## Chapter 9

## Controller Design

Two Independent Steps:

1) Feedback Design - Control Law $\mathbf{u}=-\mathbf{K x}$

- assumes all states are accessible (a lot of sensors are necessary)

2) Design of Estimator - (also called an Observer) which estimates the entire state vector given the outputs and inputs


## Control Law Design

Assumed system for control law design

for an nth order system there are $n$ feedback gains $K_{1}, \ldots, K_{n}$. By choice of $K$ the roots can generally be placed anywhere

$$
\begin{aligned}
\dot{x} & =A x+B u \\
u & =-K x \\
\dot{x} & =(A-B K) x
\end{aligned}
$$

characteristic equation is $|\lambda I-(A-B K)|=0$

## Placing Roots

Example: Undamped oscillator with freq. $\omega_{0}$

$$
\frac{y(s)}{u(s)}=\frac{1}{s^{2}+\omega_{0}^{2}}
$$

state space description
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -\omega_{0}^{2} & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u$
let's place the roots both at $-2 \omega_{0}$

$\rightarrow \quad$ we want to double the natural frequency and increase damping from $\zeta=0$ to $\zeta=1$

## REVIEW


$\cos \alpha=\zeta$
$\rightarrow \quad$ desired characteristic equation is

$$
\begin{aligned}
& \Delta_{d}(s)=\left(s+2 \omega_{0}\right)^{2}=s^{2}+4 \omega_{0} s+4 \omega_{0} \\
& \operatorname{det}[s I-(A-B K)]=\operatorname{det}\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left\{\left[\begin{array}{cc}
0 & 1 \\
-\omega_{0}^{2} & 0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
K_{1} & K_{2}
\end{array}\right]\right\}\right)
\end{aligned}
$$

or $\quad s^{2}+K_{2} s+\omega_{0}^{2}+K_{1}=0$

$$
\begin{aligned}
& \rightarrow \quad \text { equating same coefficients: } \begin{array}{l}
K_{2}=4 \omega_{0} \\
\omega_{0}^{2}+K_{1}=4 \omega_{0}^{2}
\end{array} \\
& \rightarrow \quad \begin{array}{l}
K_{1}=3 \omega_{0}^{2} \\
K_{2}=4 \omega_{0}
\end{array} \rightarrow \quad K=\left[\begin{array}{ll}
K_{1} & K_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 \omega_{0}^{2} & 4 \omega_{0}
\end{array}\right]
\end{aligned}
$$

## Use of Canonical Forms

A simple way of calculating the gains when order is greater than three is to use special "canonical" forms of the state equations.

The special structure of the system matrix is referred to as companion form.
Example: Third order case:
The characteristic equation is

$$
s^{3}+a_{1} s^{2}+a_{2} s+a_{3}
$$

Recall the phase variable form (a lower companion form)

$$
\begin{aligned}
& G(s)=\frac{b_{1} s^{n-1}+\ldots . b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\ldots .+a_{n}} \\
& A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & & & : \\
& & & & 1 \\
-a_{n} & -a_{n-1} & . . & . . & -a_{1}
\end{array}\right] \quad B=\left[\begin{array}{c}
0 \\
: \\
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{llll}
b_{n} & b_{n-1} & \ldots & b_{1}
\end{array}\right] \quad D=[0]
\end{aligned}
$$

The closed loop system matrix is

$$
A-B K
$$

Third order case:

$$
\begin{aligned}
A-B K & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right]-\underbrace{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{lll}
K_{1} & K_{2} & K_{3}
\end{array}\right]}_{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
K_{1} & K_{2} & K_{3}
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3}-K_{1} & -a_{2}-K_{2} & -a_{1}-K_{3}
\end{array}\right]
\end{aligned}
$$

