Chapter 9

Controller Design
Two Independent Steps:

1) Feedback Design — Control Law u=-Kx

— assumes all states are accessible (a lot of sensors are necessary)

2) Design of Estimator — (also called an Observer) which estimates the entire state vector
given the outputs and inputs
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Control Law Desion
Assumed system for control law design
. X
X = Ax+ Bu ) C >y

=Kx K

u=-Kx
for an nth order system there are n feedback gains Kj,...,K,. By choice of K the roots can
generally be placed anywhere



X = Ax+ Bu
u=-—KXx
X =(A—-BK)x

characteristic equation is |/U —(A-BK )| =0

Placing Roots

Example:

Undamped oscillator with freq. ®o

o)l
u(s) s +ow;

state space description

e ol i)

REVIEW
let's place the roots both at -2y
jo
j o N R jo, Y1-¢2
>‘<-j030 -2y ~w, XK= —jo,\1-¢?
_ cosa=¢
we want to double the natural frequency and increase
damping from =0 to {=1

desired characteristic equation is

A (S) = (s+2m,)° =5 +4w,s + 4w,

det[sl—(A—BK)]:detH; 2}—{_2}5 ﬂ{ﬂ[Kl KZ]}]

or s’ + K5+, +K, =0

K, =40,

equating same coefficients: 5 )
w, + K, = 4w,

K, =3w;

> K=l K,)=[3et 4,



Use of Canonical Forms

A simple way of calculating the gains when order is greater than three is to use special

“canonical” forms of the state equations.

The special structure of the system matrix is referred to as companion form.

Example: Third order case:

The characteristic equation is

3 2
s +as”+a,s+a,

Recall the phase variable form (a lower companion form)

n—1
bs"" +..+b, s+b,

G(S) == n n—1
s"+as" +...+a,
[0 1 0 0 |
0
0 0 1 . 0
A= B=|, C=[b, b,
1
L a, —a., - a1_
The closed loop system matrix is
A—BK
Third order case:
0 1 0 0
A-BK= 0 0 1 |-|0|K, K, Ki]
0 0 0
0 O 0
K, K, K,
0 1 0
= 0 0 1
—a-K -a,-K, -a-K,

Characteristic equation |sI —(A-BK )| =0

-> s3+(al+K3)S2+(a2+K2)S+(a3+Kl):O
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if the desired pole locations result in the characteristic equation

A= +as +a,s+a,=0
equating like coefficients of (1) and (2)

K, =-a+¢
> K,=—-a,+a,

K =-a,+a,
Example: Drill problem D9.1 page 635 of text

X, 0 1 O0¢|x| |0
X, /=0 0 1]|x,(+|0u

5,0 |-3 -6 -7|x,| |1
Xl
u=[-k, -k, —k]]x,|+r
X3
X
y=[2 0 -1] %
X3

Find k; to place the closed-loop system poles at
s=-3,-4,-5
ANS  desired characteristic polynomial

A,(s)=(s+3)(s+4)(s+5)
=5 +125* + 475+ 60

> o, =12, a,=47, a,=60
we have

ky=—a,+ ¢,
=-7+12=5

k,=-a,+a,
=—6+47=41

k =-a,+ «a,
=-3+60=57
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control canonical (companion) form
i.e. phase variable form

Design Procedure

Given (A,B) and desired Aq(s), transform to (A, Bc) and solve for gains
We then need to transform gain back to original state space

note: the poles can only be placed arbitrarily if the system is fully controllable

This procedure is encapsulated in Ackermann’s formula

Ackermann’s Formula
k=[0 .. 0 1MZA, (A
where
Mc=[B AB A’B .. A"B| (controllability matrix)
where n is the order of the system or the number of states and A ,(A) is defined as
Ag(A) = A"+ A"+, A" 4t |
where the ;'S are the coefficients of the desired characteristic polynomial

A)=5"+as " +..+a,

Example

Apply the formula for the undamped oscillator

Ay (s) = (s+20,)"

=5 +4w,5+ 4w,

> o, =4w,, a, = 46002
0 1 0
recall A= ) B=
L ) 0} L}
—wl ] 0 1 10
Ay(A) = “o 0 , | 4wy ) + 40)02
> -




also M, =[B AB]:[O 1}

10
> om0t
° |10

> K=[K, K,]=[0 1{0 1}{ 3y’ 4“’02}

1 0] -4w, 3o,
2
> K:[L%a)0 4a)0J

which is the same as the result previously obtained.

Tracking Problems

For step input: Will find N to ensure zero steady-state error to step inputs

u=—Kx+Nr
X = Ax+ Bu
=(A-BK)x+BNr
now
X, =0=0=(A-BK)x, +BNr
= X, =—(A-BK)™"BNr
=Yy, =-C(A-BK)™"'BNr
A-BK is stable = inverse exists
now

e, =r-y,=r+C(A-BK)"'BNr

/ =f+c(A-BK)*BN |

steady-state error
—> to get zero steady state etror

-1

N=— L
C(A-BK)'B




Integral Control (used to get zero steady state error)

R(s), E(s) Xi(s) U(s) X(s) Y(s)

Q > K F>O— 8 F3(O)—| ¢ C

P

Y

/ « <

integrator in the
forward path

Integrator increases the system order by one, i.e. augment the plant model by an added state variable x;
&zjaﬂzja—yMtfﬂr—Cmm

= X, =r-_Cx
Augmented systems becomes

A Lk

zero matrices (compatible dimensions)

X
Control law is U =—-KXx—-K;X; = —[K Ki{ }
X

The design now proceeds as before.

