
Chapter 4
Design of discrete-time control systems via transform methods

procedure

Figure 1: Continuous-time control system

The analog controller is to be replaced by a digital controller

Figure 2: Digital control system

Figure 3: Continuous-time control system modified to allow for time lag of
hold

ZOH: 1−e−Ts

s

Padé approximation e−Ts ≈ 1−Ts
2

1+ Ts
2

⇒ 1 − e−Ts

s
=

1

s

(
1 − 1 − Ts

2

1 + Ts
2

)
=

1
T
2
s + 1

We will approximate Gh(s) by

Gh(s) =
1

T
2
s + 1

DC gain = 1
The DC gain will be determined in the final stage of the design.
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The design procedure is

1. Design analog controller for the system of figure 3.

2. Discretize the controller using one of s to z transformations which will
be presented next.

3. Perform computer simulation of system to check performance.

4. If performance is not adequate, use different s-to-z mapping.

5. Iterate steps (3) and (4) until adequate performance.

Transform Methods

1. Backward difference

2. Forward difference

3. Bilinear transformation

4. Bilinear transformation with frequency prewarping
� Those first four methods are numerical integration methods.

5. Impulse-invariance

6. Step-invariance

7. Matched pole-zero mapping
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There is no optimum method for a given system as this depends on the
sampling frequency, the highest-frequency component in the system, etc.
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s-plane to z -plane mapping

Note that the entire jω axis maps into one complete revolution of the
unit circle.
(z = eTs maps jω axis into infinite number of revolutions of the unit circle)

Bilinear and z = eTs transformations have considerable differences be-
tween them in their transient and frequency response characteristics.

A discrete controller can be obtained using bilinear transformation as

GD(z) = G(s) |
s= 2

T
1−z−1

1+z−1

Bilinear transformation with frequency prewarping

Discretizing the filter

G(s) =
a

s + a

Define GD(z) =
a

s + a
|
s= 2

T
1−z−1

1+z−1
=

a
2
T

1−z−1

1+z−1 + a

frequency response:
continuous-time G(jω)
discrete-time GD(ejωT )

Comparing frequency responses

substitute s = jωA and z = ejωDT into

s =
2

T

1 − z−1

1 + z−1

⇒ ωA =
2

T
tan

ωDT

2
(1)

(1) shows the frequency distortion.

note: for ωDT small, ωA
∼= 2

T
ωDT

2
= ωD

Now, G(jωA) = GD(ejωDT )
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The responses are equal when

ωA =
2

T
tan

ωDT

2

Procedure for prewarping

Consider low-pass filter:

G(s) =
a

s + a

1. warp the frequency scale before transforming

2
T

tan aT
2

s + 2
T

tan aT
2

2. transform

GD(z) =
2
T

tan aT
2

s + 2
T

tan aT
2

|
s= 2

T
1−z−1

1+z−1

=
tan aT

2
1−z−1

1+z−1 + tan aT
2

Impulse-invariance method

We require
gD(kT ) = T g(t) |t=kT

Now,
GD(z) = Z[gD(kT )] = T Z[g(t)] = T Z[G(s)] = T G(z)

If G(s) =
a

s + a
⇒ GD(z) = T G(z) =

Ta

1 − e−aT z−1

Step-invariance method

Z−1
[
GD(z)

1

1 − z−1

]
︸ ︷︷ ︸

step response of GD(z)

= L−1
[
G(s)

1

s

]
t=kT︸ ︷︷ ︸

step response of G(s) at t=kT

⇒ GD(z)
1

1 − z−1
= Z

{
L−1

[
G(s)

s

]}
= Z

[
G(s)

s

]
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or

GD(z) = (1 − z−1)Z
[
G(s)

s

]

= Z
[
1 − e−Ts

s
G(s)

]

For G(s) = a
s+a

GD(z) = (1 − z−1) Z
[
G(s)

s

]

= (1 − z−1) Z
[

a

s(s + a)

]

=
(1 − e−aT )z−1

1 − e−aT z−1

Matched pole-zero mapping method

Finite poles and zeros at s = −b are replaced with z = e−bT . For infinite
poles and zeros in s, we replace with z = −1
Also, the gains should be matched.

