Problem 5.1 An electron with a speed of $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is projected along the positive x-direction into a medium containing a uniform magnetic flux density $\mathbf{B}=(\hat{\mathbf{x}} 4-\hat{\mathbf{z}} 3) \mathrm{T}$. Given that $e=1.6 \times 10^{-19} \mathrm{C}$ and the mass of an electron is $m_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$, determine the initial acceleration vector of the electron (at the moment it is projected into the medium).

Solution: The acceleration vector of a free particle is the net force vector divided by the particle mass. Neglecting gravity, and using Eq. (5.3), we have

$$
\begin{aligned}
\mathbf{a}=\frac{\mathbf{F}_{\mathrm{m}}}{m_{\mathrm{e}}}=\frac{-e}{m_{\mathrm{e}}} \mathbf{u} \times \mathbf{B} & =\frac{-1.6 \times 10^{-19}}{9.1 \times 10^{-31}}\left(\hat{\mathbf{x}} 8 \times 10^{6}\right) \times(\hat{\mathbf{x}} 4-\hat{\mathbf{z}} 3) \\
& =-\hat{\mathbf{y}} 4.22 \times 10^{18} \quad\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

Problem 5.4 The rectangular loop shown in Fig. P5.4 consists of 20 closely wrapped turns and is hinged along the z-axis. The plane of the loop makes an angle of 30° with the y-axis, and the current in the windings is 0.5 A . What is the magnitude of the torque exerted on the loop in the presence of a uniform field $\mathbf{B}=\hat{\mathbf{y}} 2.4 \mathrm{~T}$? When viewed from above, is the expected direction of rotation clockwise or counterclockwise?

Figure P5.4: Hinged rectangular loop of Problem 5.4.
Solution: The magnetic torque on a loop is given by $\mathbf{T}=\mathbf{m} \times \mathbf{B}$ (Eq. (5.20)), where $\mathbf{m}=\hat{\mathbf{n}} N I A$ (Eq. (5.19)). For this problem, it is given that $I=0.5 \mathrm{~A}, N=20$ turns, and $A=0.2 \mathrm{~m} \times 0.4 \mathrm{~m}=0.08 \mathrm{~m}^{2}$. From the figure, $\hat{\mathbf{n}}=-\hat{\mathbf{x}} \cos 30^{\circ}+\hat{\mathbf{y}} \sin 30^{\circ}$. Therefore, $\mathbf{m}=\hat{\mathbf{n}} 0.8\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right)$ and $\mathbf{T}=\hat{\mathbf{n}} 0.8\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right) \times \hat{\mathbf{y}} 2.4 \mathrm{~T}=-\hat{\mathbf{z}} 1.66(\mathrm{~N} \cdot \mathrm{~m})$. As the torque is negative, the direction of rotation is clockwise, looking from above.

Problem 5.12 Two infinitely long, parallel wires are carrying 6-A currents in opposite directions. Determine the magnetic flux density at point P in Fig. P5.12.

Figure P5.12: Arrangement for Problem 5.12.

Solution:

$$
\begin{equation*}
\mathbf{B}=\hat{\boldsymbol{\phi}} \frac{\mu_{0} I_{1}}{2 \pi(0.5)}+\hat{\boldsymbol{\phi}} \frac{\mu_{0} I_{2}}{2 \pi(1.5)}=\hat{\boldsymbol{\phi}} \frac{\mu_{0}}{\pi}(6+2)=\hat{\boldsymbol{\phi}} \frac{8 \mu_{0}}{\pi} \tag{T}
\end{equation*}
$$

Problem 5.14 Two parallel, circular loops carrying a current of 40 A each are arranged as shown in Fig. P5.14. The first loop is situated in the $x-y$ plane with its center at the origin, and the second loop's center is at $z=2 \mathrm{~m}$. If the two loops have the same radius $a=3 \mathrm{~m}$, determine the magnetic field at:
(a) $z=0$
(b) $z=1 \mathrm{~m}$
(c) $z=2 \mathrm{~m}$

Figure P5.14: Parallel circular loops of Problem 5.14.

