Chapter 10

Linear Quadratic Regulator Problem

Minimize the cost function J given by

J= %Lw(x'Qx+u'Ru)dt

R>0 positive definite (symmetric with positive eigenvalues)
Q=20 positive semi definite (symmetric with nonnegative eigenvalues)
subject to
X=AXx+ Bu
(y=Cx)
LQR SOLUTION:

Find the positive-definite solution P of the ARE (Algebraic Ricatti Equation)

AP+PA+Q-PBR'B'P=0
U=-Kx where K=R'B'P

The positive-definite solution of the ARE results in an asymptotically stable closed-loop system if:

1) the system is controllable
2) R>0
3) Q=C,'C, where (CyA) is observable
These conditions are necessary and sufficient
We can define another output z where
z=C.x —> controlled or regulated output

Therefore ¥'Qu=2'C/Cux =2z

LOR design of double integrator

A:B ﬂ Bzm C,=[ 0]

1 0
assume Q= R=1




(A, B) is controllable

(Cq, A) is observable . )
note P 1s symmetric
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The closed loop system matrix becomes

acpk=| 0 1
- {—1 —\/5}

Closed loop roots are:

2 424+1=0
i=g(—1ij)

damping ratio is 0.707



The loop transfer function is:
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USING MATLAB TO GET EXACT RESULTS
Matlab
num = sqrt(2)*[ 1 sqrt(2)/2 ]
den=11 0 0]
results: margin(num,den)

gm=%

pm=065.53 @ w=1.554

Properties of LQR design

From the ARE we can derive the relation
. .2
L+ L(jw)" =1+1[G,(jo)| *)
p is a scalar
where L(S) = K¢(s)B -loop gain
g(s)=(sl - A"
Q=C,'C,
G,(s) =C,4(s)B

and

From (*) we see
1+ L(jo) 21

This implies that the Nyquist plot of the loop transfer function of an LQR design
always stays outside of a unit circle centered at (-1,0).
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In SISO case, LQR design has > 60° phase margin, infinite gain margin and a gain reduction tolerance
of -6dB (i.e. the gain can be reduced by a factor of § before instability occurs).

Recall pole placement does not guarantee stability margins.

High-frequency roll-off rate

Closed loop transfer function T(jw) =—-K(jowl — A+BK)™B

limT (jw) =L KB=-1R'B'PB <0

> -20dB/dec roll off rate at high frequencies
- not good for noise suppression

Optimal Observers — Kalman Filter
State estimation — plant represented as

X=AX+Bu+w® <« process noise
y=CXx+V <« measurement noise

The optimal filter is given by

X = AR+ Bu+ L(y—CX)



where L =2C' Ro_l
where 2 is the positive definite solution of
AZ +2ZA+Q, —ZC' R(;lCZ =0

Q. and R, are noise covariance matrices, which represent the intensity of the process and sensor noise
inputs.

Require Q, 2 0,R; > 0 and system to be observable.

If we combine the Kalman-Bucy Filter (optimal estimator) with LQR design, we have LQG (Linear
Quadratic Gaussian). Let’s do a LQG design for double integrator plant. We already have the LQR
design.

For Kalman filter, assume

1 0
Q(]—|:O 1] and R, =1

a b
Solving Ricatti equation with X = { :|

b ¢
a’=2b+1
we find ab=c
b? =1

> z{‘/é 1}

and L=32C'R;" 2{

B

1

Transfer function of compensator is given by

H(s) =K (s — A+ BK + LC)' L

3.14 (s + 0.3)
(s+1.57+j1.4) (s + 1.57 — j1.4)

Comparison of LQR and LOQG

-LQR has guaranteed stability margins
-LQG has no guaranteed stability margins



-high freq. roll off in LQG can be > 20 dB/dec exhibited by LQR = greater noise filtering in
LQG

-LQG is not robust = uncertainty in plant may cause system to go unstable

Loop Transfer Recovery (LTR)

LQR = > 60° phase margin
infinite gain margin

LQG - no guaranteed margins

The properties of LQR can be recovered asymptotically by using Q, and Ry as tuning parameters

R=0 + U(s) Uls) — — X(s)
Cj » e B D) € > ()
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loop gain, L o (S) =K(sl —A+BK + LC)'LCg¢(s)B



If the following two conditions hold then LQR loop properties can be recovered if

1) G(s) is minimum phase
2) Ro=1 and Qi=¢’BB'

Then it can be shown

(!'_TO LLQG (s) = L(s)

The variable y that is recovered may be different from the variable z that is to be controlled

where Yy =CX and z=C.x

Loop Shaping Steps

1) Determine the controlled variable and set
Q=CC and Q=C/C,
2) Get a desired loop gain in LQR design. Use R as tuning parameter.