Characteristic equation $|s I-(A-B K)|=0$

$$
\begin{equation*}
\rightarrow \quad s^{3}+\left(a_{1}+K_{3}\right) s^{2}+\left(a_{2}+K_{2}\right) s+\left(a_{3}+K_{1}\right)=0 \tag{1}
\end{equation*}
$$

if the desired pole locations result in the characteristic equation

$$
\begin{equation*}
\Delta_{d}(s)=s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}=0 \tag{2}
\end{equation*}
$$

equating like coefficients of (1) and (2)

$$
\rightarrow \quad \begin{aligned}
& K_{3}=-a_{1}+\alpha_{1} \\
& K_{2}=-a_{2}+\alpha_{2} \\
& K_{1}=-a_{3}+\alpha_{3}
\end{aligned}
$$

Example: Drill problem D9.1 page 635 of text

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & -6 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u} \\
& u=\left[\begin{array}{lll}
-k_{1} & -k_{2} & -k_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+r \\
& y=\left[\begin{array}{lll}
2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

Find $\mathrm{k}_{\mathrm{i}}$ to place the closed-loop system poles at

$$
s=-3,-4,-5
$$

ANS desired characteristic polynomial

$$
\begin{aligned}
& \Delta_{d}(s)=(s+3)(s+4)(s+5) \\
&=s^{3}+12 s^{2}+47 s+60 \\
& \rightarrow \quad \alpha_{1}=12, \alpha_{2}=47, \alpha_{3}=60
\end{aligned}
$$

we have

$$
\begin{aligned}
k_{3} & =-a_{1}+\alpha_{1} \\
& =-7+12=5
\end{aligned}
$$

$$
\begin{aligned}
k_{2} & =-a_{2}+\alpha_{2} \\
& =-6+47=41
\end{aligned}
$$

$$
\begin{aligned}
k_{1} & =-a_{3}+\alpha_{3} \\
& =-3+60=57
\end{aligned}
$$

## Design Procedure



Given $(A, B)$ and desired $\Delta_{d}(s)$, transform to $\left(A_{c}, B_{c}\right)$ and solve for gains
We then need to transform gain back to original state space
note: the poles can only be placed arbitrarily if the system is fully controllable
This procedure is encapsulated in Ackermann's formula
Ackermann's Formula

$$
k=\left[\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right] M_{C}^{-1} \Delta_{d}(A)
$$

where

$$
M_{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \ldots & A^{n-1} B
\end{array}\right] \text { (controllability matrix) }
$$

where n is the order of the system or the number of states and $\Delta_{d}(A)$ is defined as

$$
\Delta_{d}(A)=A^{n}+\alpha_{1} A^{n-1}+\alpha_{2} A^{n-2}+\ldots+\alpha_{n} I
$$

where the $\alpha_{i}{ }^{\prime} s$ are the coefficients of the desired characteristic polynomial

$$
\Delta_{d}(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n}
$$

Example
Apply the formula for the undamped oscillator

$$
\begin{aligned}
& \Delta_{d}(s)=\left(s+2 \omega_{0}\right)^{2} \\
& =s^{2}+4 \omega_{0} s+4 \omega_{0}{ }^{2} \\
& \rightarrow \quad \alpha_{1}=4 \omega_{0}, \quad \alpha_{2}=4 \omega_{0}{ }^{2} \\
& \text { recall } \quad A=\left[\begin{array}{cc}
0 & 1 \\
-\omega_{0}{ }^{2} & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \Delta_{d}(A)=\left[\begin{array}{cc}
-\omega_{0}{ }^{2} & 0 \\
0 & -\omega_{0}{ }^{2}
\end{array}\right]+4 \omega_{0}\left[\begin{array}{cc}
0 & 1 \\
-\omega_{0}{ }^{2} & 0
\end{array}\right]+4 \omega_{0}{ }^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 \omega_{0}{ }^{2} & 4 \omega_{0} \\
-4 \omega_{0}{ }^{3} & 3 \omega_{0}{ }^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { also } \quad M_{c}=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \rightarrow \quad M_{c}^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \rightarrow
\end{aligned} \quad K=\left[\begin{array}{ll}
K_{1} & K_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
3 \omega_{0}{ }^{2} & 4 \omega_{0} \\
-4 \omega_{0}{ }^{3} & 3 \omega_{0}{ }^{2}
\end{array}\right] ~ 子 ~ T \quad K=\left[\begin{array}{ll}
3 \omega_{0}{ }^{2} & 4 \omega_{0}
\end{array}\right] .
$$

which is the same as the result previously obtained.