Solution: The magnetic field due to a circular loop is given by (5.34) for a loop in the $x-y$ plane carrying a current I in the $+\hat{\phi}$-direction. Considering that the bottom loop in Fig. is in the $x-y$ plane, but the current direction is along $-\hat{\boldsymbol{\phi}}$,

$$
\mathbf{H}_{1}=-\hat{\mathbf{z}} \frac{I a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}},
$$

where z is the observation point along the z-axis. For the second loop, which is at a height of 2 m , we can use the same expression but z should be replaced with $(z-2)$. Hence,

$$
\mathbf{H}_{2}=-\hat{\mathbf{z}} \frac{I a^{2}}{2\left[a^{2}+(z-2)^{2}\right]^{3 / 2}} .
$$

The total field is

$$
\mathbf{H}=\mathbf{H}_{1}+\mathbf{H}_{2}=-\hat{\mathbf{z}} \frac{I a^{2}}{2}\left[\frac{1}{\left(a^{2}+z^{2}\right)^{3 / 2}}+\frac{1}{\left[a^{2}+(z-2)^{2}\right]^{3 / 2}}\right] \mathrm{A} / \mathrm{m} .
$$

(a) At $z=0$, and with $a=3 \mathrm{~m}$ and $I=40 \mathrm{~A}$,

$$
\mathbf{H}=-\hat{\mathbf{z}} \frac{40 \times 9}{2}\left[\frac{1}{3^{3}}+\frac{1}{(9+4)^{3 / 2}}\right]=-\hat{\mathbf{z}} 10.5 \mathrm{~A} / \mathrm{m} .
$$

(b) At $z=1 \mathrm{~m}$ (midway between the loops):

$$
\mathbf{H}=-\hat{\mathbf{z}} \frac{40 \times 9}{2}\left[\frac{1}{(9+1)^{3 / 2}}+\frac{1}{(9+1)^{3 / 2}}\right]=-\hat{\mathbf{z}} 11.38 \mathrm{~A} / \mathrm{m} .
$$

(c) At $z=2 \mathrm{~m}, \mathbf{H}$ should be the same as at $z=0$. Thus,

$$
\mathbf{H}=-\hat{\mathbf{z}} 10.5 \mathrm{~A} / \mathrm{m} .
$$

Problem 5.22 A long cylindrical conductor whose axis is coincident with the z-axis has a radius a and carries a current characterized by a current density $\mathbf{J}=\hat{\mathbf{z}} J_{0} / r$, where J_{0} is a constant and r is the radial distance from the cylinder's axis. Obtain an expression for the magnetic field \mathbf{H} for
(a) $0 \leq r \leq a$
(b) $r>a$

Solution: This problem is very similar to Example 5-5.
(a) For $0 \leq r_{1} \leq a$, the total current flowing within the contour C_{1} is

$$
I_{1}=\iint \mathbf{J} \cdot d \mathbf{s}=\int_{\phi=0}^{2 \pi} \int_{r=0}^{r_{1}}\left(\frac{\hat{\mathbf{z}} J_{0}}{r}\right) \cdot(\hat{\mathbf{z}} r d r d \phi)=2 \pi \int_{r=0}^{r_{1}} J_{0} d r=2 \pi r_{1} J_{0} .
$$

Therefore, since $I_{1}=2 \pi r_{1} H_{1}, H_{1}=J_{0}$ within the wire and $\mathbf{H}_{1}=\hat{\boldsymbol{\phi}} J_{0}$.
(b) For $r \geq a$, the total current flowing within the contour is the total current flowing within the wire:

$$
I=\iint \mathbf{J} \cdot d \mathbf{s}=\int_{\phi=0}^{2 \pi} \int_{r=0}^{a}\left(\frac{\hat{\mathbf{z}} J_{0}}{r}\right) \cdot(\hat{\mathbf{z}} r d r d \phi)=2 \pi \int_{r=0}^{a} J_{0} d r=2 \pi a J_{0} .
$$

Therefore, since $I=2 \pi r H_{2}, H_{2}=J_{0} a / r$ within the wire and $\mathbf{H}_{2}=\hat{\boldsymbol{\phi}} J_{0}(a / r)$.

Problem 5.24 In a certain conducting region, the magnetic field is given in cylindrical coordinates by

$$
\mathbf{H}=\hat{\phi} \frac{4}{r}\left[1-(1+3 r) e^{-3 r}\right]
$$

Find the current density \mathbf{J}.
Solution:

$$
\begin{aligned}
\mathbf{J}=\nabla \times \mathbf{H} & =\hat{\mathbf{z}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot \frac{4}{r}\left[1-(1+3 r) e^{-3 r}\right]\right) \\
& =\hat{\mathbf{z}} \frac{1}{r}\left[12 e^{-2 r}(1+2 r)-12 e^{-2 r}\right]-\mathbf{z} 24 e^{-3 r} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{z} \frac{1}{r}\left[12 e^{-3 r}(1+3 r)-12 e^{-3 r}\right] \\
& =\hat{z} 36 e^{-3 r} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

Problem 5.27 In a given region of space, the vector magnetic potential is given by $\mathbf{A}=\hat{\mathbf{x}} 5 \cos \pi y+\hat{\mathbf{z}}(2+\sin \pi x)(\mathrm{Wb} / \mathrm{m})$.
(a) Determine \mathbf{B}.
(b) Use Eq. (5.66) to calculate the magnetic flux passing through a square loop with $0.25-\mathrm{m}$-long edges if the loop is in the $x-y$ plane, its center is at the origin, and its edges are parallel to the x - and y-axes.
(c) Calculate Φ again using Eq. (5.67).

