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Chapter 5

Impedance Interactions: An

Overview

5.1 Introduction

In this chapter, interconnections among DC power distribution subsystems are

analyzed, and an investigation is launched into how the performance of the global

interconnection differs from that predicted by the analysis of each independent sub-

system. Typical examples of these interconnections are a power converter with a

dynamic load, a power converter with an input line filter, power converters connected

in parallel or cascade, and combinations of the above.

Most of the literature on the subject is focused on the problem of a power con-
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verter in the presence of an input filter, but more recently the same ideas are being

applied in the context of DC Distributed Power Systems (DPS). Every interface in

any interconnection of power converters, filters and/or loads is subject to impedance

interactions. This is the case of DPS, in particular the Intermediate Bus Architecture

(IBA) in which an off-line converter provides a mildly regulated DC line that is dis-

tributed among subsystems, with Point-Of-Load (POL) converters providing voltage

regulation in close proximity to the loads. Typical applications for this architecture

are communications systems, data centers, motherboards, and even on-chip power

distribution networks.

A typical diagram for a DPS is shown in Fig. 5.1. One or more AC/DC converters

with Power Factor Correction provide an intermediate DC voltage from the same or

potentially different AC sources. A battery can be present for power backup. Many

POL converters with their respective EMI filters feed independent or shared loads.

Some loads could even be connected to the intermediate bus directly. In this diagram,

it can be appreciated that interfaces marked as A, B, and C are prone to impedance

interactions and potential performance degradation.

The state of the art is such that it is very simple to check the overall performance

and stability of an already engineered system by simulation or experimentation. This

is usually a system integrator’s job. If a problem is encountered, there is little possibil-

ity of modifying the internal dynamics of the converters. As a consequence, the most
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Figure 5.1: Typical DPS diagram.

likely outcome of this process is that the filters become oversized, by the addition of

capacitors, inductors, damping, or some combination of these.

A literature review as well as an exposition of the most important aspects of this

subject are presented first in this chapter. In the following chapter, a contribution

to the understanding of this problem using fundamentals of control systems theory is

developed and the feasibility of reducing impedance interactions by control methods

instead of physical design is explored.
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5.2 Literature review

It was observed early in the development of the discipline of Power Electronics

that certain power converters showed unstable behavior in the presence of an input

filter [30]. This problem was analyzed using newly derived averaged models in the

mid-seventies [31]. A theoretical understanding of the phenomenon was consolidated

and design guidelines were derived in order to guarantee the eradication of the problem

in voltage programmed regulators [32]. This contribution is usually referred to as the

“Middlebrook criterion”. Results were extended for current programmed regulators

in [33].

The solution proposed was based on adding damping to the input filter. Op-

timization procedures were derived in order to minimize the size of the filter, the

power dissipation, or some other quantity of interest while still achieving the desired

damping [34,35].

In the eighties an input voltage feedforward scheme was proposed in order to

mitigate the effects of the input filter [36, 37]. This method is based on a zero-pole

cancellation that is difficult to achieve in practice, even using adaptive methods [38].

This was, however, the first attempt to solve the problem using control methods

instead of modifying the physical design of the filter.

A practical overview of the problem of impedance interactions in the context of

input filter interactions, with a timeline of key papers can be found in [39].
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As scaling in IC technology increased density and speed, DPS were proposed to

meet the new power demands [10]. This created new topologies of interconnected

power converters and line filters in which impedance interactions at every interface

could potentially degrade the performance of the system. Analysis methods were

extended and new design guidelines developed for this type of system [40–44].

Recent efforts have been made to measure the impedances online for the sake of

analyzing stability and performance degradation due to the interconnection of power

modules [45, 46]. These methods allow users to analyze the systems and subsystems

without knowledge of internal components.

It has been observed that a power converter is immune to impedance interactions

at its input and output ports if it has both an output impedance and a forward-

voltage transfer function equal to zero [47]. These conditions are not possible to

achieve in practice. A system-level approach has to be undertaken to guarantee an

overall stability and performance objective.

5.3 Problem description

Traditionally, a power converter is designed under the assumption that there exists

an ideal voltage source at the input, as shown in Fig. 5.2. In this case, it is clear that

variations in the input current Iin (due to, for example, load variations) will not affect

the input voltage Vin. It can be said that the input and the output of the converter



92

+

Iin

+

-

VinVs

DC

DC
Load
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Figure 5.3: DC/DC converter with an input filter.

are “decoupled”.

Now consider the system in Fig. 5.3, in which an input filter is added. This

input filter can be an EMI filter or the output impedance of another power converter.

When Iin changes, a perturbation in the input voltage Vin will occur due to the

output impedance of the input filter. This creates a new feedback loop that can affect

significantly the dynamics of the converter, in some cases degrading its performance

or even resulting in instability.

The interaction between the impedances can be analyzed by using as an illustrative

example the model shown in Fig. 5.4, where Zo is the output impedance of the

input filter, and Zi is the input impedance of the power converter. The effect of a
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Figure 5.4: Equivalent circuit of a power converter connected to an input filter.

perturbation in the input voltage Vin as a function of a change in the load current

(reflected to the input of the converter) ILr is

Vin
ILr

= −(Zo‖Zi) (5.1)

= − Zo
1 + ZoYi

, (5.2)

where Yi = 1
Zi

is the input admittance. This means that a new feedback loop,

sometimes called the “small loop”, is established. The stability of this loop can be

analyzed by applying the Nyquist criterion to ZoYi.

In general, the feedback loop created by the connection of two n-ports systems can

be analyzed as a MIMO dynamic feedback system. This interpretation is presented

in [48] in the context of the small gain theorem, which gives a sufficient condition for

the stability of the feedback system. Necessary and sufficient stability conditions for

dynamic feedback systems are given in [49]. In the special case of the interconnection

of two one-ports which are stable, the feedback system is stable if and only if the zeros

of 1 +Z1Y2 have negative (or zero) real part, where Z1 and Y2 are the impedance and
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admittance of the two one-ports respectively.

In conclusion, the Nyquist criterion applied to ZoYi as in (5.2) is a necessary and

sufficient condition for stability of the interconnection of stable one-ports. This is a

very useful result because in practice most of the circuits interconnected in a DPS

are stable.

Stability of the interconnection is critical, but from an engineering perspective

performance should also be analyzed. Even if the loop is stable, it can still affect

significantly the dynamics of the power converter and degrade its performance. The

analytical tools for analyzing the performance will be given in the next section.

