ECE451/551

Homework 1

Question 1. Write the state equations for the circuit of Figure 1. Use the state vector given by $x = \begin{bmatrix} v \\ i \end{bmatrix}$. The output is the voltage across the resistor, i.e. v.

Figure 1. LCR network

Question 2.

a) Derive the transfer function $\frac{v(s)}{v_g(s)}$ using the impedance divider rule. That is, simplify the

following:
$$\frac{v(s)}{v_g(s)} = \frac{R \parallel \frac{1}{sC}}{sL + R \parallel \frac{1}{sC}}$$

- b) Using your transfer function obtained in (a), write a state space representation in *phase variable* form.
- c) Using your transfer function obtained in (a), write a state space representation in *dual phase variable* form.

Question 3. Confirm that your four representations of the LCR network system obtained in questions 1 and 2 are equivalent by plotting the Bode response using the Matlab function *bode*. Use component values, $L = 560 \ \mu H$, $C = 100 \ \mu F$ and $R = 5 \ \Omega$.