Chapter 8

Transfer Function (TF) to State Space (SS) Form

Phase Variable Form
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Mason’s Rule pg. 84-85

The outputs of each integrator may be treated as state variables

X1(8) =5 X,(s)

X, (s) :%X3(S)

X3(8) = [-3X4(8) = X,(5) =6 X5(s) +U ()]
Y(s)=—-12X,(s) +4X,(s) —5X;(9)

or

sX(5) = X,(s)

sX,(8) = X;5(5)

sX3(8) ==3X,(5) = X5(5) - 6X,(s) + U(s)
Y(s)=—-12X,(s)+4X,(s) = 5X,(s)



dx;

at =X2(l‘)

dx,

ar x3(t)
D2 =3x,(t) - x, () — 6, (1) + u(t)

dt

() ==12x,(1) + 4x,(1) = 5x,(2)

let
Xl Xl
X=X, > X=X,
X3 X3
9
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X, 0 1 0 |x 0
X,|={0 0 1]x,[+|0u
X, -3 -1 6] % 1
¢ Xl_ D
y=|-12 4 -5]Xx, +0u
X3

U(s) O
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SX,(8) =—-6X,(s) + X,(s) —5U(s)
SX,(s) =—X,(s) + X5(s) +4U(s)
SX3(s) =—-3X,(s) —12U(s)

Y(s) = X,(s)
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In general

n-1
G(s) = bs" +..+b, _s+b,

s"+as" +..+a,

Phase-Variable Form
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Multiple Inputs and Outputs
Single input, two-output system
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Y(s) = {Yl (S)} _ Fn(s)}u ©)

Y2(8) ] [Ta(8)

T(s)

T(s)=
(s) S3+6S2+S+3L 357 +5—6

0 1 0 0
Xx=|0 0 1 |[x+|0]u
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-12 4 -5 0
y = X+| |u
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Two Inputs and One Output
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Ti2(8) = $3+6s2+5+3
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Transfer Function given State Space Form

X = AX + Bu )
y=Cx+Du 2)

L 1) 2 sX-x(0)=4X+BU

set x(0) =0
2> sX=AX+BU
(sl-A)X =BU

X =(sl —A)"BU
%/_/

resolvent
matrix

Y(s)=CX(s)+ DU(s)
L @ 2 Y(s)= [C(sI-A)'B+D] U

T(s) < transfer function matrix

Example: Two Input — Two Output
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State Transformation

x(£) = P=(?)

where:

x(t) is the old state

P is the non-singular matrix

z(t) is the new state

X =Pz

X=AxX+Bu

Pz = APz +Bu

z=P'APz+P'Bu
A B

Y1(S)

Y2(S)



y=Cx+Du

2> y=CPz+ Du
=TS

C D

New state space quadruple {4,B,C,D} for state z
where:

P'AP
P'B
CP
D

Ol Al = x|
I

Change of state does not change the input-output relationship

S T(s)=C(sI-A)'B+D and  T(s)=C(sI-A)'B+D
so that
T(s)=T(s)

Proof
T(s)=CP(sI-P'AP)"'P"'B+D
=CP(sP*IP-P*AP)"P'B+D
=CP[P (sl - A)P]*'P'B+D
-CP P (sl — A)_l PP'B+D using (AB)"' = B'A™" if inverses exists
=C(sl —-A)'B+D
=T(s)

Diagonalization of System Matrix

example

X, =X, + X 11

.1 1 2 X = X

X, =X +X, ¢ orf 11

y=X +X, y=[ 1x
change of state:

1 1
let Xx=Pz= Z
-1 1_ diagonal matrix

x_iJt -1 a1 1o o
1 11 1)-11 |0 2



z,=0
> z,=2z,
y =21,

solution is trivial

z(1)=2(0)
z,(1)=¢"z,(0)

where z(0) = P~'x(0)

What transformation matrix P diagonalizes the systems matrix?

Ans. P=[x; : x, : .. x,] wherex are the cigenvectors of A if A has distinct eigenvalues
example
-2 1
A=
1 -2 characteristic equation

cigenvalues of A:

Al -A=0=

A+2 -1
-1 A1+2

= (A+1)(A+3)=0

cigenvalues 3}distinct = diagonalizable

eigenvectors of A:

Ax; = A.x,
for 4, =-1
-2 1 (X, B Xq4
{ 1 _2}{)(21} __J{ij 1
choose X; :L}
= =2x,,+ X, ==X,
= Xo1 =Xy

for 4, =-3
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Diagonalization Using Partial Fraction Expansion

Example

Y(s) _
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separate systems

Y1
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> o

= LT
z,(s) =1U(S) =17, =U
S v =1z
ZZ(S):LU(S)2>22222+U yz__ézz
s—1 4
Z,(s) :LU(S) =12, =-32;+U Vs =§z3
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Complex Conjugate Characteristic Roots

Example
2 . . .
T(s)= 6s +226s+8 _ 2+ 4+ N 4—j
(s+2)(s"+2s+10) s+2 s+1+,3 s+1-j3
X, -2 0 0 X, 1
> X, |=| 0 —-1-j3 0 X, [+]1u
Xq 0 0 -1+ j3| X, 1
X
y=[-2 4+j 4-j]x
X3