Example: Buck converter with LC input filter

The ideas exposed above are illustrated here with a simple but important example.

Assume a buck converter is controlled such that the output power is constant. This

could be the case, for example, if the load is resistive and the converter regulates the

output voltage. The closed-loop input impedance over the controller bandwidth is

then computed as follows. First, the input power is expressed as a function of the

output power and the efficiency:

VinIin =
VoIo
η
. (5.3)
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Figure 5.5: Negative input impedance of a constant-power converter.

Then, the small-signal input impedance is computed as the partial derivative of the

input voltage with respect to the input current:

Vin =
VoIo
ηIin

(5.4)

⇒ ∂Vin
∂Iin

= −VoIo
ηI2

in

. (5.5)

Finally, by substituting Iin = DIo (buck converter) and Vo
Io

= RL (resistive load), the

following result is obtained:

Zi = − RL

ηD2
. (5.6)

This negative input impedance can be seen graphically in Fig. 5.5 as the slope of the

(Vin, Iin) curve. The impedance depends on the operating point.

Now assume the converter is connected with an LC input filter like the one depicted
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Figure 5.6: Input filter.

in Fig. 5.6. The output impedance of this filter is

Zo =
(Lfs+Rdc)(ResCf + 1)

LfCfs2 + (Rdc +Res)Cfs+ 1
. (5.7)

The stability of the system can be analyzed by computing explicitly the transfer

function (5.2). For simplicity of notation, η is assumed to be equal to unity. Then

Vin
ILr

= − Zo
1 + ZoYi

(5.8)

=
−(Lfs+Rdc)(ResCfs+ 1)(

1− D2Res
RL

)
LfCfs2 +

[(
Rdc +Res − D2ResRdc

RL

)
Cf − D2Lf

RL

]
s+ 1− D2Rdc

RL

(5.9)

Applying the Routh-Hurwitz criterion to the denominator of this expression, a

stability condition can be derived. Usually
(
1−D2Res

RL

)
and

(
1−D2Rdc

RL

)
are positive.

Assuming the latter, the stability condition can be written as

(
Rdc +Res −D2ResRdc

RL

)
Cf −D2 Lf

RL

> 0 (5.10)

⇔ RL

D2
> (Res‖Rdc) +

Z2
C

Res +Rdc

≈ QZC (5.11)

where Z2
C =

Lf
Cf

and Q ≈ ZC
Res+Rdc

. This is equivalent to say that the magnitude of
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the input impedance of the converter has to be larger than the peak of the output

impedance of the LC filter at the resonance frequency. This is consistent with the

Nyquist criterion, because at that frequency the term ZoYi has an angle of 180◦ and

needs to have a magnitude less than unity in order not to encircle the (-1,0) point.

This example is valid as long as the controller bandwidth of the converter is high

enough such that the constant-power assumption holds for the resonant frequency

of the LC filter. More exact, but also more complicated results can be obtained by

computing the closed-loop input impedance of the converter based on a small-signal

model.

5.4 Middlebrook criterion

The Middlebrook criterion is a sufficient condition for guaranteeing the stability

of two interconnected systems. Moreover, the criterion also guarantees that no per-

formance degradation occurs due to the interconnection. Following this criterion, the

designer can effectively “decouple” one module from its source or load impedance.

The derivation of the criterion can be better understood by applying the Extra

Element Theorem (EET) [50]. The EET is used when a transfer function for a system

is known and an additional element is connected to one port of the system, modifying

the original transfer function. The setup is shown in Fig. 5.7. Suppose the transfer

function Tu→y is known when there is no impedance Z connected to the port in system
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Figure 5.7: The Extra Element Theorem.

G (either Z = ∞ or Z = 0). When the impedance is connected, this will naturally

affect the transfer function. The EET postulates that the new transfer function will

be:

Tu→y|Z = Tu→y|Z=∞

1 + Zn
Z

1 + Zd
Z

(5.12)

= Tu→y|Z=0

1 + Z
Zn

1 + Z
Zd

(5.13)

where Zn = Zin|y→0 (5.14)

and Zd = Zin|u=0 (5.15)

The two new quantities that need to be computed are the input impedance of

the port under special circumstances. For computing Zn the input variable u has to

be set such that the output variable y vanishes (notice that this is not the same as

shorting the output). For computing Zd the input variable u has to be set to zero.

In the case of a converter with an input filter, the port would be the input port of
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the converter and the impedance to add would be the output impedance of the input

filter Zo. Since this impedance is usually assumed to be zero, the effect of a non-zero

impedance can be analyzed by using form (5.13) of the EET. The transfer functions

of interest would usually be the output impedance of the converter, the duty-cycle

to output voltage, or the audio susceptibility transfer functions. The duty-cycle to

output voltage transfer function Td→vo will be analyzed next as an example.

To compute Zn the duty cycle has to be set such that the (small signal) output

voltage vanishes. This is usually the control objective (voltage regulation), so it can be

concluded that Zn is the ideal closed-loop input impedance of the converter ZCL
i (ideal

in the sense that would achieve perfect regulation over all frequencies). To compute

Zd the duty cycle has to be set to zero, which means that the converter operates in

open loop. Therefore, Zd is the open-loop input impedance of the converter ZOL
i . By

substituting into (5.13) the following result is obtained:

Td→vo |Zo = Td→vo |Zo=0

1 + Zo
ZCLi

1 + Zo
ZOLi

(5.16)

This result is exact and predicts the effect of the input filter in the dynamics of

the converter. Based on this result, Middlebrook established the simple, although

conservative, design rule that is today known as the Middlebrook criterion and can

be stated as follows:

“The dynamics of the converter will not be significantly affected by an
input filter if |Zo| � |ZCL

i | and |Zo| � |ZOL
i |.”
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Figure 5.8: Small-signal model of a buck converter with resistive load.

This criterion can be immediately understood by looking at (5.16): the conditions

imply that the multiplying term that affects the transfer function is close to unity. If

the dynamics are not affected, then clearly stability and performance of the converter

are preserved. It is also evident that the criterion is a sufficient condition that can

potentially be very conservative.