Consider G(s) = a
s+a

⇒ GD(z) = K a(z+1)
z−e−aT

require GD(1) = K 2a
1−e−aT = G(0) = 1

⇒ K = 1−e−aT

2a

⇒ GD(z) = 1−e−aT

2
(1+z−1)

(1−e−aT z−1)

Implementation

All of the methods above which produce stable filters except for the step-
invariance method, give results of the following form

GD(z) =
Y (z)

X(z)
= K

1 + αz−1

1 + βz−1
, K, α, and β are constants

The corresponding difference equation is

y(kT ) = −βy((k − 1)T ) + Kx(kT ) + αKx((k − 1)T )

These require y[(k − 1)T ], x[(k − 1)T ] and x(kT )

The step-invariance method gives

GD(z) =
Y (z)

X(z)
=

αz−1

1 + βz−1
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Difference equation

y(kT ) = −β y((k − 1)T ) + α x((k − 1)T )

which requires only y[(k − 1)T ] and x[(k-1)T]

So, if x(kT ) cannot be included to get y(kT ), then the step-invariance method
must be used.
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Design Example

Specifications: damping ratio of the dominant closed-loop poles is 0.5 and
settling time =( 4

ζωn
) = 2 sec.

⇒ unit step response: max. overshoot 16.3 %, ωn = 4 rad/sec.

Wish to design a digital controller

First, design ”analog” system taking into consideration the frequency effects
of a ZOH

We need to decide an T, the sampling period,

ωd = ωn

√
1 − ζ2 = 4

√
1 − 0.52 = 3.464 rad/sec

↗ ⇒ damped oscillation of period 2π
ωd

= 1.814 sec will occur
We want at least 8 samples per period, so choose T = 0.2 sec

⇒ Gh(s) =
1

T
2
s + 1

=
1

0.1s + 1
=

10

s + 10

We now need to design a controller for the following system

let Gc(s) = 20.25( s+2
s+6.66

)

zero at s = −2 cancels pole of plant.

Closed-loop TF

C(s)

R(s)
=

202.5

(s + 2 + j2
√

3)(s + 2 − 2j
√

3)(s + 12.66)
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Pole at s = −12.66 is far away, so we can neglect it and use the complex
poles.
Note, complex poles have ζ = 0.5 and ωn = 4 rad/sec

Now, discretize the controller . Use matched pole-zero mapping.

(Since the analog controller was designed to cancel the undesired plant pole
at s = −2)
thus

GD(z) = 13.57
(

z − 0.6703

z − 0.2644

)

Check design

↙ pulse transfer function of plant

G(z) = Z
[
1 − e−0.2s

s

1

s(s + 2)

]

=
0.01759 (z + 0.8760)

(z − 1) (z − 0.6703)

Closed-loop pulse transfer function

C(z)

R(z)
=

0.2385z−1 + 0.2089z−2

1 − 1.0259z−1 + 0.4733z−2

Can check the step response of this system to see if the specifications are
satisfied.
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4-6 Design based on the frequency response method

Advantage of the Bode diagram approach to design

1. Transient response specs. can be translated into the frequency response
specs. of phase margin, gain margin, bandwidth, etc.

2. Design of a controller is undertaken straightforwardly and simply.

Bilinear transformation and the w plane

Given a pulse transfer function of a system G(z), the frequency response
is given by G(z) |z=ejωT = G(ejωT ).

Since in the z plane, the frequency appears as z = ejωT , if we treat fre-
quency response in the z plane, the simplicity of logarithmic plots will be
lost.
(Note that the z transformation maps the primary and complementary strips
of the left half of the s plane into the unit circle in the z plane. Thus con-
ventional frequency response methods, which deal with the entire left half
plane do not apply to the z plane.)

We overcome this difficulty by transforming the pulse transfer function
in the z plane into one in the w plane.

The w transformation is a bilinear transformation given by

z =
1 + T

2
w

1 − T
2
w

T is the sampling period.
The inverse transformation is

w =
2

T

z − 1

z + 1

Through the z transformation and the w transformation, the primary
strip of the left half of the s plane is first mapped into the inside of the unit
circle in the z plane and then mapped into the entire left half of the w plane.
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The origin in the z plane maps into the point w = − 2
T

in the w plane.