## Tracking Problems

For step input: Will find $\bar{N}$ to ensure zero steady-state error to step inputs

$$
\begin{aligned}
u & =-K x+\bar{N} r \\
\dot{x} & =A x+B u \\
& =(A-B K) x+B \bar{N} r
\end{aligned}
$$

now

$$
\begin{aligned}
\dot{x}_{s s}=0 & \Rightarrow 0=(A-B K) x_{s s}+B \bar{N} r \\
& \Rightarrow x_{s s}=-(A-B K)^{-1} B \bar{N} r \\
& \Rightarrow y_{s s}=-C(A-B K)^{-1} B \bar{N} r
\end{aligned}
$$

A-BK is stable $\rightarrow$ inverse exists
now

$$
\begin{array}{r}
e_{s s}=r-y_{s s}=r+C(A-B K)^{-1} B \bar{N} r \\
=\left[1+C(A-B K)^{-1} B \bar{N}\right] r \\
\rightarrow \text { to get zero steady state error }
\end{array}
$$

$$
\bar{N}=\frac{-1}{C(A-B K)^{-1} B}
$$

Integral Control (used to get zero steady state error)


Integrator increases the system order by one, i.e. augment the plant model by an added state variable $\mathrm{x}_{\mathrm{i}}$

$$
\begin{aligned}
x_{i} & =\int e d t=\int(r-y) d t=\int(r-C x) d t \\
& \Rightarrow \dot{x}_{i}=r-C x
\end{aligned}
$$

Augmented systems becomes

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{x}_{i}
\end{array}\right]=\left[\begin{array}{cc}
A & \uparrow^{0} \\
-C & \mu_{\uparrow}^{0}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{i}
\end{array}\right]+\left[\begin{array}{l}
B \\
0
\end{array}\right] u+\left[\begin{array}{l}
0 \\
1
\end{array}\right] r
$$

zero matrices (compatible dimensions)
Control law is $u=-K x-K_{i} x_{i}=-\left[\begin{array}{ll}K & K_{i}\end{array}\right]\left[\begin{array}{c}x \\ x_{i}\end{array}\right]$
The design now proceeds as before.
Example
Double Integrator $\quad G(s)=\frac{1}{s^{2}}$

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

Augment the plant

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x} \\
\hdashline \dot{x}_{i}
\end{array}\right]=\left[\begin{array}{cc:c}
0 & 1 & 0 \\
0 & 0 & 0 \\
\hdashline-1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\hdashline x_{i}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
\hdashline 0
\end{array}\right] u} \\
& y=\left[\begin{array}{ll:l}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\hdashline x_{i}
\end{array}\right]
\end{aligned}
$$

Select poles of the closed loop system to be at

$$
\{-1 \pm j,-5\}
$$

N.B. 3 poles because of extra state

$$
K=\left[\begin{array}{lll}
12 & 7 & -10
\end{array}\right]
$$

Steady state output to a unit step input can be derived as follows

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& \dot{x}_{i}=-C x+r \\
& \frac{d}{d t}\left[\begin{array}{c}
\dot{x} \\
\dot{x}_{i}
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
-C & 0
\end{array}\right]\left[\begin{array}{c}
x \\
x_{i}
\end{array}\right]+\overbrace{\left[\begin{array}{l}
B \\
0
\end{array}\right]}^{B_{u}} u+\overbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}^{B_{r}} \\
& \left.u=-\left[\begin{array}{ll}
K & K_{i}
\end{array}\right] \begin{array}{c}
x \\
x_{i}
\end{array}\right] \\
& \dot{\bar{x}}=\bar{A} \bar{x}+B_{u} u+B_{r} r \\
& u=-\bar{K} \bar{x} \\
& \dot{\bar{x}}=\bar{A} \bar{x}-B_{u} \bar{K} \bar{x}+B_{r} r \\
& \dot{\bar{x}}=\left(\bar{A}-B_{u} \bar{K}\right) \bar{x}+B_{r} r
\end{aligned}
$$

