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Chapter 10 
 
 Linear Quadratic Regulator Problem 
 
 Minimize the cost function J given by 
 

  



02

1 )''( dtRuuQxxJ  

 
  R > 0  positive definite (symmetric with positive eigenvalues) 
  Q ≥ 0  positive semi definite (symmetric with nonnegative eigenvalues) 
 
  subject to 
 

   
 Cxy

BuAxx




 

 
 LQR SOLUTION: 
 Find the positive-definite solution P of the ARE (Algebraic Ricatti Equation) 
 

  0'' 1   PBPBRQPAPA  

  Kxu        where PBRK '1  
 
 The positive-definite solution of the ARE results in an asymptotically stable closed-loop system if: 
 

1) the system is controllable 
2) R > 0 

3) qq CCQ '    where   (Cq,A) is observable 

 
These conditions are necessary and sufficient 

 
 We can define another output z where 
 

  xCz q    controlled or regulated output 

 

  Therefore   

 
 LQR design of double integrator 
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  (A, B) is controllable 
  (Cq, A) is observable 
 
 ARE:  
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  0321  ppp     (2) 
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  The closed loop system matrix becomes 
 

   











21

10
BKA  

  Closed loop roots are: 
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     damping ratio is 0.707 

note P is symmetric 
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 The loop transfer function is: 
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 65◦ phase margin 

 infinite gain margin   
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       Phase margin = 4.63)2(tantan 1

7071.0
4142.11    

           
 

 USING MATLAB TO GET EXACT RESULTS 
 

Matlab 
 
 num = sqrt(2)*[ 1 sqrt(2)/2 ] 
 
 den = [ 1 0 0 ]  
 
results: margin(num,den)  
   gm=∞   
   pm=65.53 @ ω=1.554 

      
 

 
 Properties of LQR design 
 
  From the ARE we can derive the relation 
 

   
2

12
)(1)(1 


jGjL q   (*) 

       is a scalar 
 

  where BsKsL )()(    -loop gain 

      1)()(  AsIs  

 

   and 
BsCsG

CCQ

qq

qq

)()(

'
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
 

 
  From (*) we see 
 

   1)(1  jL  

 
This implies that the Nyquist plot of the loop transfer function of an LQR design  
always stays outside of  a unit circle centered at (-1,0). 

phase 
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In SISO case, LQR design has > 60° phase margin, infinite gain margin and a gain reduction tolerance 

of -6dB (i.e. the gain can be reduced by a factor of 
2
1  before instability occurs). 

 
Recall pole placement does not guarantee stability margins. 

 
 High-frequency roll-off rate 
 

 Closed loop transfer function BBKAIjKjT 1)()(    

 

  0')(lim 111  


PBBRKBjT

jj 


  

    
 

  -20dB/dec roll off rate at high frequencies 
   - not good for noise suppression 

 

 
Optimal Observers – Kalman Filter 

 
State estimation – plant represented as 
 

 
noisetmeasuremenvCxy

noiseprocessBuAxx



 
 

 
The optimal filter is given by 
 

 )ˆ(ˆˆ xCyLBuxAx    
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where 1

0'  RCL   

 
  where   is the positive definite solution of 
   

  0'' 1

00   CRCQAA  

 
Qo and Ro are noise covariance matrices, which represent the intensity of the process and sensor noise 
inputs. 
 

Require 0,0 00  RQ  and system to be observable. 

 
If we combine the Kalman-Bucy Filter (optimal estimator) with LQR design, we have LQG (Linear 
Quadratic Gaussian).  Let’s do a LQG design for double integrator plant.  We already have the LQR 
design. 
 
For Kalman filter, assume 
 

   and  10 R   

 

 Solving Ricatti equation with 
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 Transfer function of compensator is given by 
 

 

 

 
Comparison of LQR and LQG 
 
 -LQR has guaranteed stability margins 
 -LQG has no guaranteed stability margins 
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-high freq. roll off in LQG can be > 20 dB/dec exhibited by LQR  greater noise filtering in 
LQG 

 

 -LQG is not robust  uncertainty in plant may cause system to go unstable 
 

 
Loop Transfer Recovery (LTR) 
 

LQR  > 60° phase margin 
       infinite gain margin 
 

LQG  no guaranteed margins 
   
The properties of LQR can be recovered asymptotically by using Qo and R0 as tuning parameters 

 

 
LQR  loop gain, BsKsL )()(   

    BAsIK 1)(   

 
 

 
 

LQG   )(ˆ)(ˆ sLYXLCABKXs   

   LLCBKAsI
sY

sX 1)(
)(

)(ˆ   

loop gain, BsLCLCBKAsIKsLLQG )()()( 1   
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If the following two conditions hold then LQR loop properties can be recovered if 

 
1) G(s) is minimum phase 
2) R0=1 and Q0=q2BB′ 

 
Then it can be shown 

 

  )()(lim sLsLLQG
q




 

 

 
The variable y that is recovered may be different from the variable z that is to be controlled 

 

 where Cxy   and xCz q  

 
 Loop Shaping Steps 
 
  1) Determine the controlled variable and set  
 
    Q=C′C  and   Q=Cq′Cq 
 
  2) Get a desired loop gain in LQR design.  Use R as tuning parameter. 
 