Example: Applying the EET to a buck converter with input

filter

In the case of a buck converter, whose small-signal model is shown in Fig. 5.8, the

duty-cycle to output voltage transfer function is:

Td→vo =
vo
d

∣∣∣∣
vin=0

= Vin ·
1

LCs2 + L
RL
s+ 1

. (5.17)

In order to apply the EET, it is necessary to compute the open-loop and ideal

closed-loop input impedances. The former is:

ZOL
i =

vin
iin

∣∣∣∣
d=0

=
RL

D2
·
LCs2 + L

RL
s+ 1

RLCs+ 1
, (5.18)
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while the latter needs to be computed by setting the duty-cycle such that it cancels

the output voltage, namely d = − D
Vin
vin. Then

ZCL
i =

vin
iin

∣∣∣∣
d=− D

Vin
vin

= −RL

D2
. (5.19)

Finally, we can apply the EET as stated in (5.13) to obtain the duty-cycle to

output voltage transfer function when we connect the input filter of Fig. 5.6:

Td→vo = Vin ·
1

LCs2 + L
RL
s+ 1

·
1− D2

RL
· (Lf s+Rdc)(ResCf+1)

LfCf s2+(Rdc+Res)Cf s+1

1 + D2

RL
· RLCs+1
LCs2+ L

RL
s+1
· (Lf s+Rdc)(ResCf+1)

LfCf s2+(Rdc+Res)Cf s+1

. (5.20)

After some algebra the expression can be reduced to

Td→vo = Vin ·
N(s)

D(s)
(5.21)

where

N(s) =
(

1−D2Res

RL

)
LfCfs

2+
[(
Rdc +Res −D2ResRdc

RL

)
Cf −D2 Lf

RL

]
s+1−D2Rdc

RL

(5.22)

and

D(s) = LfCfLCs
4 +[

LfCf

(
L

RL

+D2ResC
)

+ (Rdc +Res)CfLC
]
s3 +[

LfCf

(
1 +D2Res

RL

)
+ LC + LCf

Rdc +Res

RL

+D2LfC +D2RdcResCCf

]
s2 +[(

Res +Rdc +D2RdcRes

RL

)
Cf +

L+D2Lf
RL

+D2RdcC

]
s+

1 +D2Rdc

RL

. (5.23)
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Although the denominator of the expression does not add much insight into the

problem, the numerator shows an interesting fact. Comparing (5.22) with the de-

nominator in (5.9), it can be concluded that the zeros of the duty-cycle to output

voltage transfer function are equal to the poles of the closed-loop transfer function

computed in the previous section under the assumption of perfect regulation. This

is consistent with control theory results, namely that under the condition of infinite

feedback gain the poles of the closed-loop transfer function are equal to the zeros of

the plant. More importantly, this example shows that instability of the closed-loop

system is related to the existence of right half-plane zeros in the plant, and that those

zeros are introduced by the input filter.

An illustration of the effect of an input filter in the dynamics of a buck converter

is shown in Fig. 5.9. The top two graphs show the bode plots in the case of a damped

input filter. Since |Z| � |Zn|, |Zd| (i.e., the Middlebrook criterion is satisfied) the

plant transfer function Td→vo presents its characteristic second-order shape, unaffected

by the input filter. The bottom two graphs show the case of an undamped (or lightly

damped) input filter. The plant transfer function shows the effect of the input filter

resonance, leading potentially to a degradation of performance and even instability.
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5.5 Modeling

When designing the control system of a power converter, it is standard practice to

derive a small-signal model and from there extract the transfer functions of interest,

for example the duty-cycle to output voltage transfer function, duty-cycle to inductor

current transfer function, output impedance, etc. If the converter is connected to

a source or load impedance these transfer functions are not valid any longer, as

explained in the previous sections. There are many ways to deal with this:

1. Assume the Middlebrook criterion is valid and ignore impedance interactions.

2. Derive the new transfer functions using the extra-element theorem (EET).

3. Include the impedance in the small-signal model and derive the transfer func-

tions for the new model.

In the design process, the first option is probably the only feasible one, since

the complexity of the other approaches is too high for a designer. However, if the

purpose is to simulate and validate a controller design, there is no need to recompute

the transfer functions. A two-port model of the converter, based on the small-signal

model, can be derived and connected to the impedance for simulation.

Any type of two-port model would work, however the nature of DC/DC power

converters is such that in closed loop it is more useful to see the input voltage and

output current as independent variables (“inputs” to the system), while the input
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Figure 5.10: DC/DC converter model.

current and output voltage are dependent variables (“outputs” of the system). This

leads naturally to a hybrid parameter model. In two-port models in which one of the

ports can be naturally identified as “input” and the other as “output”, some authors

make the distinction between the two possible types of hybrid models that can arise.

Following this convention, the so-called inverse-hybrid parameter, or G-parameter

model was proposed [51, 52]. A derivation of this type of two-port model is shown

next.

Suppose the converter has a small-signal (linear), multivariable model G depicted

in Fig. 5.10. The inputs are the input voltage vin, the output or load current io, and

the duty-cycle d. The outputs are the input current iin, the output voltage vo, and

the inductor current iL. (The latter is useful in the context of current-mode control,

otherwise it could be obviated.)

This system can be completely described by the following set of equations:

iin = Givvin +Giiio +Gidd

vo = Gvvvin +Gviio +Gvdd

iL = GLvvin +GLiio +GLdd

(5.24)
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Figure 5.11: DC/DC converter model with feedback controller K.
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vovin

+ +

ioiin

G∗

Figure 5.12: Two-port model of a closed-loop DC/DC converter.

When a feedback controller K is connected (Fig. 5.11), the closed-loop converter

becomes a two-input, two-output system that can be represented as a two-port system

(Fig. 5.12). Here the system G∗ represents the closed-loop converter. The system can

be described by the following set of equations:
iin = G∗ivvin +G∗iiio

vo = G∗vvvin +G∗viio

(5.25)

For simulation purposes, however, the transfer functions of the closed-loop de-

scription do not need to be computed. An internal description like the one inside

the dashed box in Fig. 5.11 can be used. A less compact, but more realistic circuit
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Figure 5.13: DC/DC converter with input filter. Multivariable model case.

description, like the one in Fig. 5.8 can also be used, although in some systems it

could consume more computational resources.

The advantage of two-port models arises when subsystems need to be intercon-

nected, in particular when there are many subsystems in series or parallel. For

example, consider a converter with an input filter. In the multivariable model of

Fig. 5.10, the filter could be accommodated by including a feedback loop with the

output impedance of the filter Zo, as depicted in Fig. 5.13. It is assumed that the

only small-signal perturbation at the input of the converter is due to perturbations

in the input current, interacting with the output impedance of the filter.

Now, suppose the input filter is connected to the output of another converter, for

example an AC/DC converter. To include the effect of this cascaded interconnection,

it would be required to compute the output impedance of the filter under the presence

of the AC/DC converter, and then to substitute this value instead of Zo in the figure.