$$
\begin{aligned}
& y=C x \\
& y=\left[\begin{array}{ll}
C & 0
\end{array}\right]\left[\begin{array}{c}
x \\
x_{i}
\end{array}\right] \\
& y=\bar{C} \bar{x}
\end{aligned}
$$

in steady state $\dot{\bar{x}}_{s s}=0$

$$
\begin{aligned}
& \Longrightarrow \bar{x}_{s s}=-\left(\bar{A}-B_{u} \bar{K}\right)^{-1} B_{r} r \\
& \Longrightarrow y_{s s}=-\bar{C}\left(\bar{A}-B_{u} \bar{K}\right)^{-1} B_{r} r
\end{aligned}
$$

For the example

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \rightarrow \quad \bar{A}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad B_{u}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad B_{r}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \bar{C}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
& \rightarrow y_{s s} \\
& \rightarrow-\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
12 & 7 \\
-10
\end{array}\right]\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] r \\
&=-\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & \underline{K}^{0} \\
-12 & -7 & 10 \\
-1 & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] r
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}=-1\left|\begin{array}{cc}
-12 & 10 \\
-1 & 0
\end{array}\right| \\
&=-10
\end{aligned} \begin{aligned}
\operatorname{adj}(A)_{13} & =\left|\begin{array}{cc}
1 & 0 \\
-7 & 10
\end{array}\right| \\
& =10
\end{aligned}
$$

## Observer Design



We will estimate states rather than measure them


Observer simulates the original system

## Original System

$$
\begin{array}{ll}
\dot{x}=A x+B u & x(0)=x_{0} \\
y=C x &
\end{array}
$$

Observer

$$
\dot{\hat{x}}=A \hat{x}+B u+L(y-C \hat{x}) \quad \hat{x}(0)=\hat{x}_{0}
$$

Error between states and their estimates

$$
\begin{aligned}
\tilde{x} & =x-\hat{x} \\
\dot{\tilde{x}} & =\dot{x}-\dot{\hat{x}} \\
\rightarrow \quad & =A x+B u-A \hat{x}-B u-L(y-C \hat{x}) \\
& =(A-L C) \tilde{x} \quad \tilde{x}(0)=\tilde{x}_{0}
\end{aligned}
$$

Observer error will go to zero asymptotically $\Leftrightarrow$ A-LC is stable (i.e. eigenvalues are in the LHP)
note: the eigenvalues of A-LC are the observer poles, which can be placed arbitrarily if the system is observable
this can be done by choice of the observer gains L (a column vector for single output systems)

Definition: 1) a system is detectable if the unstable modes are observable
2) a system is stablizable if the unstable modes are controllable

## Duality

| Control | Estimation | Control | Estimation |
| :---: | :---: | :---: | :---: |
| A | $\mathrm{A}^{\mathrm{T}}$ |  |  |
| $B$ | $\mathrm{C}^{\mathrm{T}}$ | $\mathrm{M}_{\mathrm{C}}$ | $\mathrm{M}_{\mathrm{o}^{\mathrm{T}}}$ |
| C | $\mathrm{B}^{\mathrm{T}}$ | K | $\mathrm{L}^{\mathrm{T}}$ |

Example

$$
M_{C}=\left[\begin{array}{llll}
B & A B & \ldots & A^{n-1} B
\end{array}\right]
$$

duality

$$
\begin{aligned}
M_{o}^{T} & =\left[\begin{array}{llll}
C^{T} & A^{T} C^{T} & \ldots . & A^{T^{n-1}} C^{T}
\end{array}\right] \\
& =\left[\begin{array}{llll}
C^{T} & (C A)^{T} & \ldots & \left(C A^{n-1}\right)^{T}
\end{array}\right] \\
& =\left[\begin{array}{c}
C \\
C A \\
: \\
C A^{n-1}
\end{array}\right]^{T} \quad
\end{aligned}
$$

$$
L=\Delta_{e}(A) M_{o}^{-1}\left[\begin{array}{c}
0 \\
0 \\
: \\
1
\end{array}\right]
$$

## DERIVATION USING DUALITY

Ackermann's Formula for control problem

$$
K=\left[\begin{array}{lll}
0 & \ldots \ldots . & 1
\end{array}\right] M_{C}^{-1} \Delta_{C}(A)
$$