  3) Select scalar q and solve the filter Ricatti equation 
   

    0''' 2  CCBBqAA  

    'CL   
 
  4) Increase q until the resulting loop transfer function is close to the LQR design 
 
 
   Do not make q too high since 

1) large gains in L are required 
2) the undesirable -20dB/dec high freq. roll-off of LQR will be recovered 

 
 

Example 
 
 Double integrator system 
 

  with 









00

01
Q   R=1 

 

  Gave 65° phase margin for LQR design 
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Robustness 
  

1) Robust stability – stable in the face of plant uncertainties 
2) Robust performance – performance met even in the face of plant uncertainties 

 
Two important properties of feedback –  1) sensitivity reduction 
          2) disturbance rejection 
 
 

 
   General feedback system 
 
 

  )(
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
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  

 
 Tracking error  y-re   

  

  )(
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1
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)()(1

1
)( sN

sHsG
sD

sHsG
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sHsG
sE








  

 
 Actuator output (i.e. plant input) is given by 
 

   )()()(
)()(1

)(
)( sNsDsR

sHsG

sH
sU 


   note: 

)()()(

)()()(

1 sUsHsE

sEsHsU




 

 
 Define the following terms 
 

  GHsJ 1)(   return difference 

  
GH

sS



1

1
)(  sensitivity 

  
GH

GH
sT




1
)(  complementary sensitivity 

 

  note: 1)()(  sTsS  

 
 Using these definitions 
 

  system output:   )()()()()()( sNsRsTsDsSsY   

 

  tracking error:   )()()()()( sNsDsRsSsE   
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  plant input:   )()()()()()( sNsDsRsSsHsU   

 
From these expressions we see that we need 
 

1) Disturbance rejection: From Y(s) expression we see we require S small  GH>>1 
(since SD) 

 
2) Tracking:  S small 
 

3) Noise suppression:  From Y(s) we have T(s)N(s)  require T small 
 

4) Actuator limits:  From U(s) expression want H(s)S(s) bounded 
 
 Tracking and Disturbance rejection require small S 
 Noise suppression requires small T 
 
  however S + T = 1 

however command inputs and disturbances are low frequency whereas measurement noise 
is high frequency signal 

 

 keep S small in low frequency range and T small in high frequency range 
 

 Also  
)(

)(

)()(1

)(
)()(

sG

sT

sHsG

sH
sSsH 


  

 

 making T small we reduce control energy 
 
 

 
Loop Gain Properties 
 

 Low Frequency Mid. Frequency High Frequency 

Performance (R) High Gain Smooth Transition 
(for good margins) 

 

Disturbance  Rejection (D) High Gain   

Noise Suppression (N)   Low Gain 

 
 

 
 Uncertainty Modeling 
 
  Two categories --   1) structured uncertainty 

2) unstructured uncertainty 
 

We will deal with unstructured uncertainty 
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  Additive uncertainty: actual model )(
~

sG  

 

   
 

  Multiplicative uncertainty:   )()(1)(
~

sGssG m  

 

   
 

   
 
 Robust Stability 
 

We say a compensator robustly stabilizes a system if the closed-loop system remains stable for the true 

plant )(
~

sG . 

 
Robustness results can be derived using the small gain theorem. 
 

 
Small Gain Theorem 

 

 
 

The closed-loop system will remain stable if 
  

   1)()( sHsG  

 

 no since  )()()()( sHsGsHsG    

   
)()()(

~
ssGsG a  

input uncertainty 

output uncertainty 

model uncertainty or error 
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then closed-loop stability is guaranteed if 

 

1)()( sHsG  

  
 There is no possibility of encirclements of (-1,0) point by Nyquist plot. 
 
 Two equations that the small gain theorem can help us to answer 

1) Given that the uncertainty is stable and bounded, will the closed-loop system be stable 
for the given uncertainty? 

2)       For a given system, what is the smallest uncertainty that will destabilize the system? 
 

To answer these questions we first do some block diagram manipulation 
 

  
 

With multiplicative output uncertainty  
 

  
 

where  
)()(1

)()(
)(

sHsG

sHsG
sM




  

       
 

Determine M(s), the transfer function seen by m  
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 By small gain theorem, closed-loop system will be robustly stable if 
 

   
1)1(

1



GHGH

m  

 

  i.e. 
T

m

1
     T – complementary sensitivity 

 
 If the uncertainty is bounded by  so that 

 

   m  

 
 then the closed-loop system will be stable if 
 

   


1
T  or 1T   

 
This answers the first question 

 
 Second question: find the size of the smallest stable uncertainty that will destabilize the system 
 

Because the uncertainty must be smaller that 1/T, it must be smaller that the minimum of 1/T.  We 
must find the maximum of T. 
 

Define  )(sup 


jTM r     sup = supremum (least upper bound) 

 
Then the smallest destabilizing uncertainty, we call this the multiplicative stability margin or MSM, is 
given by 
 

  
rM

MSM
1
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 For additive uncertainty 
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closed-loop will be robustly stable if 
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if uncertainty is stable and bounded by 
 

 a  

 
then we guarantee closed-loop stability if 
 

 


1
HS  or 1HS  

 
we can define additive stability margin (ASM) by 
 

 
)()(sup
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 Example 
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sH  

 
   phase margin: 38°    
   gain margin: 2.8 (9dB) 
 
  Find MSM and ASM: 
 
  MSM 
   Find peak of T (complementary sensitivity function) 

    peak = 1.52    MSM = 0.65 

 the system will be robustly stable against unmodelled multiplicative uncertainties 
with transfer function magnitude < 0.65 

 

 



 17 

Problem 10.9 
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 Additive uncertainty 
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 Basic Bode Magnitude Plots 
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If Q < 
2
1  then roots are real.  Factor the expression and use the resulting product of two first order 

transfer functions to find magnitude response. 
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Example 
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Example 
 

 The M structure of a system has been determined to be given by 
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 where 321    and 32 a  

 
 Determine the conditions under which robust stability is assured. 
 
Answer 

 By SGT we require 1 M  or   
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 From the above diagram we can see that we require 
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