Solution:

(a) From Eq. (5.53), $\mathbf{B}=\nabla \times \mathbf{A}=\hat{\mathbf{z}} 5 \pi \sin \pi y-\hat{\mathbf{y}} \pi \cos \pi x$.
(b) From Eq. (5.66),

$$
\begin{aligned}
\Phi=\iint \mathbf{B} \cdot d \mathbf{s} & =\int_{y=-0.125 \mathrm{~m}}^{0.125 \mathrm{~m}} \int_{x=-0.125 \mathrm{~m}}^{0.125 \mathrm{~m}}(\hat{\mathbf{z}} 5 \pi \sin \pi y-\hat{\mathbf{y}} \pi \cos \pi x) \cdot(\hat{\mathbf{z}} d x d y) \\
& =\left.\left(\left.\left(-5 \pi x \frac{\cos \pi y}{\pi}\right)\right|_{x=-0.125} ^{0.125}\right)\right|_{y=-0.125} ^{0.125} \\
& =\frac{-5}{4}\left(\cos \left(\frac{\pi}{8}\right)-\cos \left(\frac{-\pi}{8}\right)\right)=0
\end{aligned}
$$

(c) From Eq. (5.67), $\Phi=\oint_{C} \mathbf{A} \cdot d \boldsymbol{\ell}$, where C is the square loop in the $x-y$ plane with sides of length 0.25 m centered at the origin. Thus, the integral can be written as

$$
\Phi=\oint_{C} \mathbf{A} \cdot d \boldsymbol{\ell}=S_{\mathrm{front}}+S_{\mathrm{back}}+S_{\mathrm{left}}+S_{\mathrm{right}}
$$

where $S_{\text {front }}, S_{\text {back }}, S_{\text {left }}$, and $S_{\text {right }}$ are the sides of the loop.

$$
\begin{aligned}
S_{\text {front }} & =\left.\int_{x=-0.125}^{0.125}(\hat{\mathbf{x}} 5 \cos \pi y+\hat{\mathbf{z}}(2+\sin \pi x))\right|_{y=-0.125} \cdot(\hat{\mathbf{x}} d x) \\
& =\left.\int_{x=-0.125}^{0.125} 5 \cos \pi y\right|_{y=-0.125} d x \\
& =\left.\left(\left.(5 x \cos \pi y)\right|_{y=-0.125}\right)\right|_{x=-0.125} ^{0.125}=\frac{5}{4} \cos \left(\frac{-\pi}{8}\right)=\frac{5}{4} \cos \left(\frac{\pi}{8}\right) \\
S_{\text {back }} & =\left.\int_{x=-0.125}^{0.125}(\hat{\mathbf{x}} 5 \cos \pi y+\hat{\mathbf{z}}(2+\sin \pi x))\right|_{y=0.125} \cdot(-\hat{\mathbf{x}} d x) \\
& =-\left.\int_{x=-0.125}^{0.125} 5 \cos \pi y\right|_{y=0.125} d x \\
& =\left.\left(\left.(-5 x \cos \pi y)\right|_{y=0.125}\right)\right|_{x=-0.125} ^{0.125}=-\frac{5}{4} \cos \left(\frac{\pi}{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{\text {left }} & =\left.\int_{y=-0.125}^{0.125}(\hat{\mathbf{x}} 5 \cos \pi y+\hat{\mathbf{z}}(2+\sin \pi x))\right|_{x=-0.125} \cdot(-\hat{\mathbf{y}} d y) \\
& =-\left.\int_{y=-0.125}^{0.125} 0\right|_{x=-0.125} d y=0, \\
S_{\text {right }} & =\left.\int_{y=-0.125}^{0.125}(\hat{\mathbf{x}} 5 \cos \pi y+\hat{\mathbf{z}}(2+\sin \pi x))\right|_{x=0.125} \cdot(\hat{\mathbf{y}} d y) \\
& =\left.\int_{y=-0.125}^{0.125} 0\right|_{x=0.125} d y=0 .
\end{aligned}
$$

Thus,

$$
\Phi=\oint_{c} \mathbf{A} \cdot d \boldsymbol{\ell}=S_{\text {front }}+S_{\text {back }}+S_{\text {left }}+S_{\text {right }}=\frac{5}{4} \cos \left(\frac{\pi}{8}\right)-\frac{5}{4} \cos \left(\frac{\pi}{8}\right)+0+0=0
$$

