Problem 5.1 An electron with a speed of 8×10^6 m/s is projected along the positive *x*-direction into a medium containing a uniform magnetic flux density $\mathbf{B} = (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)$ T. Given that $e = 1.6 \times 10^{-19}$ C and the mass of an electron is $m_e = 9.1 \times 10^{-31}$ kg, determine the initial acceleration vector of the electron (at the moment it is projected into the medium).

Solution: The acceleration vector of a free particle is the net force vector divided by the particle mass. Neglecting gravity, and using Eq. (5.3), we have

$$\mathbf{a} = \frac{\mathbf{F}_{\rm m}}{m_{\rm e}} = \frac{-e}{m_{\rm e}} \mathbf{u} \times \mathbf{B} = \frac{-1.6 \times 10^{-19}}{9.1 \times 10^{-31}} (\mathbf{\hat{x}} 8 \times 10^6) \times (\mathbf{\hat{x}} 4 - \mathbf{\hat{z}} 3)$$
$$= -\mathbf{\hat{y}} 4.22 \times 10^{18} \quad ({\rm m/s}^2).$$

Problem 5.4 The rectangular loop shown in Fig. P5.4 consists of 20 closely wrapped turns and is hinged along the *z*-axis. The plane of the loop makes an angle of 30° with the *y*-axis, and the current in the windings is 0.5 A. What is the magnitude of the torque exerted on the loop in the presence of a uniform field $\mathbf{B} = \hat{\mathbf{y}} 2.4$ T? When viewed from above, is the expected direction of rotation clockwise or counterclockwise?

Figure P5.4: Hinged rectangular loop of Problem 5.4.

Solution: The magnetic torque on a loop is given by $\mathbf{T} = \mathbf{m} \times \mathbf{B}$ (Eq. (5.20)), where $\mathbf{m} = \mathbf{\hat{n}}NIA$ (Eq. (5.19)). For this problem, it is given that I = 0.5 A, N = 20 turns, and $A = 0.2 \text{ m} \times 0.4 \text{ m} = 0.08 \text{ m}^2$. From the figure, $\mathbf{\hat{n}} = -\mathbf{\hat{x}}\cos 30^\circ + \mathbf{\hat{y}}\sin 30^\circ$. Therefore, $\mathbf{m} = \mathbf{\hat{n}}0.8 (\mathbf{A} \cdot \mathbf{m}^2) \times \mathbf{\hat{y}}2.4 \text{ T} = -\mathbf{\hat{z}}1.66 (\text{N} \cdot \text{m})$. As the torque is negative, the direction of rotation is clockwise, looking from above.

Problem 5.12 Two infinitely long, parallel wires are carrying 6-A currents in opposite directions. Determine the magnetic flux density at point *P* in Fig. P5.12.

Figure P5.12: Arrangement for Problem 5.12.

Solution:

$$\mathbf{B} = \hat{\boldsymbol{\phi}} \, \frac{\mu_0 I_1}{2\pi (0.5)} + \hat{\boldsymbol{\phi}} \, \frac{\mu_0 I_2}{2\pi (1.5)} = \hat{\boldsymbol{\phi}} \, \frac{\mu_0}{\pi} \, (6+2) = \hat{\boldsymbol{\phi}} \, \frac{8\mu_0}{\pi} \quad (\mathrm{T}).$$

Problem 5.14 Two parallel, circular loops carrying a current of 40 A each are arranged as shown in Fig. P5.14. The first loop is situated in the *x*–*y* plane with its center at the origin, and the second loop's center is at z = 2 m. If the two loops have the same radius a = 3 m, determine the magnetic field at:

(a)
$$z = 0$$

(b)
$$z = 1 \text{ m}$$

(c)
$$z = 2 \text{ m}$$

Figure P5.14: Parallel circular loops of Problem 5.14.