Duality $\rightarrow$

$$
\begin{aligned}
L^{T} & =\left[\begin{array}{lll}
0 & \ldots . . & 1
\end{array}\right] M_{o}^{T^{-1}} \Delta_{e}\left(A^{T}\right) \\
& =\left(\begin{array}{cc} 
\\
\Delta_{e}(A) M_{o}^{-1}\left[\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right]
\end{array}\right)^{T} \\
\rightarrow \quad L & =\Delta_{e}(A) M_{o}^{-1}\left[\begin{array}{c}
0 \\
: \\
1
\end{array}\right]
\end{aligned}
$$

$$
=\left(\Delta_{e}(A) M_{o}^{-1}\left[\begin{array}{l}
0 \\
:
\end{array}\right]\right)^{T} \quad A^{T} B^{T} C^{T}=(C B A)^{T}
$$

## Example

Design an observer for

$$
\begin{aligned}
& G(s)=\frac{1}{s^{2}} \\
& \dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

Note the system is completely observable
Design the observer with poles at $\{-2 \pm j 2\}$
Actual characteristic equation:

$$
\begin{aligned}
|s I-(A-L C)| & =\left|s\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{l}
l_{1} \\
l_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right| \\
& =s^{2}+l_{1} s+l_{2}
\end{aligned}
$$

Desired characteristic equation:

$$
(s+2+j 2)(s+2-j 2)=s^{2}+4 s+8
$$

Equating coefficients $\rightarrow \begin{aligned} & l_{1}=4 \\ & l_{2}=8\end{aligned} \quad \rightarrow \quad L=\left[\begin{array}{l}4 \\ 8\end{array}\right]$
The observer equations are

$$
\begin{aligned}
& \dot{\hat{x}}_{1}=\hat{x}_{2}+4\left(y-\hat{x}_{1}\right) \\
& \dot{\hat{x}}_{2}=8\left(y-\hat{x}_{1}\right)+u
\end{aligned}
$$



STRUCTURE OF OBSERVER


Figure 9.10 Simulation of the double-integrator plant and its observer. (a) Plot of the first state and its estimate. (b) Plot of the second state and its estimate.

## Control Using Observers

Plant:

$$
\begin{array}{ll}
\dot{x}=A x+B u & x(0)=x_{0} \\
y & =C x
\end{array}
$$

Observer: $\quad \dot{\hat{x}}=A \hat{x}+B u+L(y-C \hat{x}) \quad \hat{x}(0)=\hat{x}_{0}$

Estimated state feedback: $\quad u=-K \hat{x}$
closing the loop

$$
\begin{aligned}
& \dot{x}=A x-B K \hat{x} \\
& \dot{\hat{x}}=(A-L C) \hat{x}-B K \hat{x}+L y \\
&=(A-L C-B K) \hat{x}+L C x \\
& \Rightarrow\left[\begin{array}{c}
\dot{x} \\
\dot{\hat{x}}
\end{array}\right]=\left[\begin{array}{cc}
A & -B K \\
L C & A-B K-L C
\end{array}\right]\left[\begin{array}{c}
x \\
\hat{x}
\end{array}\right]
\end{aligned}
$$

## Separation Principle

Introduce transformation

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]=P\left[\begin{array}{c}
z \\
w
\end{array}\right] \quad \text { where } \quad P=\left[\begin{array}{cc}
I_{N} & 0_{N} \\
I_{N} & -I_{N}
\end{array}\right]} \\
\text { note } P^{-1}=P \\
\Rightarrow\left[\begin{array}{c}
z \\
w
\end{array}\right]=\left[\begin{array}{cc}
I_{N} & 0_{N} \\
I_{N} & -I_{N}
\end{array}\right]\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]=\left[\begin{array}{c}
x \\
x-\hat{x}
\end{array}\right]=\left[\begin{array}{c}
x \\
\tilde{x}
\end{array}\right]
\end{gathered}
$$