Example

Double Integrator G(s)= lz
N

SN
y=[L 0ok

Augment the plant



Select poles of the closed loop system to be at
=1+ ,-5}
N.B. 3 poles because of extra state

K=[f2 7 -10]

Steady state output to a unit step input can be derived as follows

X = Ax+Bu
X, =—-CxX+r

X = AX +B,u+B.r y=[c o{x}
X;
. y =CX
u=-KX
X = AX - B,KX +B,r
X =(A-B,K)X+B,r

in steady state X =0
= T, =—(A— B,K) 'B,r

— = —C(A— B,K)"'Br



For the example
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Observer Design

X(t)
u(t) (A,B) C * y(t)
N x(1) c OR
AB —>
5 (AB) >(2)
L <«
We will estimate states rather than measure them
___________ PLANT ... 5
YEL L +/\l/\ 1 X (s
+\J_ \_/ s

i LY T s
ey B—%C}%»SJ C

+
—>
>

Observer simulates the original system

Original System

X=Ax+Bu
y =Cx

Obsetver

X = AR+ BU + L(y —CX)

x(0)=x,

%(0) = %,
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Error between states and their estimates

¥=x—-X%

X =X—X
> = Ax+Bu — AR — Bu — L(y - CX)
= (A-LC)X X(0) =X,

Observer error will go to zero asymptotically <& A-LC is stable (i.e. eigenvalues are in the LHP)

note: the eigenvalues of A-LC are the observer poles, which can be placed arbitrarily if the
system is observable

this can be done by choice of the observer gains L. (a column vector for single output

systems)
Definition: 1) a system is detectable if the unstable modes are observable
2) a system is stablizable if the unstable modes are controllable
Duality
Control Estimation ‘ Control Estimation
A A" Mc M,"
B o K LT
C B*
Example
M.=[B 4B A4""'B]
duality
[ n-1
M, =|IC" A'CT ... AT CT]
LN (o L (o
— _T — —_
C C
CA CA
= = M, =
CA™ CA™
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Ackermann’s formula to find observer gains
0

0
L=A. (AM

DERIVATION USING DUALITY

Ackermann’s Formula for control problem

K=[0 ... 1M A (A)
Duality -
L' =[0 .. 1MT A (AT)
O T
=| A (AM, | :
1
0
> L=A,(AM,
1

Example

Design an observer for

1
G(s)=—
S
.10 1 0
X= X+ u
00 1
y=[1 ofx
Note the system is completely observable
Design the observer with poles at {2+ j2}
Actual characteristic equation:

o 1o o’

=s? +1s+1,

sl - (A-LC)|=

A"B'C" =(CBA)"
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Desired characteristic equation:

. . 11 =4 4
Equating coefficients = 9 > L=

(s+2+j2)(s+2—j2)=5"+4s+8

The observer equations are

X =% +4(y—%)
%, =8(y — %) +U

_________ PLANT
5 X, =X X y +/V\ + 3
1 X 1 = 1 : ~ N ( ) > 1\
i 7> E 2 v ; : /\/ Z 4 _>+ ls 7z
e | + T 3
s[s (O ’>
/I\+
STRUCTURE OF OBSERVER

6
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Time

Figure 9.10 Simulation of the double-integrator plant and its observer.
(a) Plot of the first state and its estimate. (b) Plot of the second statc and
its estimate,
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Control Using Obsetvers

X = AX+ Bu X(0) = X,
Plant:

y =Cx
Observer: R=AR+Bu+L(y—-CR)  %(0)=£%,
Estimated state feedback: u=-Kx

closing the loop

% = AX — BKR
% =(A-LC)R—BKX+Ly
= (A-LC-BK)&+LCx

=[i) -l a-aore)s)

14



Separation Principle

Introduce transformation

X 4 Iy, O
=P where P=| " "
X w Iy —ly
note P*=P
z Iy Oy (| X X X
- = N N = =1 .
w N R X—X X
Therefore using this transformation the old augmented state vector comprising x (the plant

states) and X (the estimator sates) now becomes x and X (the estimator error). The new
system matrix 4 =P~ AP

[ L]

note A is block-triangular

Eigenvalues of a block-triangular matrix are equal to the eigenvalues of the diagonal blocks. So
the eigenvalues of the full system comprise the eigenvalues of the plant (i.e. eigenvalues of A-
BK) and the observer (i.e. eigenvalues of A-LC).

