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Chapter 9 
 

 
Controller Design 
 
 Two Independent Steps: 
 

1) Feedback Design –  Control Law u=-Kx 
    –  assumes all states are accessible (a lot of sensors are necessary) 
  

2) Design of Estimator – (also called an Observer) which estimates the entire state vector 
given the outputs and inputs 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 Control Law Design 
 
  Assumed system for control law design 
 
 
 
 
 
 
 
 
 
 
 
 
   u=-Kx 

for an nth order system there are n feedback gains K1,…,Kn.  By choice of K the roots can 
generally be placed anywhere 
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characteristic equation is 



I  (ABK)  0  

 
 Placing Roots 
 

  Example: Undamped oscillator with freq. 0 
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    let's place the roots both at -20 

   
 
 
 
 
 
 
 
 

    we want to double the natural frequency and increase 

    damping from =0 to =1 
 

    desired characteristic equation is 
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 Use of Canonical Forms 
 
 A simple way of calculating the gains when order is greater than three is to use special 

“canonical” forms of the state equations. 
 
  The special structure of the system matrix is referred to as companion form. 
 
  Example: Third order case: 
 
   The characteristic equation is 
 

    



s3  a1s
2  a2s a3 

 
   Recall the phase variable form (a lower companion form) 
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   The closed loop system matrix is  
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   Third order case: 
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   Characteristic equation  



sI (ABK)  0  

 

    



s3  (a1 K3)s2  (a2 K2)s (a3 K1)  0    (1) 
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   if the desired pole locations result in the characteristic equation 
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equating like coefficients of (1) and (2) 
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  Example: Drill problem D9.1 page 635 of text 
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   Find ki to place the closed-loop system poles at 
 
    s= -3, -4, -5 
 
  ANS desired characteristic polynomial 
     

    



d (s)  (s 3)(s 4)(s 5)

 s3 12s2  47s 60
 

 

    



1 12, 2  47, 3  60 

 
  we have 

    



k3  a1 1

 7 12  5

k2  a2 2

 6  47  41

k1  a3 3

 3 60  57
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 Design Procedure 
 

  Given (A,B) and desired d(s), transform to (Ac, Bc) and solve for gains 
 
  We then need to transform gain back to original state space 
 
 note: the poles can only be placed arbitrarily if the system is fully controllable 
 
  This procedure is encapsulated in Ackermann’s formula 
 
 Ackermann’s Formula 
     

     )(10...0 1 AMk dC    

  where 

    BABAABBM n
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12 ...   (controllability matrix) 
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  where the si '  are the coefficients of the desired characteristic polynomial 
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 Example 
 
  Apply the formula for the undamped oscillator 
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control canonical (companion) form 
i.e. phase variable form 
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  also   
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    which is the same as the result previously obtained. 
 

 
 Tracking Problems 
 

  For step input:   Will find 



N  to ensure zero steady-state error to step inputs  
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    A-BK is stable  inverse exists 
  now  
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     to get zero steady state error 
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Integral Control (used to get zero steady state error) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Integrator increases the system order by one, i.e. augment the plant model by an added state variable xi 

 

  

Cxrx

dtCxrdtyredtx

i

i



  



)()(

 

 
 Augmented systems becomes 
 

  ru
B

x

x

C

A

x

x

ii















































1

0

00

0




 

 
 

 Control law is   
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 The design now proceeds as before. 
 
  Example 
 

   Double Integrator  
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   Select poles of the closed loop system to be at 
 

     



1 j,5  

 
    N.B. 3 poles because of extra state 
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   Steady state output to a unit step input can be derived as follows 
 

     
rCxx

BuAxx

i 






 

 

    

 

ru
B

x

x

C

A

x

x

dt

d

ru BB

ii















































1

0

00

0




 

 

      









i

i
x

x
KKu      

 

    

rBxKBAx

rBxKBxAx

xKu

rBuBxAx

ru

ru

ru









)(





 

 

   in steady state 0ssx  

 

                                       

    
   



 9 

  For the example 
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Observer Design 
 
 
 
 
 

    



 

       
  
 
 
 
 
 
 
 
 
 
 
 
 We will estimate states rather than measure them 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Observer simulates the original system 
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Error between states and their estimates 
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 Observer error will go to zero asymptotically   A-LC is stable (i.e. eigenvalues are in the LHP) 
 

note: the eigenvalues of A-LC are the observer poles, which can be placed arbitrarily if the 
system is observable 

 
 this can be done by choice of the observer gains L (a column vector for single output 

systems) 
 

 
 
 Definition: 1) a system is detectable if the unstable modes are observable 
 

2) a system is stablizable if the unstable modes are controllable 
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 Ackermann’s formula to find observer gains  
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 Example 
 
  Design an observer for 
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   Note the system is completely observable 
  

  Design the observer with poles at 
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  Desired characteristic equation: 
 

   



(s 2 j2)(s 2 j2)  s2  4s 8 

 

  Equating coefficients     
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Control Using Observers 
 

 Plant:   
Cxy

xxBuAxx
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 Observer:  0
ˆ)0(ˆ)ˆ(ˆˆ xxxCyLBuxAx   

 
 
 Estimated state feedback: 
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Separation Principle 
 
 Introduce transformation 
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˜ A  is block-triangular 
 
 Eigenvalues of a block-triangular matrix are equal to the eigenvalues of the diagonal blocks.  So 

the eigenvalues of the full system comprise the eigenvalues of the plant (i.e. eigenvalues of A-
BK) and the observer (i.e. eigenvalues of A-LC). 
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Compensator Transfer Function 
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 Design Issues 
 

1) Problem with pole placement is that there is no control over compenstor poles and zeros 
 
2) Optimum choice for observer initial conditions is  

 

    

 
3) Choice of observer poles: 

i. Choose them to be faster than controller poles 
ii. Alternatively, choose them to be at plant zeros (if the sytem has RHP zeros, 

use their LHP images). 
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Reduced-Order Observer Design 
 
 If system has n states and m measurements, then an observer of order (n-m) will be sufficient. 
 
 If 
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The presence of the derivative of the measurement (i.e. y ) is not good since this amplifies the noise.  To 
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The block diagram of the reduced order observer is shown below 
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 Require observer pole at 
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 Reduced-Order Transfer Function 
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