Therefore using this transformation the old augmented state vector comprising $x$ (the plant states) and $\hat{x}$ (the estimator sates) now becomes $x$ and $\tilde{x}$ (the estimator error). The new system matrix $\tilde{A}=P^{-1} A P$

$$
\Rightarrow\left[\begin{array}{c}
\dot{x} \\
\dot{\tilde{x}}
\end{array}\right]=\left[\begin{array}{cc}
A-B K & B K \\
0 & A-L C
\end{array}\right]\left[\begin{array}{c}
x \\
\tilde{x}
\end{array}\right]
$$

note $\tilde{A}$ is block-triangular
Eigenvalues of a block-triangular matrix are equal to the eigenvalues of the diagonal blocks. So the eigenvalues of the full system comprise the eigenvalues of the plant (i.e. eigenvalues of ABK ) and the observer (i.e. eigenvalues of A-LC).

Alternative Approach

$$
\begin{aligned}
& \begin{aligned}
& \dot{x}=A x-B K \hat{x} \\
& \dot{\hat{x}}=L C x+(A-B K-L C) \hat{x} \\
& \begin{aligned}
\dot{x}-\dot{\hat{x}} & =A x-B K \hat{x}-L C x-(A-B K-L C) \hat{x} \\
& =(A-L C) x-(A-L C) \hat{x}
\end{aligned} \\
& \begin{aligned}
\dot{\tilde{x}} & =(A-L C) \tilde{x}
\end{aligned} \\
& \begin{aligned}
\dot{x}=A x-B K \hat{x}
\end{aligned} \\
& \text { now } \quad \tilde{x}=x-\hat{x} \quad \Rightarrow \quad \hat{x}=x-\tilde{x} \\
& \Rightarrow \dot{x}=A x-B K(x-\tilde{x}) \\
& \quad=(A-B K) x+B K \tilde{x}
\end{aligned}
\end{aligned}
$$

## Compensator Transfer Function



COMPENSATOR
we have

$$
\begin{aligned}
& u=-K \hat{x} \\
& \dot{\hat{x}}=A \hat{x}+B u+L(y-C \hat{x})=A \hat{x}-B K \hat{x}+L y-L C \hat{x} \\
&=(A-B K-L C) \hat{x}+L y \\
& \Rightarrow \hat{X}(s)=(s I-A+B K+L C)^{-1} L Y(s) \\
& \therefore U(s)=\underbrace{-K(s I-A+B K+L C)^{-1} L}_{H(s)} Y(s)
\end{aligned}
$$

## Design Issues

1) Problem with pole placement is that there is no control over compenstor poles and zeros
2) Optimum choice for observer initial conditions is

$$
\hat{x}(0)=C^{\prime}\left(C C^{\prime}\right)^{-1} y(0)
$$

3) Choice of observer poles:
i. Choose them to be faster than controller poles
ii. Alternatively, choose them to be at plant zeros (if the sytem has RHP zeros, use their LHP images).

## Reduced-Order Observer Design

If system has $n$ states and $m$ measurements, then an observer of order ( $n-m$ ) will be sufficient.
If $y=C x$ we will assume $C$ has the structure:

$$
\begin{aligned}
& C=\left[\begin{array}{ll}
I & 0
\end{array}\right] \quad I \in R^{m x m}, 0 \in R^{m x(n-m)} \\
& \therefore y=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{l}
x_{m} \\
x_{u}
\end{array}\right]=x_{m} \text { measured states } \\
& \Rightarrow\left[\begin{array}{c}
\dot{x}_{m} \\
\dot{x}_{u}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{m} \\
x_{u}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right] u \\
& \Rightarrow \dot{x}_{u}=A_{22} x_{u}+\underbrace{A_{21} x_{m}+B_{2} u}_{\text {knowneasured states }}) \quad \longleftarrow \text { input } \\
& \text { also } \quad \begin{array}{l}
\text { dynamics of the } \\
\text { unmeasured state }
\end{array} \\
& \quad \Rightarrow \underbrace{\dot{y}-A_{11} y-B_{1} u=A_{12} x_{u}}_{\text {known measurement }} \dot{\dot{y}=A_{11} y+A_{12} x_{u}+B_{1} u} \longleftarrow \begin{array}{c}
\text { output } \\
\text { relationship }
\end{array}
\end{aligned}
$$