For every additional subsystem interconnected to the network, all impedances need
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Figure 5.14: DC/DC converter with input filter. Two-port model case.

to be recomputed.

Compare this scenario with the two-port model case. The input filter can be

included using its own two-port model Z as shown in Fig. 5.14, and its input port

connected to a DC voltage source Vs, or equivalently a short circuit.

If a new converter is connected to the input of the filter, the voltage source can be

replaced by the output port of this new converter and no modifications are needed to

the filter model. No matter how complex the interconnections, the two-port model

allows for a topological connection that is identical to the circuit without needing

to recompute any of the models. Hence, it can be concluded that two-port mod-

els are more convenient than multivariable models for simulation and verification of

interconnected systems.

It should be noted, though, that the small-signal model described so far depends

on the (large-signal) operating point of the converter. Therefore, when the converter

is connected to a load or a source impedance that changes the operating point, the

converter model needs to be recomputed. The general form of the equations, though,

does not change because only the values of some parameters are modified.
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Figure 5.15: Small-signal model of buck converter with parasitic resistances.

Example: Two-port model of a buck converter

In the case of a buck converter, the traditional averaged small-signal model as

shown in Fig. 5.8 (without the load resistance RL) is simple enough to be used in

simulations as a two-port model. The canonical G-parameter model is derived here

for completeness. The parasitic resistances of the inductor and the switches (Rdcr),

and the capacitor (Resr) are also included in the derivation. The small-signal model

of reference is shown in Fig. 5.15.

There are nine transfer functions to be derived in accordance with (5.24). These

are:

Giv =
iin
vin

∣∣∣∣
d=io=0

= D2 · Cs

LCs2 + (Rdcr +Resr)Cs+ 1
(5.26)

Gii =
iin
io

∣∣∣∣
vin=d=0

= D · ResrCs+ 1

LCs2 + (Rdcr +Resr)Cs+ 1
(5.27)

Gid =
iin
d

∣∣∣∣
vin=io=0

= Io ·
LCs2 +

(
Rdcr +Resr + Vo

Io

)
Cs+ 1

LCs2 + (Rdcr +Resr)Cs+ 1
(5.28)

Gvv =
vo
vin

∣∣∣∣
d=io=0

= D · ResrCs+ 1

LCs2 + (Rdcr +Resr)Cs+ 1
(5.29)
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Figure 5.16: Implementation of the G-parameter two-port model. Open-loop case.

Gvi =
vo
io

∣∣∣∣
vin=d=0

=
(Ls+Rdcr) (ResrCs+ 1)

LCs2 + (Rdcr +Resr)Cs+ 1
(5.30)

Gvd =
vo
d

∣∣∣∣
vin=io=0

= Vin ·
ResrCs+ 1

LCs2 + (Rdcr +Resr)Cs+ 1
(5.31)

GLv =
iL
vin

∣∣∣∣
d=io=0

= D · Cs

LCs2 + (Rdcr +Resr)Cs+ 1
(5.32)

GLi =
iL
io

∣∣∣∣
vin=d=0

=
ResrCs+ 1

LCs2 + (Rdcr +Resr)Cs+ 1
(5.33)

GLd =
iL
d

∣∣∣∣
vin=io=0

= Vin ·
Cs

LCs2 + (Rdcr +Resr)Cs+ 1
(5.34)

The circuit representation of this model is shown in Fig. 5.16. The feedback loop

can be incorporated with an additional circuit that generates the duty-cycle d. If

current-mode control is used, the current iL can be generated using (5.32–5.34).

This example shows a method to derive a canonical two-port model for a DC/DC

converter. In closed-loop operation, a canonical model can also be obtained by trivial

(although complicated) algebraic manipulations. In practice, the model could also

be extracted from measurements. This means that a canonical model for a converter

operating in closed-loop can be obtained from measurements even when the internal
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Figure 5.17: Implementation of the G-parameter two-port model. Closed-loop case.

characteristics are unknown (“black box”). The transfer functions to be obtained,

according to (5.25) are only four, namely:

G∗iv =
iin
vin

∣∣∣∣
io=0

(input admittance) (5.35)

G∗ii =
iin
io

∣∣∣∣
vin=0

(inverse current gain) (5.36)

G∗vv =
vo
vin

∣∣∣∣
io=0

(voltage gain) (5.37)

G∗vi =
vo
io

∣∣∣∣
vin=0

(output impedance) (5.38)

The equivalent circuit is shown in Fig. 5.17. A system integrator could benefit from

this approach when all or most of the subsystems in a DPS are modules whose internal

behavior is unknown. Each one of them can be characterized by measuring these four

transfer functions and the overall performance of the system can be predicted by

simulation.



112

5.6 Conclusions

In this chapter, the problem of impedance interactions between interconnected

power converters and/or passive circuits was presented. The basic results in this area

were described, as well as the context in which the results were developed. A buck

converter with an input filter was used as a representative example to illustrate the

main ideas.

The next chapter will address this problem from a different perspective, exploring

the fundamental issues that arise in this area and the feasibility of using control

methods to preserve performance and stability of interconnected systems.
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Chapter 6

Mitigation of Impedance

Interactions

In this chapter, the possibility of improving the performance of interconnected

power converters and/or filters by using control methods instead of physical design is

explored. First, some fundamental limitations are exposed. Different controller design

methods are explored and compared. Finally, an example of the use of system-level

design to mitigate impedance interactions is presented.

6.1 Limits of performance

It has been observed that an undamped input filter adds a pair of complex-

conjugate right-half plane zeros to the duty-cycle to output transfer function of the
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converter [35]. This observation is in accordance with the example shown in Sec-

tion 5.4.

A RHP zero in the feedback loop is known to impose serious limits in the achievable

performance of the closed-loop control system [53]. In general, the loop bandwidth

should be less than half the frequency of the zero in order to preserve stability.

In many applications, the resonant frequency of the input filter is less than the

resonant frequency of the output filter, which in turn is less than the desired band-

width. As a consequence, the RHP zeros introduced by the input filter will invariably

cause instability in closed-loop operation. It can be concluded that, under the pres-

ence of the RHP zeros, the performance requirements of the application (expressed,

for example, as a high loop gain over the desired bandwidth) are not compatible with

stable operation. It is for this reason that the most common solution to the problem

is the addition of damping to the input filter, which moves the zeros from the RHP

to the LHP.

