ws = 2π
T

• Aliasing

• Low-Pass Filtering

• ZOH as a LPF

5. (a) Convolution Summation

(b) Starred Laplace transform

X∗(s) = L(x∗(t))

5



Y ∗(s) = [G(s) X∗(s)]∗

= G∗(s) X∗(s)

= G(z) X(z)

Y (s) = G(s) X(s)

Y ∗(s) = [G(s)X(s)]∗ = [G X(s)]∗ = G X(z)

(c) Methods of obtaining z transform

i. definition

X(z) =
∞∑

k=0

x(kT )z−k

ii. partial fractions

X(z) = Z[X(s) expanded into partial fractions Xi(s)]

=
∑

i

Z[Xi(s)] → use tables

iii. residues

X(s) =
∑

[residues of
X(s) z

z − eTs
at pole of X(s)]

6. Block diagram reduction

C(z) =
G1(z) G2(z) R(z)

1 +G1(z) G2H(z)

6



7. Response between sampling instants

• Laplace transform
e.g.

c(t) = L−1[C(s)] = L−1[G(s)
R∗(s)

1 +GH∗(s)
]

• Modified z transform

(a) G(z,m) = Z−1 ∑
[residue of G(s)emTsz

z−eTs at pole of G(s)]

G(z) = lim
m→0

z G(z,m)

(b) Inverse transform using division

Y (z,m) = y0(m)z−1 + y1(m)z−2 + y2(m)z−3 + . . .

8. Stability

(a) Jury test
- be able to set up table and read results

(b) Bilinear transformation and Routh criterion

z =
w + 1

w − 1
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Summary: Design of discrete time control systems via transform
methods

Obtaining discrete time equivalents of continuous time controllers

continuous-time control system modified to allow for time lag of hold

Design Procedure:

1. Design analog controller for the above system

2. Digitize the controller using one of s to z transformations

3. Perform computer simulation of system to check performance

4. If performance is not adequate, use a different s-to-z mapping

5. Iterate steps (3) and (4) until adequate performance is achieved

8



Design based on the frequency response method

- Bilinear transformation and the w-plane

let z =
1 + T

2
w

1− T
2
w
, T is the sampling period

The inverse transformation is

w =
2

T

z − 1

z + 1

The w plane resembles the s plane geometrically, however the frequency axis
in the w plane is distorted.

w |w=jν = jν =
2

T

z − 1

z + 1
|z=ejωT =

2

T

ejωT − 1

ejωT + 1

=
2

T

ej ωT
2 − e−j ωT

2

ej ωT
2 + e−j ωT

2

=
2

T
j tan

ωT

2

ν is a fictitious frequency
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Design procedure in the w-plane

1. Obtain G(z), the z transform of the plant preceded by a hold. Then
transform G(z) into a transfer function G(w)

G(w) = G(z) |
z=

1+ T
2
w

1−T
2
w

Choose a T about 10 times the bandwidth of the closed loop system.

2. Substitute w = jν into G(w) and plot the Bode diagram for G(jν).

3. Read from the plot the gain and phase margins and the low frequency
gain (which will determine static accuracy).

4. Design GD(w) to achieve desired loop transfer function.

5. Transform the GD(w) into GD(z).

GD(z) = GD(w) |w= 2
T

z−1
z+1

6. Realize GD(z) by a computational algorithm.
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STATE-SPACE SUMMARY

For ZOH
u(t) = u(k); kT < t < (k + 1)T

 

Plant H ZOH 

  = Fx + Gu 
y= Hx  
x 

y(t) x(t) u(k) u(t) 

. 