3) Select scalar q and solve the filter Ricatti equation

AT + A+q’BB-2C'Cz =0
L=2C

4) Increase q until the resulting loop transfer function is close to the LQR design

Do not make g too high since

1) large gains in L are required
2) the undesirable -20dB/dec high freq. roll-off of LQR will be recovered

Example

Double integrator system

ith Q 1o R=1
lt = -
v 0 0

> Gave 65° phase margin for LQR design



Time

(a1)

Figure 10.19  Step response. Bode plots, and filter poles for LTR using
q = (1. 10. 100, 1000). (a) Closed-loop step response. (b) and (c) Open-
loop magnitude and phase Bode plots. (d) Filter poles.
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Robustness

1) Robust stability — stable in the face of plant uncertainties
2) Robust performance — performance met even in the face of plant uncertainties
Two important properties of feedback — 1) sensitivity reduction

2) disturbance rejection
Dis)
’ +
| H(s) Um: G(s)—n Yis)
+
General feedback system
Vig)=-SOHE) gy, 1 p  COHO yq
1+G(s)H(s) 1+G(s)H(s) 1+ G(s)H(s)
Tracking error €=r-Yy
1 1 1
R FECTS o TE R P TS IO R RETO IO M

Actuator output (i.e. plant input) is given by

H(s)

YO =1 Gene

[R(s) — D(s) ~ N(s)]

Define the following terms

U(s) = H(S)E(s)
note:

= E(s) = H'(s)U(s)

J(s)=1+GH return difference

S(s) = 1+é v sensitivity

T(s)= 1f2H complementary sensitivity
note:  S(S)+T(s)=1

Using these definitions

system output:

tracking error:

Y(s) =S(s)D(s) + T (s)[R(s) = N(s)]

E(s) =S(s)[R(s) — D(s) — N(s)]
11



plant input: U(s) = H(s)S(s)[R(s) — D(s) — N(s)]
From these expressions we see that we need

1) Disturbance rejection: From Y(s) expression we see we require S small 2 GH>>1
(since SD)

2) Tracking: S small
3) Noise suppression: From Y(s) we have T(s)N(s) = require T small
4) Actuator limits: From U(s) expression want H(s)S(s) bounded

Tracking and Disturbance rejection require small S
Noise suppression requires small T

however S+T=1
however command inputs and disturbances are low frequency whereas measurement noise
is high frequency signal

-> keep S small in low frequency range and T small in high frequency range

H(s)  _T(s)
1+G(s)H(s) G(s)

Also  H(S)S(s) =

2> making T' small we reduce control energy

Loop Gain Properties

Low Frequency Mid. Frequency | High Frequency
Performance (R) High Gain Smooth Transition

(for good margins)

Disturbance Rejection (D) High Gain
Noise Suppression (N) Low Gain

Uncertainty Modeling

Two categories -- 1) structured uncertainty
2) unstructured uncertainty

We will deal with unstructured uncertainty

12



Additive uncertainty: actual model 6(8)

G(s)=G(s)+  A,(5)
—
. model uncertainty or error
Rix) - {.‘_:_H', . : _: = Y]

Multiplicative uncertainty: G (s)= [1+ A, (S)]G(S)

—l A

input uncertainty

R(s ¥ —
’ 3 O——loe—ro
A, —l
R(s) -Ts | 4+, j; . output uncertainty
- i__"Jii - \-\__/'l -
Robust Stability

We say a compensator robustly stabilizes a system if the closed-loop system remains stable for the true

plant G(s).

Robustness results can be derived using the small gain theorem.

Small Gain Theorem

R(s) &+ L Yis
>0 G |

His) S

The closed-loop system will remain stable if
IG(s)H(s)| <1

no since |G(S)H (5)| <|G(s)[H(s)|

13



then closed-loop stability is guaranteed if
G(s)H(s)| <1

There is no possibility of encirclements of (-1,0) point by Nyquist plot.

Two equations that the small gain theorem can help us to answer

1) Given that the uncertainty is stable and bounded, will the closed-loop system be stable
for the given uncertainty?
2) For a given system, what is the smallest uncertainty that will destabilize the system?