When considering a power converter with an input filter, the converter’s input

voltage changes with its input current as described in the previous chapter. This

voltage could be used as a controller input. In this case the controller would have two

inputs (output voltage and input voltage) and one output (duty-cycle). In a MIMO

system like this, the role of zeros is not as straightforward as in the SISO case because

there is a spatial direction added to the frequency dimension. In particular, the limits
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of performance imposed by RHP zeros are more difficult to analyze [54].

Therefore, the RHP zeros in traditional output voltage feedback control impose

a fundamental limitation in the performance of the system, but more caution should

be taken when discussing control with input voltage feedforward. In this chapter,

although no definitive answer is attempted in this regard, an exploration of a large

set of controllers with input voltage feedforward seems to indicate that the same limits

of performance for SISO systems are valid in the MIMO case for this application.

6.2 Robust design of controllers

In this section, a robust design procedure is introduced in order to explore possible

control schemes that could meet the performance and stability requirements of a

representative VRM application under the presence of an input filter. It is shown

that there is no stabilizing controller that can achieve high loop gain at the resonant

frequency of the input filter.

The section is organized as follows. First, a model of the plant (a buck converter

with an input filter) is presented in Section 6.2.1. The model includes uncertainty in

the characteristics of the input filter. In Section 6.2.2, the plant is analyzed using the

Middlebrook criterion (introduced in Section 5.4), revealing that for some parameter

values the criterion is not satisfied and RHP zeros are introduced. A traditional

PID control design is presented in Section 6.2.3 and its stability is analyzed. In
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Section 6.2.4 input voltage feedforward is introduced, showing stable operation with

nominal parameters but instability for some parameter values. A µ-synthesis design

is presented in Section 6.2.5 that aims to find a controller that could achieve both

stability and good performance under the presence of uncertain parameters in the

input filter. Finally, in Section 6.2.6, conclusions are presented.

6.2.1 The plant

A diagram of the control system of a DC/DC converter using voltage mode control

is shown in Fig. 6.1. The box labeled G represents the dynamics of the converter.

The small-signal input voltage is generated by the presence of an input filter of output

impedance Zo. Adaptive Voltage Positioning (AVP) is achieved by subtracting the

reference impedance Zref times the output current io from the reference voltage vr.

As an example, the generalized output impedance approach as defined in [9] is used,

meaning that

Zref = RLL ·
ResrCs+ 1

RLLCs+ 1
(6.1)

The box labeled K corresponds to the controller that generates the duty-cycle

command d based on the error voltage ve. An input voltage feedforward path is

included also in order to explore a richer set of controllers.

The converter’s model can be obtained based on (5.26–5.31). However, in this

chapter a resistive load RL is also included in order to explore different operating
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Figure 6.1: Voltage mode control of a DC/DC converter with load-line and input
voltage feedforward, in the presence of an input filter.

conditions. This generates a “terminated” model, in which the following transfer

functions define block G according to Fig. 6.2:

Giv =
D2

Rdcr +RL

· (ResrCs+ 1)
Resr+RL
Rdcr+RL

LCs2 + (RdcrRL+ResrRL+ResrRdcr)C+L
Rdcr+RL

s+ 1
(6.2)

Gii = D · RL

Rdcr +RL

· ResrCs+ 1
Resr+RL
Rdcr+RL

LCs2 + (RdcrRL+ResrRL+ResrRdcr)C+L
Rdcr+RL

s+ 1
(6.3)

Gid =
DVin

Rdcr +RL

·

1 +
(Resr +RL)Cs+ 1

Resr+RL
Rdcr+RL

LCs2 + (RdcrRL+ResrRL+ResrRdcr)C+L
Rdcr+RL

s+ 1

(6.4)

Gvv = D · RL

Rdcr +RL

· ResrCs+ 1
Resr+RL
Rdcr+RL

LCs2 + (RdcrRL+ResrRL+ResrRdcr)C+L
Rdcr+RL

s+ 1
(6.5)

Gvi = − RL

Rdcr +RL

(Ls+Rdcr) (ResrCs+ 1)
Resr+RL
Rdcr+RL

LCs2 + (RdcrRL+ResrRL+ResrRdcr)C+L
Rdcr+RL

s+ 1
(6.6)

Gvd = Vin ·
RL

Rdcr +RL

· ResrCs+ 1
Resr+RL
Rdcr+RL

LCs2 + (RdcrRL+ResrRL+ResrRdcr)C+L
Rdcr+RL

s+ 1
(6.7)

For a representative VRM application, the component and parameter values are
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Figure 6.2: Internal structure of block G.

presented in Table 6.1. The table also includes the specification of the load-line RLL

and the range of output currents. The switching frequency and the desired bandwidth

are also specified. The input filter corresponds to the one shown in Fig. 5.6. Table 6.2

shows the filter component values. In both tables, the range of variation for selected

parameters is also indicated. The purpose of this study is to analyze the effect of

the input filter on the dynamics of the converter, therefore only the filter parameters

and the operating point are allowed to change, while the converter parameters are

assumed constant. In order to simplify the formulation, the frequency and damping

of the input LC filter are changed by variations in the capacitor’s parameters only.
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Table 6.1: Representative VRM application values

Component/Parameter Nominal Value Range of Variation

Vin 12V 10− 13V

Vref 1.2V 0.8− 1.3V

L 100nH

Rdcr 1mΩ

C 800µF

Resr 1mΩ

RLL 1.25mΩ

Io 100A 1− 120A

fs 1MHz

BW 80kHz

Table 6.2: Input filter values

Component Nominal Value Range of Variation

Lf 800nH

Rdc 0.1mΩ

Cf 500µF 200− 3, 000µF

Res 1mΩ .2− 20mΩ
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6.2.2 Preliminary analysis

Applying the Middlebrook criterion to this system, it can be seen that the stability

conditions are not met for some input filter parameters in the range specified. This is

illustrated in Fig. 6.3, showing the Bode plots of the input impedance of the converter

G−1
iv at a high-load condition and the output impedance of the input filter Zo. A set of

plots for Zo are shown corresponding to a representative set of input filter parameter

variations. The input filter resonance is not damped enough in some cases and the

peak becomes larger than the input impedance of the converter. It is expected, from

previous analysis, that the system would be unstable if the bandwidth of the loop is

above the input filter resonance for those particular sets of parameters.

This problem formulation is a good candidate to explore to what extent the use

of input voltage feedforward and robust design techniques could overcome the funda-

mental limit of performance observed in the traditional SISO controller design.