Alternative Approach

X = Ax — BKX

% = LCx+(A-BK —LC)%

X— X = AX—BKX— LCx—(A—BK — LC)&
= (A-LC)x—(A-LC)X

X =(A—LC)X
X = AX — BKX
now X=x—X = X=x-X

— X = AX — BK (X = X)
= (A— BK)X + BKX
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Compensator Transfer Function

Compensator output, which is the plant input
U <«
H(s)=
Y(s) _
Compensator input, which is the plant output
u
PLANT Y
b - \
1 1
! 1
/7 | I
1 1
Compensator X :
Output 1 -K OBSERVER |«
1
1 1
' ! Compensator Input
! 1
COMPENSATOR
we have
u=-KX

% = AR+ Bu + L(y - CR) = AR — BKX + Ly — LCX
=(A-BK -LC)X+Ly

= X (s) = (s| — A+BK + LC)™*LY(s)

~U(s)=—K(sl —A+BK +LC) LY (s)

H(s)

Design Issues

1) Problem with pole placement is that there is no control over compenstor poles and zeros

2) Optimum choice for observer initial conditions is
(0) = C"(CC")y(0)

3) Choice of observer poles:
i. Choose them to be faster than controller poles
ii. Alternatively, choose them to be at plant zeros (if the sytem has RHP zeros,
use their LHP images).
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Reduced-Order Observer Design

If system has n states and m measurements, then an observer of order (n-m) will be sufficient.

If y =Cx we will assume C has the structure:

C=[l 0] 1eR™, 0eR™"™
— measured states

S~ unmeasured states
[5H02 2
X, Ay Ayl X B,

= Xu = A22Xu + (A21Xm + Bzu)
—_—

known input

dynamics of the
unmeasured state

Xm =y= Ally + A12Xu + Blu < output
also = y-A,y-Bu=A,X, relationship
Sy —

known measuremert

Summarizing:
X, = AgpX, + (A%, +Byu) (1a)
—
known input
@
y—-Ay-Bu=AX, (b)
%/—J
known measuremert

Recall for full-order observer:

X = Ax+ Bu X(0) = x

Plant: i © 0} (2
y =Cx

Observer: f=AR+BU+L(y-CR)  R(O0)=%| (3)

comparing (1) and (2) shows the correspondence

17



X <= X,
A<A,

Bu<« A, x, +Bu ¢ (4)
y<y-A;y-Bu
C«A,

substituting (4) into (3) we get the reduced order equation

Aiz Xy

A ~ — N
X, = Azzxu + Az1Xm + Bzu + I—(y_ Auy_ Blu - A12Xu) (5)
AiZ)zu

let us now define the estimator error

X,=Xx,—X,

u

therefore subtracting (5) from (1a) and using (1b) (i.e. Y—A Y —Bu=A,X,)

we get
N - the error dynamics
X, = (A — LAiZ)Xu} (6) < are given by this
equation

Design proceeds by, given an A and Az we choose an L to place estimator poles.

Rewriting (5) we have
Ry = (A —LALR, + (A —LA)Y+(B, —LB)u+Ly  (7)

The presence of the derivative of the measurement (i.e. ¥ ) is not good since this amplifies the noise. To

get around this we introduce a new state z where
z=X,-Ly 8)
=x,=z+Ly )
substituting (9) into (7) leads to the final form of the reduced-order observer

2=Dz+Fy+Gu

7 is the state of

X, =2+Ly the estimator
where

D=A4,,—LA,

F=DL+ A4, —LA,

G=B,-LB

18



The block diagram of the reduced order observer is shown below

7 1
— L ;

1

0+

u [ 1 2
1 P] ait__‘l - > i.L | - f JI 4 ?
ol ryl
Example
. 1
Double integrator G(s)=—
S
ud 1 X, 1 X =Yy
rd - > —
s s

A =0, Ap=1,
A =0, Ay =0,

Uu

2=Dz+Fy+Gu

X, =Z+Ly

where
D=A4,,—LA,
F=DL+ A4, —LA,
G=B,-LB

Dynamics of reduced order observer iu =(A,, —LA,)X,

19



Require observer pole at s =-2

= |AI—4,,+LA,|=0 Where A=-2
= AU+L=0
=L=2
=D=-2
F=-4
G=1

My = A Ay?

for example:

S L=(2)O)Q)
=2

20



Reduced-Order Transfer Function

X - e
u=-K, K, )A('” =K, x, —K, &,

u

now
2=Dz+Fy +Gu
u=-K;y-K,(z+Ly)
u=-K,z- (K, +K,L)y
also
2=Dz+Fy+G[-K,z— (K, + K,L)y]
=(D-GK,)z+(F-GK, -GK,L)y
Transfer function: KS):C"(SI —AY'B'+D'
Y(s)
where

A'=D-GK,

B'=F-GK,—GK,L

C'=-K,

D'=—(K, +K,L)

When C is not of the form [I 0]3

X=Ax+Bu
y =Cx+Du

Xx=Qz = Qz=AQz+Bu = z=Q'AQz+Q*Bu
y=CQz+ Du
so find a transformation Q so that CQ is of form [I 0]
et  0=[0 0]
o CQ=[CQ CQ]=[I 0]

21



let P=|:

PQ :ﬁ }[Ql Qz]{CQl

T

:| be nonsingular

\

arbitrary matrix

TQ

Q=P

CQ,
TQ,

|

f[é !

if PO=1
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