To answer these questions we first do some block diagram manipulation

Ri(s)  + Y5
»{ —p= Gis) ”l-

His)  e—

With multiplicative output uncertainty =

) +
{66 T
o=
where M (S) = —CEHE)
1+G(s)H(s)

—iMEs}f-l-—

Determine M(s), the transfer function seen by A,

14



By small gain theorem, closed-loop system will be robustly stable if

A

P
GH(L+GH)™|

1

Le. |Am| <= T — complementary sensitivity

]
If the uncertainty is bounded by y so that
[Anl <7

then the closed-loop system will be stable if

m<i o Tt
Y

This answers the first question
Second question: find the size of the smallest stable uncertainty that will destabilize the system

Because the uncertainty must be smaller that 1/T, it must be smaller that the minimum of 1/T. We
must find the maximum of T.

Define M, =sup[T (jo)| sup = supremum (least upper bound)

Then the smallest destabilizing uncertainty, we call this the multiplicative stability margin or MSM, is
given by

MSM = i
M r
For additive uncertainty
M(s) = — )
1+ G(s)H(s)

closed-loop will be robustly stable if

Al

1
.t
[H@+GH)|

=
=

(@)

15



if uncertainty is stable and bounded by
|A a| <y

then we guarantee closed-loop stability if

|Hs|<1 or  |HS|<1
Y

we can define additive stability margin (ASM) by

M = 1
sup|H (jw)S(jo)|

Example
G(s) = 52—3 ’ H(S):5(s+0.1)s+0.2
(s+5)(s“+0.2s+1) S S+5
phase margin: 38°
gain margin: 2.8 (9dB)
Find MSM and ASM:
MSM

Find peak of T (complementary sensitivity function)
peak = 1.52 = MSM = 0.65

> the system will be robustly stable against unmodelled multiplicative uncertainties
with transfer function magnitude < 0.65

16



Problem 10.9

) G=(1+A)G > Am=g—l
2(s+1)
2 2
Am:s (s +s+1)_1
1
s?
_2(s+) s’ +s+l
s?(s®*+s+1) s*(s®+s+1)
_—s’+s+1
s?+s+1
)
A
i
+ s
I o : |
N\ g >
I |
(5 ) et
L
20(s+1)
M -GH _ s?(s+10) _ —20(s +1) _ 20(s +1)
1+GH) 20(s+1)  s?(s+10)+20(s+1) s*+10s?+20s+20
s?(s +10)
c)  SGT: [A |M|<1
1 1
:>|A’”|<M_—GH
1+GH

=[A,|<[t+(GH)|
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Additive uncertainty

~

G=G+A,

= A, -G-G

o 2(s+)) 1

T s2(s?+s+l) §°
_i{28+2—52—s—1}

s s?+s5+1
—s®+s+1

T s%(sP+5+1)

Aa

et

X
R=0 +

—~——>-O-—:- G(s) —>

His) &

M (s)

T 1+GH)

SGT: A M| <1

= A, <=
M|

:>|Aa|<‘H‘l+G‘



[44] <

[A4] <

s+10 1

20s+20 s?

s?(s+10) +20s + 20

s2(20s + 20)

s® +10s? +20s + 20

s?(20s + 20)
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Basic Bode Magnitude Plots

G(s) = A =
1+
Gl 4 A2
Az
G(S) = A(l‘f‘%) f— |G| A /ﬁZO/dB/dec
04
Ge)=— 2 = ol ___4
1+ 6 (670) + (170) ®,\2
=)
-40dB/dec
+40dB/dec
Gls)=A[l+ 5+’ ]= A oy
o/,
0

If Q < % then roots are real. Factor the expression and use the resulting product of two first order

transfer functions to find magnitude response.



Example

A
G(s) = F 1=
@+ )+ 5 () +(2)2]
W, < o,
4| 4
‘1+a‘%
| AP
o
I
‘1+éﬁ+(g%l)2
|G| 4

o
(]

2
@@y
A=
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Example

The AM structure of a system has been determined to be given by

A o —
1+5G)+ ) L]

= M iM[s}q—
L+ 2)a+2)

where @, <<, <<w; and ©, = /0,0,
Determine the conditions under which robust stability is assured.

Answer

By SGT we require |A|||V|| <1 or |A| < 1

M|
1AM+ S)

M 1+>)

From the above diagram we can see that we require

oA <A} and QA <A!%2
o,

or

.

-1 2
oA <ATSE
1
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