6.2.3 PID feedback design

In this design, the controller K shown in Fig.6.1 has the feedforward path from

vin to d equal to zero, and the feedback path from ve to d is designed using standard

control techniques. The input filter is assumed to be absent, implying that the loop to

be designed is formed by the series connection of the controller K and the duty-cycle

to output voltage transfer function Gvd, which will be referred to as “the plant”. The
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(dash-dotted line), and the resulting loop gain (solid line).

design is performed under the most demanding situation, which is at high load.

The PID controller has one pole at the origin, two zeros located in the proximity

of the plant’s double pole, and an additional pole located in proximity to the ESR

zero introduced by the output capacitor. The Bode plot of the controller, the plant,

and the loop are shown in Fig. 6.4. The bandwidth is around 85kHz and the phase

margin 80◦.

The design appears to be adequate, however when the input filter is connected
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Figure 6.5: Set of Nyquist plots of the feedback PID design for different input filter
parameters.

and the new loop gain computed (for example, using the extra-element theorem),

instability is revealed in the set of Nyquist plots of Fig. 6.5. For each input filter

parameter value set, a different Nyquist plot is shown. Some of the plots encircle the

(−1, 0) point, revealing instability. This is not surprising, since it was predicted in

the previous section.
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6.2.4 Input voltage feedforward

This design is based on that in [36]. The feedback controller is the same PID

as in the previous section, but an input voltage feedforward path equal to − D
Vin

is

added. The controller K, as shown in Fig. 6.1 has now two inputs and one output.

This ideally cancels out the effect of any input filter in the loop gain. However, this

is equivalent to a RHP zero-pole cancellation that hides the instability such that it is

not observed at the output. A slight deviation from the ideal conditions reveals the

instability in the output of the system.

The Nyquist plot of the loop under variations in the input filter is shown in Fig. 6.6.

Comparing with Fig. 6.5 it can be appreciated that the feedforward term effectively

cancels the effect of the input filter in the loop, which appears now to be stable.

However, when the input voltage is allowed to change (in addition to the variations

in the input filter), the feedforward term is not ideal anymore and the Nyquist plot

of the loop becomes the set shown in Fig. 6.7. In this case it can be seen that the

system is unstable for some set of parameters in the range of variation, as evidenced

by the encirclement of the point (−1, 0).

6.2.5 µ-synthesis design

The examples in the previous sections illustrate that the RHP zeros impose a

fundamental limitation in the conventional design of controllers for DC/DC convert-
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Figure 6.6: Nyquist plot of the feedforward design under ideal conditions.
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Figure 6.7: Nyquist plot of the feedforward design with variations in the input voltage.
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ers with an undamped input filter. To confirm this, a larger set of controllers is

explored by using the µ-synthesis algorithm available in the Matlab Robust Control

Toolbox [55]. The idea is to try to find out if there exists any controller K that could

achieve stability and adequate performance under the constraints of the problem. In

order to proceed with the controller design, the problem has to be posed as a norm

minimization problem. The following setup is based on the methodology described

in [56] and [55].

The system setup is shown in Fig. 6.8. The inputs to be considered are the voltage

reference vr and the output current io, while the main output of interest is the error

voltage ve. In order to penalize the amplitude of perturbations in the input voltage

and to comply with well-posedness conditions, the input voltage vin and the duty-

cycle command d are also included as outputs respectively. The model is valid up to

half the switching frequency, so the uncertainty due to the switching action is included

by adding an extra perturbation input vs at the output of the plant. All these signals

have to be weighted in order to constrain the problem with realistic specifications.

The dashed box indicates the controller location, to be synthesized by the designer

or the control design algorithm.

The system, then, has the form indicated in Fig. 6.9. The controller K has two

inputs and one output, and is to be designed in order to minimize the H∞ norm of

the transfer function from the inputs (vr, io, vs) to the outputs (ṽe, ṽin, d̃) under all
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Figure 6.9: Simplified system setup for robust control design.

parameter variations, while preserving stability.

For this application, the weighting functions used to shape the system’s response

are shown in Figs. 6.10 and 6.11 for the inputs and outputs respectively. The weights

at the reference inputs vr and io represent the bandwidth of the signals to be tracked.

The weight in the perturbation vs represents the uncertainty at frequencies above half

the switching frequency. On the other hand, the weights at the outputs represent the

desired bandwidth of the system as well as the relative importance of the different

signals.

The µ-synthesis algorithm was run on a system with uncertainties in the input

filter and the input voltage. The code is presented in Appendix C. The Bode plot of

the controller synthesized is shown in Fig. 6.12, compared with the controller of the
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Figure 6.10: Weighting functions for the inputs.
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previous section (PID feedback and input voltage feedforward). It can be seen that the

µ controller has a much lower gain, especially in the region of the resonant frequency

of the input filter. The loop transfer function Bode plot is shown in Fig. 6.13 and the

Nyquist plot in Fig. 6.14. The loop magnitude is less than 0dB for all frequencies, this

means that effectively the feedback loop is not present and performance of the system

is very poor. As evidenced by the Nyquist plot, the system is stable. One possible

interpretation of this result is that the controller tries to suppress the frequencies in

which an abrupt phase change occurs due to the undamped filter. As a consequence,

the Nyquist plot does not encircle the point (−1, 0) because the magnitude of the

loop transfer function is less than unity.

6.2.6 Conclusions

It can be concluded by the previous analysis and the examples shown that there

does not seem to be a control strategy that permits a stable operation of a DC/DC

converter with an undamped input filter, while achieving a bandwidth above the

resonance of the filter. The strategy of damping the input filter that is standard

practice at the present seems to be the only feasible solution to the problem. The

next section proposes an alternative way of damping the input filter without using

physical resistors.
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Figure 6.15: Simple DPS architecture.

6.3 Virtual damping of input filter

It has been shown in the previous sections that the presence of an input filter in

a power converter under certain conditions could affect the stability of the system,

and no control strategy in the converter can solve the problem. The most a control

system can achieve is to stabilize the system at the expense of performance. In this

section, a different approach from a systems perspective is explored.

Consider the simple DPS architecture shown in Fig. 6.15. A front-end converter

performs power factor correction (PFC) and provides a mildly regulated DC bus. A

point-of-load (POL) DC/DC converter provides a tightly regulated voltage to the load

from this intermediate bus. An EMI filter is used at the input of the POL converter

to reduce the frequency content of its input current.

