ECE452/552
 HW \#5
 SOLUTION

Question (4) is from Ogata, "Discrete-Time Control Systems" $2^{\text {nd }}$ ed., page 292.

1) Obtain the discrete-time equivalent of the following continuous-time filter by the use of (1) the backward difference method, and,
(2) the impulse-invariance method:

$$
G(s)=\frac{2}{(s+1)(s+2)}
$$

Assume that the sampling period is 0.1 sec , or $T=0.1$.
2) Question 2 from the Midterm 2 practice exam:

Use the matched pole-zero mapping method to determine the equivalent discrete-time filter for the following:

$$
G(s)=\frac{s+a}{s(s+b)}
$$

3) For the above questions (1) and (2) use Matlab (using the 'bode' command) to compare the Bode plots of the continuous-time and discrete-time systems. For Question 2 use $a=1, b=10$ and sampling period, $T=0.2$. So, for each of the three continuoustime and discrete-time frequency response pairs be sure to plot each pair on the same graph.
4) B-4-16 (from Ogata page 292)

SOLUTIONS:

Question 1:

$$
G(s)=\frac{2}{(s+1)(s+2)}
$$

1. Backward difference method: To obtain $G_{D}(z)$ we substitute

$$
s=\frac{1-z^{-1}}{T}=10\left(1-z^{-1}\right)
$$

into $G(s)$.

$$
\begin{aligned}
G_{D}(z) & =\frac{2}{\left(10-10 z^{-1}+1\right)\left(10-10 z^{-1}+2\right)} \\
& =\frac{0.01515}{1-1.7424 z^{-1}+0.7576 z^{-2}}
\end{aligned}
$$

2. Impulse invariance method:

$$
\begin{aligned}
G_{D}(z) & =T G(z)=(0.1) \nexists\left[\frac{2}{(s+1)(s+2)}\right] \\
& =\frac{0.01722 z^{-1}}{1-1.7235 z^{-1}+0.7408 z^{-2}}
\end{aligned}
$$

Question 2:

$$
G(s)=\frac{s+a}{s(s+b)}
$$

By use of the matched pole-zero mapping method, the equivalent discrete-time filter or digital filter can be obtained in the following form:

$$
G_{D}(z)=K \frac{(z+1)\left(z-e^{-a T}\right)}{(z-1)\left(z-e^{-b T}\right)}=K \frac{\left(1+z^{-1}\right)\left(1-e^{-a T} z^{-1}\right)}{\left(1-z^{-1}\right)\left(1-e^{-b T} z^{-1}\right)}
$$

Since both $G_{D}(1)$ and $G(0)$ approach infinity, constant K cannot be determined by equating $G_{D}(1)$ to $G(0)$. Therefore, we shall use the velocity error constant for detexmining constant K . For the analog filter

$$
K_{v}=\lim _{s \rightarrow 0} s G(s)=\lim _{s \rightarrow 0} \frac{s+a}{s+b}=\frac{a}{b}
$$

For the equivalent digital filter

$$
\begin{aligned}
K_{V} & =\lim _{z \rightarrow 1} \frac{1-z^{-1}}{T} G_{D}(z) \\
& =\lim _{z \rightarrow 1} \frac{1-z^{-1}}{T} K \frac{\left(1+z^{-1}\right)\left(1-e^{-a T} z^{-1}\right)}{\left(1-z^{-1}\right)\left(1-e^{-b T} z^{-1}\right)}=\frac{K}{T} \frac{2\left(1-e^{-a T}\right)}{1-e^{-b T}}
\end{aligned}
$$

Equating the K_{v} values obtained above, we get

$$
K=\frac{a-}{2 b} \frac{1}{1-e^{-b T}}-\overline{a T}
$$

Hence, the equivalent digital filter $G_{D}(z)$ becomes as follows:

$$
G_{D}(z)=\frac{a T}{2 b} \frac{\left(1-e^{-b T}\right)}{\left(1-e^{-a T}\right)} \frac{\left(1+z^{-1}\right)\left(1-e^{-a T} z^{-1}\right)}{\left(1-z^{-1}\right)\left(1-e^{-b T} z^{-1}\right)}
$$

Note that for sufficiently small values of T such that $e^{-a T}$ and $e^{-b T}$ can be approximated by

$$
e^{-a T} \doteqdot 1-a T \quad \text { and } \quad e^{-b T} \doteqdot 1-b T
$$

we have

$$
K=\frac{a T}{2 b} \frac{1-e^{-b T}}{1-e^{-a T}}=\frac{T}{2}
$$

Thus, the gain constant K becomes $\frac{1}{2} T$ for sufficiently small values of T.