Summarizing:

$$
\begin{align*}
& \dot{x}_{u}=A_{22} x_{u}+(\underbrace{A_{21} x_{m}+B_{2} u}_{\text {known input }})  \tag{1a}\\
& \underbrace{\dot{y}-A_{11} y-B_{1} u}_{\text {known measurement }}=A_{12} x_{u} \tag{1b}
\end{align*}
$$

(1)

Recall for full-order observer:

Plant:

$$
\begin{array}{ll}
\dot{x}=A x+B u & x(0)=x_{0} \\
y=C x &  \tag{3}\\
\dot{\hat{x}}=A \hat{x}+B u+L(y-C \hat{x}) & \left.\hat{x}(0)=\hat{x}_{0}\right\}
\end{array}
$$

comparing (1) and (2) shows the correspondence

$$
\left.\begin{array}{l}
x \leftarrow x_{u}  \tag{4}\\
A \leftarrow A_{22} \\
B u \leftarrow A_{21} x_{m}+B_{2} u \\
y \leftarrow \dot{y}-A_{11} y-B_{1} u \\
C \leftarrow A_{12}
\end{array}\right\}
$$

substituting (4) into (3) we get the reduced order equation

$$
\begin{equation*}
\dot{\hat{x}}_{u}=A_{22} \hat{x}_{u}+A_{21} x_{m}+B_{2} u+L(\overbrace{A_{12} \tilde{x}_{u}}^{\dot{y}-A_{11} y-B_{1} u}-A_{12} \hat{x}_{u})\} \tag{5}
\end{equation*}
$$

let us now define the estimator error

$$
\tilde{x}_{u}=x_{u}-\hat{x}_{u}
$$

therefore subtracting (5) from (1a) and using (1b) (i.e. $\dot{y}-A_{11} y-B_{1} u=A_{12} x_{u}$ )
we get

$$
\left.\dot{\tilde{x}}_{u}=\left(A_{22}-L A_{12}\right) \tilde{x}_{u}\right\} \text { (6) } \longleftarrow \quad \begin{align*}
& \text { the error dynamics }  \tag{6}\\
& \text { are given by this } \\
& \text { equation }
\end{align*}
$$

Design proceeds by, given an $\mathrm{A}_{22}$ and $\mathrm{A}_{12}$ we choose an L to place estimator poles.
Rewriting (5) we have

$$
\begin{equation*}
\dot{\hat{x}}_{u}=\left(A_{22}-L A_{12}\right) \hat{x}_{u}+\left(A_{21}-L A_{11}\right) y+\left(B_{2}-L B_{1}\right) u+L \dot{y} \tag{7}
\end{equation*}
$$

The presence of the derivative of the measurement (i.e. $\dot{y}$ ) is not good since this amplifies the noise. To get around this we introduce a new state $z$ where

$$
\begin{align*}
& z=\hat{x}_{u}-L y  \tag{8}\\
& \Rightarrow \hat{x}_{u}=z+L y \tag{9}
\end{align*}
$$

substituting (9) into (7) leads to the final form of the reduced-order observer

$$
\begin{array}{ll}
\dot{z}=D z+F y+G u & z \text { is the state of } \\
\hat{x}_{u}=z+L y & \text { the estimator }
\end{array}
$$

where

$$
\begin{aligned}
& D=A_{22}-L A_{12} \\
& F=D L+A_{21}-L A_{11} \\
& G=B_{2}-L B_{1}
\end{aligned}
$$

The block diagram of the reduced order observer is shown below


## Example

Double integrator $G(s)=\frac{1}{s^{2}}$

$\dot{x}=\left[\begin{array}{l|l}0 & 1 \\ \hline 0 & 0\end{array}\right] x+\left[\begin{array}{c}0 \\ \hline 1\end{array}\right] u \quad \begin{array}{lll}A_{11}=0, & A_{12}=1, & B_{1}=0 \\ A_{21}=0, & A_{22}=0, & B_{2}=1\end{array}$
$y=[1 \mid 0] x$


$$
\begin{aligned}
& \dot{z}=D z+F y+G u \\
& \hat{x}_{u}=z+L y
\end{aligned}
$$

where

$$
\begin{aligned}
& D=A_{22}-L A_{12} \\
& F=D L+A_{21}-L A_{11} \\
& G=B_{2}-L B_{1}
\end{aligned}
$$