It has been shown that the effects of the filter on the dynamics of the POL

converter can be reduced by adding damping. Instead of adding physical damping,

the output impedance of the front-end converter can be adjusted to provide the

necessary damping. The idea is illustrated in Fig. 6.16. The output impedance of

the front-end converter can be made resistive (Ro) over a wide frequency range in
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Figure 6.16: Equivalent circuit of simple DPS architecture.

order to damp the input filter and counteract the negative input resistance of the

POL converter −RLr = − RL
ηD2 .

The system can be viewed as two two-ports interconnected: one is the filter with

impedances ZA and ZB, and the other one is composed by the two independent

resistances −RLr and Ro. However, the system can also be viewed as two stable one-

ports interconnected: one is the filter with resistance Ro in series, and the other is the

DC/DC converter with impedance −RLr. This permits a simpler yet still rigurous

analysis, because the special case described in Section 5.3 can be used. The location of

the zeros of 1−ZBYLr with YLr = 1
RLr

determine the stability of the interconnection.

Impedance ZB can be computed as

ZB = (Lfs+Rdc +Ro) ‖
(

1

Cfs
+Res

)
(6.8)

=
(Lfs+Rdc +Ro) · (ResCfs+ 1)

LfCfs2 + (Rdc +Res +Ro)Cfs+ 1
. (6.9)

Stability can be analyzed using the Routh-Hurwitz criterion on the numerator of
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1− ZBYLr, which is

(
1− Res

RLr

)
LfCfs

2+

[(
Rdc +Ro +Res −

Res(Rdc +Ro)

RLr

)
Cf −

Lf
RLr

]
s+1−Rdc +Ro

RLr

(6.10)

The coefficient
(
1− Res

RLr

)
is positive for representative values of the parameters, but

the term
(
1− Rdc+Ro

RLr

)
may not be always positive depending on the value of Ro. The

stability conditions can be written as:

(
1− Rdc +Ro

RLr

)
> 0 and (6.11)[(

Rdc +Ro +Res −
Res(Rdc +Ro)

RLr

)
Cf −

Lf
RLr

]
> 0. (6.12)

These conditions impose bounds on the values of Ro:

Z2
C −ResRLr

RLr −Res

−Rdc < Ro < RLr −Rdc (6.13)

Under the usual assumptions that RLr � Res, Rdc, the expressions can be simplified

to the following

Z2
C

RLr

− (Res +Rdc) < Ro < RLr. (6.14)

Notice that the most constrained case is given by the lowest value of RLr, i.e., under

a high-load condition.

For the typical values reported in Tables 6.1 and 6.2, the assumptions are valid

and the worst-case value for RLr is 640mΩ, then the bounds would be

1.4mΩ < Ro < 640mΩ. (6.15)
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The designer has a wide range of options for selecting Ro.

The circuit in Fig. 6.16 was simulated using LTspice/SwCADIII [57]. The value

for RLr used was 640mΩ and the input filter values were taken from 6.2. A voltage

step was introduced at the input and the capacitor voltage was observed. Several

values of Ro were used, spanning the range indicated in (6.15). The results are shown

in Fig. 6.17 and corroborate the theoretical results. For Ro = 1mΩ the system is

unstable. For Ro = 1.4mΩ it is marginally stable. For Ro = 2, 20, and 500mΩ the

system is stable with different damping characteristics. For Ro = 640mΩ and above

the system becomes unstable. These results are in agreement with the range predicted

in (6.15).

6.4 Conclusions

This chapter has analyzed the input filter problem from the fundamentals of con-

trol system theory. It has been illustrated by examples that there exist fundamental

limits to the performance of a DC/DC converter in the presence of an undamped

input filter. The only stabilizing controller that could be found using an optimizing

algorithm was shown to have poor performance due to the fact that it suppresses the

frequency range in which the input filter resonance occurs.

A virtual damping technique has been proposed that allows for stable operation

without compromising the performance of the system. The technique is based on
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Figure 6.17: Simulation of the virtual damping example with different values of Ro.
Response to an input voltage step.
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a system-level design in which the system interconnected to the input of the input

filter has a resistive output impedance. Simulations corroborate the design equations

derived analytically.

In DPS designs, techniques like the one described above could be used to guarantee

stability and performance of the interconnection without adding physical components

that increment the size, weight, and cost of the system.
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Appendix C

Robust design Matlab code

% Robust design of buck converter controller with input filter

% nominal parameters

Vin_nom = 12; % input voltage

Vref_nom = 1.2; % reference voltage

N = 4; % number of phases

L_nom = 400e-9/N; % total inductance

Rdcr_nom = 4e-3/N; % inductor DC resistance

C_nom = 800e-6; % output cap

Resr_nom = 1e-3; % cap series resistance

Io_nom = 100; % output current

Rref = 1.25e-3; % droop

% actual values

Vin = ureal(’Vin’,Vin_nom,’Range’,[10 13]);

Vref = Vref_nom;

L = L_nom;

Rdcr = Rdcr_nom;

C = C_nom;

Resr = Resr_nom;

Io = Io_nom;

% derived values
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Vo = Vref;

D = Vref_nom/Vin_nom;

R = .01; % 1 for light load, .01 for high load

% input voltage feedforward

F = -D/Vin;

% input filter

Lin = 800e-9;

Rdcin = .1e-3;

Cin = ureal(’Cinreal’,500e-6,’Range’,[200e-6 3000e-6]) + ...

ultidyn(’Cinlti’,[1 1],’Bound’,0.05*800e-6);

Resin = ureal(’Resinreal’,1e-3,’Range’,[.2e-3 20e-3]) + ...

ultidyn(’Resinlti’,[1 1],’Bound’,0.05*3e-3);

% controller

Kp = 32; % proportional gain

Kd = 256; % derivative gain

Ki = 0.125; % integral gain

fsw = 1e6; % switching frequency

T = 1/fsw; % switching period

fsamp = fsw*N; % sampling frequency

Tsamp = 1/fsamp; % sampling period

% converter averaged continuous-time model

Gvd = Vin*R/(R+Rdcr)*tf([Resr*C 1], ...

[(Resr+R)/(Rdcr+R)*L*C ((Resr*R+Resr*Rdcr+Rdcr*R)*C+L)/(Rdcr+R) 1]);

Gvv = D*R/(Rdcr+R)*tf([Resr*C 1], ...

[(Resr+R)/(Rdcr+R)*L*C ((Resr*R+Resr*Rdcr+Rdcr*R)*C+L)/(Rdcr+R) 1]);

Gvi = -R*Rdcr/(R+Rdcr)*tf([Resr/Rdcr*L*C Resr*C+L/Rdcr 1], ...