Difference equation
x(k + 1) = Φx(k) + Γu(k)

y(t) = H x(k)

Φ = eFT = I + FT +
F 2T 2

2!
+ FT +

F 3T 3

3!
+ · · ·

Γ =
∫ T

0
eFη dη G

Solution of the state equation

let ψ(k) = Φ(k) ← the state transition matrix

x(k) = Ψ(k) x(0) +
k−1∑
j=0

Ψ(k − j − 1) Γu(j)

y(k) = H Ψ(k) x(0) +H
k−1∑
j=0

Ψ(k − j − 1) Γu(j)

Pulse Transfer Function

x(k + 1) = Φx(k) + Γu(k)

⇒ X(z) = (zI − Φ)−1 ΓU(z)

y(k) = H x(k)

⇒ Y (z) = H (zI − Φ)−1 ΓU(z)

⇒
pulse transfer function matrix T(z) is

T (z) = H (zI − Φ)−1 Γ

= H
adj(zI − Φ)

|zI − Φ| Γ
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Weighting sequence matrix

T (k) = Z−1{T (z)}
= Z−1{H Γz−1 +H Φ Γz−2 +H Φ2Γz−3 + · · ·}

⇒ T (k) =

{
0, k ≤ 0
HΦk−1 Γ, k = 1, 2, 3

recall T (z) =
∑∞

k=0 T (k) z−k

State-Space Design Summary

Design: Two steps:

1. Control law design assuming full state feedback

2. Estimator or observer design (considered full state estimator design)

Control Law:

u = −K x

state equation x(k + 1) = Φ x(k) + Γ u(k)
⇒ For closed loop

x(k + 1) = (Φ− Γ K)x(k)

Poles are given by the eigenvalues of (Φ− Γ K)
i.e. characteristic equation is det(zI − Φ + Γ K) = 0

Pole placement

1. Matching coefficients of

det(zI − Φ + ΓK)

with the desired characteristic equation

αc(z) = (z − β1)(z − β2)(z − β3) · · ·
where β1, β2, · · · are pole locations.

2. Use control canonical form to ease computations

3. Ackerman’s formula

K =
[

0 0 · · · 0 1
] [

Γ ΦΓ Φ2Γ · · · Φn−1Γ
]−1

αc(Φ)

where C =
[

Γ ΦΓ · · ·
]

is the controllability matrix,

n is the order of the system and αc(z) is the desired characteristic equa-
tion.
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Controllability: C must be rank n.

where u is scalar, C is an n x n matrix and if its determinant is nonzero,
then the rank of C is n.
For multi-input system, CCT will give an n x n matrix, and if its determinant
is non-zero, then the rank of C is n. C = n x nm, where n is # of states, and
nm is # of inputs

FULL STATE ESTIMATOR DESIGN

Two kinds:

1. prediction estimator, x̄(k) is based on measurements up to y(k − 1)

2. Current estimator, x̂(k) is based on measurements up to y(k)

FULL STATE ESTIMATOR DESIGN

x̄(k + 1) = Φx̄(k) + Γ u(k) + Lp[y(k)−H x̄(k)]

error: ≡ x̄− x
error estimate: x̃(k + 1) = [Φ− Lp H ] x̃(k)

The dynamics of the error is dependent on the poles of the closed loop
estimator and are given by the eigenvalues of (Φ − Lp H) which satisfy the
characteristic equation

det(zI − Φ + Lp H) = 0
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Selection of Lp

Ackerman’s formula

Lp = αe(Φ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H
H Φ
H Φ2

...
H Φn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Observability

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H
H Φ
H Φ2

...
H Φn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

must be of rank n.

Current Estimator

x̂(k) = x̄(k) + Lc(y(k)−H x̄(k))

where
x̄(k) = Φ x̂(k − 1) + Γ u(k − 1)

x̄(k) is the predicted estimate based on a model prediction from the previous
time estimate

⇒ x̄(k + 1) = Φ x̄(k) + Γ u(k) + Φ Lc[y(k)−H x̄(k)]

compare that result with the prediction estimator.

The estimation-error equation for x̄(k) is

x̃(k + 1) = [Φ− Φ LcH ]x̃(k) where x̃ = x̄− x.

Lp = Φ Lc

The estimation-error equation for x̂(k) is

x̃(k + 1) = [Φ− LcH Φ]x̃(k) where x̃ = x̂− x.
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Using Ackerman’s formula

Lc = αe(Φ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HΦ
HΦ2

HΦ3

...
Hφn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Combined Control Law and Estimator

[
x̃(k + 1)
x(k + 1)

]
=

[
Φ− Lp H 0
−Γ K Φ− Γ K

] [
x̃(k)
x(k)

]

• Separation principle

• Controller transfer function
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