As s varies from 0 → j ωs

2
along jω axis, z varies from 1 to -1 along the

unit circle in the z plane, and w varies from 0 to ∞ along the imaginary axis
in the w plane.

The difference between the s plane and w plane is that the frequency
range −1

2
ωs ≤ ω ≤ 1

2
ωs in the s plane maps to the range −∞ < ν < ∞ in

the w plane, where ν is the fictitious frequency on the w plane. Thus there is
a compression of the frequency scale. G(w) is treated as conventional trans-
fer function. Replacing w by jν we can draw Bode plots.

Although the w plane resembles the s plane geometrically, the frequency
axis in the w plane is distorted. The fictitious frequency ν and the actual
frequency ω are related as follows

w |w=jν = jν =
2

T

z − 1

z + 1
|z=ejωT =

2

T

ejωT − 1

ejωT + 1

=
2

T

ej 1
2
(ωT ) − e−j ωT

2

ej ωT
2 + e−j ωT

2

=
2

T
j tan

ωT

2

or

ν =
2

T
tan

ωT

2
(2)
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thus if the bandwidth is specified as ωb, then the corresponding bandwidth
in the w plane is

2

T
tan

ωbT

s

Similarly, G(jν1) corresponds to G(jω1) where

ω1 = (
2

T
) tan−1 ν1T

2

Note, for ωT small, ν ≈ ω

Design procedure in the w plane

1. Obtain G(z), the z transform of the plant preceded by a hold. Then
transform G(z) into a transfer function G(w)

G(w) = G(z) |
z=

1+ T
2 w

1−T
2
w

Choose T about 10 times the bandwidth of the closed-loop system.

2. Substitute w = jν into G(w) and plot the Bode diagram for G(jν)

3. Read from the plot the gain and phase margins and the low frequency
gain (which will determine static accuracy).

4. Design GD(w) to achieve desired loop transfer function

5. Transform the GD(w) into GD(z)

GD(z) = GD(w) |w= 2
T

z−1
z+1

6. Realize GD(z) by a computational algorithm.
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Example

Design a digital controller in the w plane such that the phase margin is
50o, the gain margin is ≥ 10dB and static velocity constant Kv is 2 sec−1.
Assume T = 0.2

Solution

G(z) = Z
[
1 − e−0.2s

s

K

s(s + 1)

]

= 0.01873

[
K(z + 0.9356)

(z − 1)(z − 0.8187)

]

G(w) = G(z) |
z= 1+0.1w

1−0.1w

=
K( w

300.6
+ 1)(1 − w

10
)

w(1 + w
0.997

)

Poles at w = 0 and w = 0.997

LHP zero at w= 300.6 and RHP zero at w= 10
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Try a lead compensator

GD(w) =
1 + w

α

1 + w
β

Need to adjust K, α and β to satisfy specifications. Adjust K to meet
static accuracy specification.
Open-loop transfer function is

GD(w) G(w) =
1 + w

α

1 + w
β

K( w
300.6

+ 1)(1 − w
10

)

w( w
0.997

+ 1)

Require Kv = 2

where
Kv = lim

w→0
wGD(w) G(w)

⇒ K = 2

With this value of K, we can read the gain and phase margins. We find
300 phase margin and 15.5 dB gain margin. To give a boost in the phase
margin, we adjust the parameters of the lead network α and β

we decide on

GD(w) =
1 + w

0.997

1 + w
3.27

⇒ 50o phase margin and 14 dB gain margin.

Now transform the controller to the z plane

GD(z) = GD(w) |w=10 z−1
z+1
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⇒ GD(z) = 2.718
z − 0.8187

z − 0.5071

The open-loop pulse transfer function of the compensated system is

GD(z) G(z) = 0.1018
z + 0.9356

(z − 1)(z − 0.5071)

The closed-loop transfer function is

C(z)

R(z)
=

0.1018(z + 0.9356)

(z − 0.7026 + j0.3296)(z − 0.7026 − j0.3296)

closed-loop poles z=0.7026 ±j0.3296

⇒ ζ = 0.5

We find that ws = 2π
T

= 14.3 wd

where wd is the damped natural frequency of these poles.

wd = wn

√
1 − ζ2
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