[(Resr+R)/(Rdcr+R)*L*C ((Resr*R+Resr*Rdcr+Rdcr*R)*C+L)/(Rdcr+R) 1]);

Gid = D*Vin/(R+Rdcr)*(1+tf([(Resr+R)*C 1], ...

[(Resr+R)/(Rdcr+R)*L*C ((Resr*R+Resr*Rdcr+Rdcr*R)*C+L)/(Rdcr+R) 1]));

Giv = D^2/(R+Rdcr)*tf([(Resr+R)*C 1], ...

[(Resr+R)/(Rdcr+R)*L*C ((Resr*R+Resr*Rdcr+Rdcr*R)*C+L)/(Rdcr+R) 1]);

Gii = D*R/(R+Rdcr)*tf([Resr*C 1], ...

[(Resr+R)/(Rdcr+R)*L*C ((Resr*R+Resr*Rdcr+Rdcr*R)*C+L)/(Rdcr+R) 1]);

% PID controller

Ad = 1/2/Vin_nom * (tf(Kd.*[1 -1],[1 0],Tsamp) + ...
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tf(Kp,1,Tsamp)+tf(Ki.*[1 0],[1 -1],Tsamp));

A = d2c(Ad,’tustin’);

% reference impedance (load-line)

Zref = Rref*tf([Resr*C 1],[Rref*C 1]);

% input filter

Zo = tf([Resin*Lin*Cin Lin+Resin*Rdcin*Cin Rdcin], ...

[Lin*Cin (Rdcin+Resin)*Cin 1]);

% weights

We = tf(1e5*[1/1e9 1],[1/5e5 1]); % minimize error up to BW

Wr = tf([1/1e9 1],[1/2e5 1]); % reference BW around 33kHz

Wd = tf(10*[1/1e9 1],[1/1e6 1]); % more weight on output current disturbance

Wu = tf([1/1e5 1],[1/8e6 1]); % penalize actuator input for well-posedness

Wv = tf(1e-2*[1/1e9 1],[1/1e4 1]); % penalize input voltage for stability

Ws = tf(1e-2*[1/1e5],[1/1e8 1]); % disturbance due to switching

% interconnection for mu design

systemnames = ’Gvd Gvv Gvi Giv Gid Gii Zo Zref We Wr Wd Wu Wv Ws’;

inputvar = ’[vr;io;vs;d]’;

outputvar = ’[We;Wu;Wv;Wr-Zref-Gvd-Gvv-Gvi-Ws;-Zo]’;

input_to_Gvd = ’[d]’;

input_to_Gvv = ’[-Zo]’;

input_to_Gvi = ’[Wd]’;

input_to_Gid = ’[d]’;

input_to_Giv = ’[-Zo]’;

input_to_Gii = ’[Wd]’;

input_to_Zo = ’[Giv+Gid+Gii]’;

input_to_Zref = ’[Wd]’;

input_to_We = ’[Wr-Zref-Gvd-Gvv-Gvi-Ws]’;

input_to_Wr = ’[vr]’;

input_to_Wd = ’[io]’;

input_to_Wu = ’[d]’;

input_to_Wv = ’[-Zo]’;

input_to_Ws = ’[vs]’;

cleanupsysic = ’yes’;

P = sysic;

P.InputName={’vr’ ’io’ ’vs’ ’d’};

P.OutputName={’vet’ ’vut’ ’vint’ ’ve’ ’vin’};
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% interconnection for CL analysis

systemnames = ’Gvd Gvv Gvi Giv Gid Gii Zo Zref’;

inputvar = ’[vr;io;d]’;

outputvar = ’[Gvd+Gvv+Gvi;vr-Zref-Gvd-Gvv-Gvi;-Zo]’;

input_to_Gvd = ’[d]’;

input_to_Gvv = ’[-Zo]’;

input_to_Gvi = ’[io]’;

input_to_Gid = ’[d]’;

input_to_Giv = ’[-Zo]’;

input_to_Gii = ’[io]’;

input_to_Zo = ’[Giv+Gid+Gii]’;

input_to_Zref = ’[io]’;

cleanupsysic = ’yes’;

P2 = sysic;

P2.InputName={’vr’ ’io’ ’d’};

P2.OutputName={’vo’ ’ve’ ’vin’};

% traditional controllers

Kfb = [A 0]; % only feedback

Kff = [A F]; % standard controller w/feedforward

% mu design

opt = dkitopt(’NumberofAutoIterations’,4);

[Kmu,CLmu,bnd] = dksyn(P,2,1,opt);

% closed-loop systems

CL2fb = lft(P2,Kfb);

CL2ff = lft(P2,Kff);

CL2mu = lft(P2,Kmu);

% interconnections for OL analysis

systemnames = ’Gvd Gvv Giv Gid Zo Kfb’;

inputvar = ’[ve]’;

outputvar = ’[Gvd+Gvv]’;

input_to_Gvd = ’[Kfb]’;

input_to_Gvv = ’[-Zo]’;

input_to_Gid = ’[Kfb]’;

input_to_Giv = ’[-Zo]’;

input_to_Zo = ’[Giv+Gid]’;
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input_to_Kfb = ’[ve;-Zo]’;

cleanupsysic = ’yes’;

Pfb = sysic;

Pfb.InputName={’ve’};

Pfb.OutputName={’vo’};

systemnames = ’Gvd Gvv Giv Gid Zo Kff’;

inputvar = ’[ve]’;

outputvar = ’[Gvd+Gvv]’;

input_to_Gvd = ’[Kff]’;

input_to_Gvv = ’[-Zo]’;

input_to_Gid = ’[Kff]’;

input_to_Giv = ’[-Zo]’;

input_to_Zo = ’[Giv+Gid]’;

input_to_Kff = ’[ve;-Zo]’;

cleanupsysic = ’yes’;

Pff = sysic;

Pff.InputName={’ve’};

Pff.OutputName={’vo’};

systemnames = ’Gvd Gvv Giv Gid Zo Kmu’;

inputvar = ’[ve]’;

outputvar = ’[Gvd+Gvv]’;

input_to_Gvd = ’[Kmu]’;

input_to_Gvv = ’[-Zo]’;

input_to_Gid = ’[Kmu]’;

input_to_Giv = ’[-Zo]’;

input_to_Zo = ’[Giv+Gid]’;

input_to_Kmu = ’[ve;-Zo]’;

cleanupsysic = ’yes’;

Pmu = sysic;

Pmu.InputName={’ve’};

Pmu.OutputName={’vo’};
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