ECE 451/551 Summary

• Transfer Function (TF) to State Space (SS) form

 $TF \rightarrow SS$

- Phase variable form
- Dual phase variable form
- SS → TF
- State Transformation (x = Pz) invariance of TF
- Diagonalization of system matrix

By state transformation

By partial fraction expansion

 $P = [x_1 \ x_2 \ \dots \ x_n]$ Leigenvectors of A

• Solution of state equation – time response of systems

Matrix exponential

 $e^{At} = \mathcal{L}^{-1}\{[sI-A]^{-1}\}$

• Stability

Asymptotic

 $x(t) \rightarrow 0$ as $t \rightarrow 0$

⇔ eigenvalues have negative real parts

BIBO

for
$$|u(t)| \le N < \infty \rightarrow |y(t)| \le M < \infty$$

- ⇔ no poles in RHP or no complex pair on imaginary axis if no pole-zero cancellations occur → TF poles = eigenvalues
 ∴ BIBO stability = asymptotic stability
 - .. DIDO stability asymptotic st
- Internal stability stronger than BIBO stability
- Controllability

Test by

- diagonalization no zero rows in B
- $M_c = [B \ AB \ ... \ A^{n-1}B]$ full rank or det. $M_c \neq 0$

• Observability

Test by

- diagonalization no zero column in C
- $M_o = \begin{bmatrix} c \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$ full rank or det. $M_o \neq 0$

- Controller Design
 - Control law u=-Kx
 - Pole placement by
 - Brute force equate actual coefficients of system characteristic equation with desired to find gains K
 - Use Ackerman's formula

$$K = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix} M_c^{-1} \Delta_d(A)$$

$$\Delta_d(A) = A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \dots + \alpha_n I$$

- Integral Control
 - Add integrator in forward path to assure zero steady-state error
 - Augment the system and reformulate

• Observer Design

Full Order Observer

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}\mathbf{u} + \mathbf{L}(\mathbf{y} - \mathbf{C}\hat{\mathbf{x}})$$

error:
$$\tilde{x} = x - \hat{x}$$

 $\dot{\tilde{x}} = (A - LC)\tilde{x}$

Determine gains L to place poles of estimate error equation

Duality

Control	Estimation
A	AT
В	c^{T}
С	B^{T}
M_{c}	$M_{\rm O}^{\rm T}$
K	$\overset{\circ}{\operatorname{L}^{\operatorname{T}}}$

• Observer Pole Placement

Use Ackerman's Formula

$$\mathbf{L} = \Delta_{e}(\mathbf{A})\mathbf{M}_{o}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$

- Separation Principle
- Compensator Transfer Function

$$U(s) = \underbrace{-K(sI - A + BK + LC)^{-1}L}_{\mathbf{H}(s)}Y(s)$$

• Reduced Order Observer

$$\dot{\tilde{\mathbf{x}}}_{\mathbf{u}} = (\mathbf{A}_{22} - \mathbf{L}\mathbf{A}_{12})\tilde{\mathbf{x}}_{\mathbf{u}}$$

$$\dot{\mathbf{z}} = \mathbf{D}\mathbf{z} + \mathbf{F}\mathbf{y} + \mathbf{G}\mathbf{u}$$

$$\hat{\mathbf{x}}_{\mathbf{u}} = \mathbf{z} + \mathbf{L}\mathbf{y}$$

$$\mathbf{D} = \mathbf{A}_{22} - \mathbf{L}\mathbf{A}_{12}$$

$$\mathbf{F} = \mathbf{D}\mathbf{L} + \mathbf{A}_{21} - \mathbf{L}\mathbf{A}_{11}$$

Compensator TF

 $G = B_2 - LB_1$

$$U(s) = [C'(sI - A')^{-1}B' + D']Y(s)$$

$$A' = D - GK_2$$

$$B' = F - GK_1 - GK_2L$$

$$C' = -K_2$$

$$D' = -(K_1 + K_2L)$$

- Linear Quadratic Regulator (LQR)
 - Minimize $J = \frac{1}{2} \int_{\Omega}^{\infty} (x'Qx + u'Ru)dt$

subject to $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$

solution exists if

- 1) (A,B) controllable
- 2) R > 0
- 3) Q=Cq'Cq where (C_q, A) is observable

Algebraic Riccatti Equation (ARE) solution:

$$A'P + PA + Q - PBR^{-1}B'P = 0$$

 $u = -Kx$ where $K = R^{-1}B'P$

- Properties of LQR

good { 1) > 60° phase margin 2) infinite gain margin 3) gain reduction tolerance of -6dB

not good -(4) -20dB/dec roll off rate at high frequency for closed loop gain

Optimal Observer - Kalman Filter

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{w}$$

$$y = Cx + v$$

 $L = \Sigma C' R_o^{-1}$ solution:

where \sum is the positive definite solution of

$$A\Sigma + \Sigma A' + Q_o - \Sigma C' R_o^{-1} C\Sigma = 0$$

$$Q_o \ge 0 \qquad R_o > 0$$

- Linear Quadratic Gaussian (LQG) Properties
 - No guaranteed stability margins
 - High frequency roll-off can be > 20dB/dec
 - LQG not robust
- Robustness
 - Robust stability
 - Robust performance

Uncertainty modeling

- 1) Structured
- 2) Unstructured
 - a. Additive uncertainty
 - b. Multiplicative
- Small-Gain Theorem (SGT)
- LQG/LTR (Loop Transfer Recovery)
 - Recover LQR properties by using Q₀ and R₀ as tuning parameters