Solution: The magnetic field due to a circular loop is given by (5.34) for a loop in the *x*-*y* plane carrying a current *I* in the $+\hat{\phi}$ -direction. Considering that the bottom loop in Fig. is in the *x*-*y* plane, but the current direction is along $-\hat{\phi}$,

$$\mathbf{H}_1 = -\hat{\mathbf{z}} \frac{Ia^2}{2(a^2 + z^2)^{3/2}},$$

where z is the observation point along the z-axis. For the second loop, which is at a height of 2 m, we can use the same expression but z should be replaced with (z-2). Hence,

$$\mathbf{H}_2 = -\hat{\mathbf{z}} \frac{Ia^2}{2[a^2 + (z-2)^2]^{3/2}}.$$

The total field is

$$\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2 = -\hat{\mathbf{z}} \frac{Ia^2}{2} \left[\frac{1}{(a^2 + z^2)^{3/2}} + \frac{1}{[a^2 + (z-2)^2]^{3/2}} \right] \text{ A/m.}$$

(a) At z = 0, and with a = 3 m and I = 40 A,

$$\mathbf{H} = -\hat{\mathbf{z}} \frac{40 \times 9}{2} \left[\frac{1}{3^3} + \frac{1}{(9+4)^{3/2}} \right] = -\hat{\mathbf{z}} 10.5 \text{ A/m}.$$

(b) At z = 1 m (midway between the loops):

$$\mathbf{H} = -\hat{\mathbf{z}} \frac{40 \times 9}{2} \left[\frac{1}{(9+1)^{3/2}} + \frac{1}{(9+1)^{3/2}} \right] = -\hat{\mathbf{z}} 11.38 \text{ A/m}.$$

(c) At z = 2 m, **H** should be the same as at z = 0. Thus,

$$\mathbf{H} = -\hat{\mathbf{z}} \, 10.5 \, \text{A/m}.$$

Problem 5.22 A long cylindrical conductor whose axis is coincident with the *z*-axis has a radius *a* and carries a current characterized by a current density $\mathbf{J} = \hat{\mathbf{z}}J_0/r$, where J_0 is a constant and *r* is the radial distance from the cylinder's axis. Obtain an expression for the magnetic field **H** for

- (a) $0 \le r \le a$
- **(b)** r > a

Solution: This problem is very similar to Example 5-5.

(a) For $0 \le r_1 \le a$, the total current flowing within the contour C_1 is

$$I_{1} = \iint \mathbf{J} \cdot d\mathbf{s} = \int_{\phi=0}^{2\pi} \int_{r=0}^{r_{1}} \left(\frac{\mathbf{\hat{z}}J_{0}}{r}\right) \cdot (\mathbf{\hat{z}}r \, dr \, d\phi) = 2\pi \int_{r=0}^{r_{1}} J_{0} \, dr = 2\pi r_{1} J_{0}.$$

Therefore, since $I_1 = 2\pi r_1 H_1$, $H_1 = J_0$ within the wire and $\mathbf{H}_1 = \hat{\mathbf{\phi}} J_0$.

(b) For $r \ge a$, the total current flowing within the contour is the total current flowing within the wire:

$$I = \iint \mathbf{J} \cdot d\mathbf{s} = \int_{\phi=0}^{2\pi} \int_{r=0}^{a} \left(\frac{\mathbf{\hat{z}}J_0}{r}\right) \cdot (\mathbf{\hat{z}}r \, dr \, d\phi) = 2\pi \int_{r=0}^{a} J_0 \, dr = 2\pi a J_0.$$

Therefore, since $I = 2\pi r H_2$, $H_2 = J_0 a/r$ within the wire and $\mathbf{H}_2 = \hat{\mathbf{\phi}} J_0(a/r)$.

Problem 5.24 In a certain conducting region, the magnetic field is given in cylindrical coordinates by

$$\mathbf{H} = \hat{\mathbf{\phi}} \frac{4}{r} [1 - (1 + 3r)e^{-3r}]$$

Find the current density J.

Solution:

$$J = \nabla \times H = \hat{z} \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot \frac{4}{r} \left[1 - (1 + 3r)e^{-3r} \right] \right)$$

= $\frac{\hat{z} \frac{1}{r} \left[12e^{-2r}(1 + 2r) - 12e^{-2r} \right] = \hat{z} \cdot 24e^{-3r} A/m^2.$
= $\hat{z} \frac{1}{r} \left[12e^{-3r} \left(1 + 3r \right) - 12e^{-3r} \right]$
= $\hat{z} \cdot 36e^{-3r} A/m^2$

Problem 5.27 In a given region of space, the vector magnetic potential is given by $\mathbf{A} = \hat{\mathbf{x}} 5 \cos \pi y + \hat{\mathbf{z}} (2 + \sin \pi x)$ (Wb/m).