Question 3:

```
% Ogata 1st ed: Problem B-4-1
close all
clear
s=tf('s')
gs =2/((s+1)*(s+2))
z = tf('z', 0.1)
% Backward difference method
gz1 = 0.01515/(1-1.7424* z^(-1)+0.7576*z^(-2))
% figure
% bode(gs)
% figure
% bode(gz1)
figure
bode(gs,gz1)
% Impulse invariance method
gz2 = 0.01722* z^(-1)/(1-1.7235* z^ (-1) +0.7408* z^ (-2))
figure
bode(gs,gz2)
```

```
% Ogata 1st ed: Problem B-4-2
```

$a=1$
$\mathrm{b}=10$
$g s 2=(s+a) /(s *(s+b))$
$T=0.2$
$z=t f\left(z^{\prime}, T\right)$
\% pole-zero mapping method
$g z 3=a * T /(2 * b) *(1-\exp (-b * T)) /\left(1-\exp \left(-a^{*} T\right)\right) *\left(1+z^{\wedge}(-1)\right) /\left(1-z^{\wedge}(-1)\right) \star \ldots$ $\left(1-\exp (-a * T) * z^{\wedge}(-1)\right) /\left(1-\exp (-b * T) * z^{\wedge}(-1)\right)$
figure
bode(gs2,gz3)

Plots from above Matlab code:
Question 1 using Backward difference method:

Question 1 using Impulse invariance method:

Question 2 using pole-zero mapping method:

Question 4:

B-4-16. For $T=0.1 \mathrm{sec}$, we have

$$
\begin{aligned}
G(z) & =Z\left[\frac{1-e^{-T s}}{s} \frac{5}{(s+1)(s+2)}\right]=\left(1-z^{-1}\right) \supsetneqq\left[\frac{5}{s(s+1)(s+2)}\right] \\
& =\frac{0.02263(z+0.9061)}{(z-0.9048)(z-0.8187)}
\end{aligned}
$$

Using the transformation

$$
z=\frac{1+\frac{1}{2} \mathrm{TW}}{1-\frac{1}{2} \mathrm{TW}}=\frac{1+0.05 \mathrm{w}}{1-0.05 \mathrm{~W}}
$$

we have

$$
\begin{aligned}
G(w) & =\frac{0.02263\left(\frac{1+0.05 w}{1-0.05 w}+0.9061\right)}{\left(\frac{1+0.05 w}{1-0.05 w}-0.9048\right)\left(\frac{1+0.05 w}{1-0.05 w}-0.8187\right)} \\
& =\frac{2.500\left(1-\frac{1}{20} w\right)\left(1+\frac{1}{406} w\right)}{(1+w)\left(1+\frac{1}{1.994} w\right)}
\end{aligned}
$$

Notice that in order to have the static velocity error constant $K_{V}=5 \mathrm{sec}^{-1}$, we need the controller $G_{D}(w)$ to include an integrator.

Using the conventional design approach, we find the following $\mathrm{G}_{\mathrm{D}}(\mathrm{w})$ will satisfy the requirements that the phase margin be 60°, the gain margin be not less than 12 db , and K_{v} be equal to $5 \mathrm{sec}^{-1}$.

$$
G_{D}(w)=\frac{2}{w}\left(\frac{1+\frac{1}{0.1} w}{1+\frac{1}{0.01} w}\right)\left(\frac{1+w}{1+\frac{1}{10} w}\right)
$$

Then the open-loop pulse transfer function becomes

$$
G_{D}(w) G(w)=\frac{5}{w} \frac{\left(1+\frac{1}{0.1} w\right)\left(1-\frac{1}{20} w\right)\left(1+\frac{1}{406} w\right)}{\left(1+\frac{1}{0.01} w\right)\left(1+\frac{1}{10} w\right)\left(1+\frac{1}{1.99^{4}} w\right)}
$$

From the Bode diagram of $G_{D}(w) G(w)$ (see next page), we find the phase margin to be approximately 60° and the gain margin to be approximately 22 dB . The gain crossover frequency is $\nu=0.5 \mathrm{rad} / \mathrm{sec}$. The phase crossover frequency is $\nu=3.5 \mathrm{rad} / \mathrm{sec}$.

Next, using the following transformation:

$$
w=\frac{2}{0.1} \frac{z-1}{z+1}=20 \frac{z-1}{z+1}
$$

we obtain $G_{D}(z)$ as follows:

$$
\begin{aligned}
G_{D}(z) & =\frac{2\left(1+\frac{1}{0.1} 20 \frac{z-1}{z+1}\right)\left(1+20 \frac{z-1}{z+1}\right)}{20\left(\frac{z-1}{z+1}\right)\left(1+\frac{1}{0.01} 20 \frac{z-1}{z+1}\right)\left(1+\frac{1}{10} 20 \frac{z-1}{z+1}\right)} \\
& =0.07035-\frac{(z+1)(z-0.9900)(z-0.9048)}{(z-1)(z-0.9990)(z-0.3333)}
\end{aligned}
$$

The digital controller $G_{D}(z)$ defined by this last equation satisfies all the requirements of the problem and is, therefore, satisfactory.

Matlab code for Question 4:

```
% Ogata Problem B-4-16
close all
clear
s = tf('s')
gw = 2.5*(1-s/20)*(1+s/406)/((1+s)*(1+s/1.994))
figure
margin(gw)
```

$g d=2 / s *(1+s / 0.1) *(1+s) /((1+s / 0.01) *(1+s / 10))$
figure
margin ($\left.\mathrm{gd}^{\star} \mathrm{gw}\right)$
\% another solution that has twice the bandwidth
$g d=0.4 / s *(1+s) /((1+s / 100)) * 5 *(1+s / 0.05) /(1+s / 0.01)$
figure
margin(gd*gw)

Results from the above Matlab code:

G(w) uncompensated:

Bode Diagram

Compensated loop gain, using the compensator derived above:

Compensated loop gain, using an alternative compensator: note the increased bandwidth

