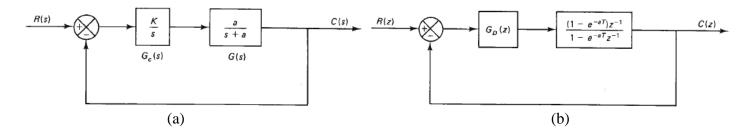
Midterm #2

ECE 452/552: Control Systems Design II

 Closed book and closed notes, except as described be 	elow.
--	-------

- One only $(8\frac{1}{2}^{"} \times 11^{"})$ page of handwritten notes is permitted. (Written on both sides is OK).
- Calculators can be used.
- Scrap paper is not to be used. Show all work on the exam paper.


Student name:			

Problem 1. Use the Jury test to determine the stability of the following transfer function:

$$G(z) = \frac{1}{z^3 + 0.5z^2 - 1.34z + 0.24}$$

Problem 2.

Consider the analog control system shown in Figure (a), where the first order plant a/(s+a) is controlled by the analog integral controller K/s. The plant preceded by a zero order hold has a pulse transfer function as shown in Figure (b). Obtain the equivalent digital controller $G_D(z)$ based on the matched pole-zero mapping method. **Hint:** Be sure to match the static velocity error coefficients for the analog and digital systems.

Table of Laplace and Z-transforms

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
1.	-	-	Kronecker delta $\delta_0(k)$ 1 $k = 0$ 0 $k \neq 0$	1
2.	-	-	$ \begin{array}{ccc} \delta_0(n-k) \\ 1 & n=k \\ 0 & n \neq k \end{array} $	z^{-k}
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-st}	e ^{-skT}	$\frac{1}{1 - e^{-aT}z^{-1}}$ Tz^{-1}
5.	$\frac{1}{s^2}$	t	kT	$(1-z^{-1})^2$
6.	$\frac{2}{s^3}$	r ²	(kT) ²	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	6 s4	t ³	(kT) ³	$\frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}$
8.	$\frac{a}{s(s+a)}$	1 - e ^{-at}	1 – e ^{-akT}	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{(e^{-aT} - e^{-bT})z^{-1}}{(1 - e^{-aT}z^{-1})(1 - e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-skT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + \alpha T)e^{-\alpha T}z^{-1}}{(1 - e^{-\alpha T}z^{-1})^2}$
12.	$\frac{2}{(s+a)^3}$	t ² e ^{-st}	$(kT)^2 e^{-akT}$	$\frac{T^{2}e^{-aT}(1+e^{-aT}z^{-1})z^{-1}}{(1-e^{-aT}z^{-1})^{3}}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{\left[\left(aT - 1 + e^{-aT}\right) + \left(1 - e^{-aT} - aTe^{-aT}\right)z^{-1}\right]z^{-1}}{\left(1 - z^{-1}\right)^{2}\left(1 - e^{-aT}z^{-1}\right)}$
14.	$\frac{\omega}{s^2 + \omega^2}$	sin <i>co</i> r	sin <i>cokT</i>	$\frac{z^{-1} \sin \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
15.	$\frac{s}{s^2 + \omega^2}$	cos at	cos akT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-ar} sin <i>co</i> r	e ^{-akT} sin <i>akT</i>	$\frac{e^{-aT}z^{-1}\sin \omega T}{1 - 2e^{-aT}z^{-1}\cos \omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	e⁻ ^{ar} cos <i>cot</i>	e⁻ ^{akT} cos <i>akT</i>	$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - 2e^{-aT} z^{-1} \cos \omega T + e^{-2aT} z^{-2}}$
18.	-	-	a ^k	$\frac{1}{1-az^{-1}}$
19.	-	-	a^{k-l} $k = 1, 2, 3,$	$ \frac{z^{-1}}{1-az^{-1}} $ $ z^{-1} $ $ z^{-1} $
20.	-	-	ka ^{k-1}	$(1-az^{-1})^2$
21.	-	-	k²a ^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.	-	-	k³a ^{k-1}	$\frac{z^{-1}(1 + 4az^{-1} + a^2z^{-2})}{(1 - az^{-1})^4}$
23.	-	-	k ⁴ a ^{k-1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.	-	-	a ^k cos kπ	$\frac{1}{1 + az^{-1}}$

x(t) = 0 for t < 0 x(kT) = x(k) = 0 for k < 0Unless otherwise noted, k = 0, 1, 2, 3, ...

TABLE 4–1 EQUIVALENT DISCRETE-TIME FILTERS FOR A CONTINUOUS-TIME FILTER G(s) = a/(s+a)

Mapping method	Mapping equation	Equivalent discrete-time filter for $G(s) = \frac{a}{s+a}$
Backward difference method	$s = \frac{1 - z^{-1}}{T}$	$G_D(z) = \frac{a}{\frac{1-z^{-1}}{T} + a}$
Forward difference method	$s = \frac{1-z^{-1}}{Tz^{-1}}$	This method is not recommended, because the discrete-time equivalent may become unstable.
Bilinear transformation method	$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$	$G_D(z) = \frac{a}{\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} + a}$
Bilinear transformation method with frequency prewarping	$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$ $\left(\omega_A = \frac{2}{T} \tan \frac{\omega_D T}{2}\right)$	$G_D(z) = \frac{\tan \frac{aT}{2}}{\frac{1-z^{-1}}{1+z^{-1}} + \tan \frac{aT}{2}}$
Impulse- invariance method	$G_D(z) = T \mathcal{G}[G(s)]$	$G_D(z) = \frac{Ta}{1 - e^{-aT}z^{-1}}$
Step- invariance method	$G_D(z) = \mathcal{Q}\left[\frac{1-e^{-Ts}}{s}G(s)\right]$	$G_D(z) = \frac{(1 - e^{-aT})z^{-1}}{1 - e^{-aT}z^{-1}}$
Matched pole- zero mapping method	A pole or zero at $s = -a$ is mapped to $z = e^{-aT}$. An infinite pole or zero is mapped to $z = -1$.	$G_D(z) = \frac{1 - e^{-aT}}{2} \frac{1 + z^{-1}}{1 - e^{-aT}z^{-1}}$