- (a) Determine **B**.
- (b) Use Eq. (5.66) to calculate the magnetic flux passing through a square loop with 0.25-m-long edges if the loop is in the *x*-*y* plane, its center is at the origin, and its edges are parallel to the *x* and *y*-axes.
- (c) Calculate Φ again using Eq. (5.67).

Solution:

- (a) From Eq. (5.53), $\mathbf{B} = \nabla \times \mathbf{A} = \hat{\mathbf{z}} 5\pi \sin \pi y \hat{\mathbf{y}}\pi \cos \pi x$.
- **(b)** From Eq. (5.66),

$$\Phi = \iint \mathbf{B} \cdot d\mathbf{s} = \int_{y=-0.125 \text{ m}}^{0.125 \text{ m}} \int_{x=-0.125 \text{ m}}^{0.125 \text{ m}} (\mathbf{\hat{z}} 5\pi \sin \pi y - \mathbf{\hat{y}}\pi \cos \pi x) \cdot (\mathbf{\hat{z}} \, dx \, dy)$$
$$= \left(\left(-5\pi x \frac{\cos \pi y}{\pi} \right) \Big|_{x=-0.125}^{0.125} \right) \Big|_{y=-0.125}^{0.125}$$
$$= \frac{-5}{4} \left(\cos \left(\frac{\pi}{8} \right) - \cos \left(\frac{-\pi}{8} \right) \right) = 0.$$

(c) From Eq. (5.67), $\Phi = \oint_C \mathbf{A} \cdot d\boldsymbol{\ell}$, where *C* is the square loop in the *x*-*y* plane with sides of length 0.25 m centered at the origin. Thus, the integral can be written as

$$\Phi = \oint_C \mathbf{A} \cdot d\boldsymbol{\ell} = S_{\text{front}} + S_{\text{back}} + S_{\text{left}} + S_{\text{right}},$$

where S_{front} , S_{back} , S_{left} , and S_{right} are the sides of the loop.

$$\begin{split} S_{\text{front}} &= \int_{x=-0.125}^{0.125} \left(\hat{\mathbf{x}} 5 \cos \pi y + \hat{\mathbf{z}} (2 + \sin \pi x) \right) |_{y=-0.125} \cdot \left(\hat{\mathbf{x}} \, dx \right) \\ &= \int_{x=-0.125}^{0.125} 5 \cos \pi y |_{y=-0.125} \, dx \\ &= \left(\left(5x \cos \pi y \right) |_{y=-0.125} \right) \Big|_{x=-0.125}^{0.125} = \frac{5}{4} \cos \left(\frac{-\pi}{8} \right) = \frac{5}{4} \cos \left(\frac{\pi}{8} \right), \\ S_{\text{back}} &= \int_{x=-0.125}^{0.125} \left(\hat{\mathbf{x}} 5 \cos \pi y + \hat{\mathbf{z}} (2 + \sin \pi x) \right) |_{y=0.125} \cdot \left(-\hat{\mathbf{x}} \, dx \right) \\ &= -\int_{x=-0.125}^{0.125} 5 \cos \pi y |_{y=0.125} \, dx \\ &= \left(\left(-5x \cos \pi y \right) |_{y=0.125} \right) \Big|_{x=-0.125}^{0.125} = -\frac{5}{4} \cos \left(\frac{\pi}{8} \right), \end{split}$$

$$S_{\text{left}} = \int_{y=-0.125}^{0.125} (\hat{\mathbf{x}} 5 \cos \pi y + \hat{\mathbf{z}} (2 + \sin \pi x))|_{x=-0.125} \cdot (-\hat{\mathbf{y}} \, dy)$$

= $-\int_{y=-0.125}^{0.125} 0|_{x=-0.125} \, dy = 0,$
 $S_{\text{right}} = \int_{y=-0.125}^{0.125} (\hat{\mathbf{x}} 5 \cos \pi y + \hat{\mathbf{z}} (2 + \sin \pi x))|_{x=0.125} \cdot (\hat{\mathbf{y}} \, dy)$
= $\int_{y=-0.125}^{0.125} 0|_{x=0.125} \, dy = 0.$

Thus,

$$\Phi = \oint_c \mathbf{A} \cdot d\boldsymbol{\ell} = S_{\text{front}} + S_{\text{back}} + S_{\text{left}} + S_{\text{right}} = \frac{5}{4} \cos\left(\frac{\pi}{8}\right) - \frac{5}{4} \cos\left(\frac{\pi}{8}\right) + 0 + 0 = 0.$$