Inconvenient to use complex numbers, so don’t expand into complex factors

65 +26s+8 -2 8s+14
T(s)= 5 = +—
(s+2)(s"+2s+10) s+2 s +25+10
2] [-2 O [z, ] [1
> 2,|=| 0 [0 Ty, +[0lu
2,] [0 i-10 -2z |1
Z, |
y=[-2 148] z,
Z3 |
Example
T(s)= 6 -8 N —Ss+1 N 8s

+
s=3 s+4 $2+2s+17 s2=3s5+10
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'x]1[3 0 0 0 0 Oofx] [1]
;| |0 -4 0 0 0 0fx 1
d|{x|_[0 0 O 1§O 0 X3+§05u
dt{x,| (0 0 =17 -2+ 0 O0Xx, L11
| |0 0 0 030 1ix 0
%] [0 0 0 0 i-10 3]x] [iL]
X1 -
X2
________ X3
y=Il6 -8 [1 =50 87|
X5
| X¢ |
Example
T(S)_10s2+51s+56_ 3 7 -3

= = + +
(s+4)(s+2)° s+4 s+2 (s+2)

JORDAN CANONICAL FORM

> EXZ:OE_Z 1l x, |+]:01u
X3 0 i__Q____T_Z_E X3 i_]_-,:
X
y=[3 =3_7]x, \ JORDAN BLOCK

Time Response of Systems

t
x(t) =e"x(t)) + [eA ) Bu(r)dr
t

= Wx(t)) + AN —11BU

where e = £{[sl - A"}

-3 1
Find e when A =
-2 0

where u(t)=U is a constant
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eM=£Y[sl - A}
_ £_1{{s +3 —1}1}

2 S
s 1
:£—1 s?2+3s+2  s?+3s+2
-2 5+3

| s?+3s+2  s?+3s+2
(14, 2 1 ., -1
_ £—1 S+1 + S+2 S+1 + S+2

=2, 2 2 4 -
_s+1+s+2 s+1+s+2

—e 420! et_eg®

—2e 420 20t g™

Stability

X = AX x(0)=x,

System is asymptotically stable if all states approach zero with time - i.e. x(t)=2>0 as t=>®©

This will happen if the eigenvalues have negative real parts.

Bounded-input, bounded-output (BIBO) stability means that the system output is bounded for
all bounded inputs. That is

u)<N<ow = |yt) <M <o

In the absence of pole-zero cancellations, transfer function poles are identical to system
eigenvalues, hence BIBO stability and asymptotic stability are equivalent.

Example
Final Value Theorem:
T(s)= s—1 lim y(t) = lim sY(s)
(S _ 1)(S + 2) t—oo s—0
pole at s=-2
. . . s—1 . 1
no pole at s=+1 since: IIm7(s) =lim =lim =—#0
sl sl (s=1D(s+2) 1 2s+1 3

since only pole is at s=-2
—> system is BIBO stable since no pole in RHP or on imaginary axis
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State-space realization
o |1-1 2 1
X= X+ u
1 0 0
y=[t -1

Eigenvalues are 1 and -2 > system is unstable in the asymptotic sense

Internal Stability

Based on transfer function description and is stronger than BIBO stability

D

+
K V¢ N
)

General feedback system with disturbances
Internal stability requires that all signals within the feedback system remain bounded for all
bounded inputs
Requires nine transfer functions from inputs R,D,N to outputs U,V,W be stable

Sufficientif 1) 1+KGH has no zeros in RHP and on imaginary axis
2) KGH has no pole-zero cancellations in RHP or on imaginary axis

Controllability

A system is completely controllable if the system state x(t7) at time tr can be forced to take on
any desired value by applying a control input u(t) over a period of time from t, until t.

Observability

A system is completely observable if any initial state vector x(to) can be reconstructed by
examining the system output y(t) over some period of time from to to t.

Tests for Controllability and Observability
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If the system matrix is diagonal then the tests are easy

e.g.
X, A 0 0 0]x 1
d|Xx 0 4, 0 0|x 1
g% _ 2 21 [T ly
dt| X, 0 0 A 0 |xg 0
X4 0 0 0 A,x 0
y=[L 0 1 0jx
eigenvalues are A, A, 45,4,
modes are et ™! et oM
Modes €' and €' are uncontrollable since they are not connected 1o the control input
Modes €*' and ™' are unobservable since they are not connected to the ontput
2> mode e’ controllable and observable
mode e®' controllable but unobservable
mode €™ uncontrollable but observable
mode ™' uncontrollable and unobservable

For MIMO systems
-Uncontrollable modes correspond to zero rows of B
-Unobservable modes correspond to zero columns of C

Controllability Matrix

X=Ax+Bu
Mc=[B { AB i ... i A™'B]

A system is completely controllable if and only if M. has full rank

Example
-4 1 1
A= B:
- 8
M. =[B : AB]

N

det(M,)=0 => not fully state controllable
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Observability Matrix

C
CA
Mg =
CAWI

A system is completely observable if and only if Mo has full rank

Example

1 -1
vo_|72 2
° 10 -1
0 2

Mo has two linearly independent rows (1 and 3) = fully observable

1 -1
‘M T %: {1 ~2 0 o}—z 2
° e -1 2 -12|0 -1
0 2
5 -5
“l-5 10
=250

> fully observable
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