Dynamics of reduced order observer $\dot{\tilde{x}}_{u}=\left(A_{22}-L A_{12}\right) \tilde{x}_{u}$

Require observer pole at $s=-2$

$$
\begin{aligned}
\Rightarrow & \left|\lambda I-A_{22}+L A_{12}\right|=0 \quad \text { where } \lambda=-2 \\
\Rightarrow & \lambda I+L=0 \\
\Rightarrow & L=2 \\
\Rightarrow & D=-2 \\
& F=-4 \\
& G=1
\end{aligned}
$$

Ackerman's formula for reduced order observer gains

$$
\begin{gathered}
L=\Delta_{e}\left(A_{22}\right) M_{0}^{-1}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] \\
M_{0}=\left[\begin{array}{c}
A_{12} \\
A_{12} A_{22} \\
A_{12} A_{22}{ }^{2} \\
\vdots \\
A_{12} A_{22}{ }^{n-2}
\end{array}\right]
\end{gathered}
$$

for example:

$$
\begin{aligned}
& \Delta_{e}(s)=s+2 \\
& \Delta_{e}\left(A_{22}\right)=0+2 \\
& M_{0}=A_{12}=1 \\
& \therefore L=(2)(1)(1) \\
& =2
\end{aligned}
$$

Reduced-Order Transfer Function

$$
u=-\left[\begin{array}{ll}
K_{1} & K_{2}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
\hat{x}_{u}
\end{array}\right]=-K_{1} \overbrace{x_{m}}^{\nu}-K_{2} \stackrel{\stackrel{z+L y}{\hat{x}_{u}}}{ }
$$

now

$$
\begin{aligned}
\dot{z} & =D z+F y+G u \\
u & =-K_{1} y-K_{2}(z+L y) \\
u & =-K_{2} z-\left(K_{1}+K_{2} L\right) y
\end{aligned}
$$

also

$$
\begin{aligned}
\dot{z} & =D z+F y+G\left[-K_{2} z-\left(K_{1}+K_{2} L\right) y\right] \\
& =\left(D-G K_{2}\right) z+\left(F-G K_{1}-G K_{2} L\right) y
\end{aligned}
$$

Transfer function: $\quad \frac{U(s)}{Y(s)}=C^{\prime}\left(s I-A^{\prime}\right)^{-1} B^{\prime}+D^{\prime}$
where

$$
\begin{aligned}
& A^{\prime}=D-G K_{2} \\
& B^{\prime}=F-G K_{1}-G K_{2} L \\
& C^{\prime}=-K_{2} \\
& D^{\prime}=-\left(K_{1}+K_{2} L\right)
\end{aligned}
$$

When C is not of the form $\left[\begin{array}{ll}I & 0\end{array}\right]$ ?

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u \\
x & =Q z \Rightarrow Q \dot{z}=A Q z+B u \Rightarrow \dot{z}=Q^{-1} A Q z+Q^{-1} B u \\
& y=C Q z+D u
\end{aligned}
$$

so find a transformation Q so that CQ is of form $\left[\begin{array}{ll}I & 0\end{array}\right]$

$$
\begin{array}{ll}
\text { let } & Q=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right] \\
\text { so } & C Q=\left[\begin{array}{ll}
C Q_{1} & C Q_{2}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right]
\end{array}
$$

let $P=\left[\begin{array}{c}C \\ T\end{array}\right] \quad$ be nonsingular arbitrary matrix

$$
\begin{aligned}
& P Q=\left[\begin{array}{c}
C \\
T
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]=\left[\begin{array}{cc}
C Q_{1} & C Q_{2} \\
T Q_{1} & T Q_{2}
\end{array}\right]=\overbrace{\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]}^{\therefore Q=P^{-1}}
\end{aligned}
$$

