Problem 4.41 A cylindrical bar of silicon has a radius of 4 mm and a length of 8 cm . If a voltage of 5 V is applied between the ends of the bar and $\mu_{\mathrm{e}}=0.13$ $\left(\mathrm{m}^{2} / \mathrm{V} \cdot \mathrm{s}\right), \mu_{\mathrm{h}}=0.05\left(\mathrm{~m}^{2} / \mathrm{V} \cdot \mathrm{s}\right), N_{\mathrm{e}}=1.5 \times 10^{16}$ electrons $/ \mathrm{m}^{3}$, and $N_{\mathrm{h}}=N_{\mathrm{e}}$, find the following:
(a) The conductivity of silicon.
(b) The current I flowing in the bar.
(c) The drift velocities \mathbf{u}_{e} and \mathbf{u}_{h}.
(d) The resistance of the bar.
(e) The power dissipated in the bar.

Solution:

(a) Conductivity is given in Eq. (4.65),

$$
\begin{aligned}
\sigma & =\left(N_{\mathrm{e}} \mu_{\mathrm{e}}+N_{\mathrm{h}} \mu_{\mathrm{h}}\right) e \\
& =\left(1.5 \times 10^{16}\right)(0.13+0.05)\left(1.6 \times 10^{-19}\right)=4.32 \times 10^{-4} \quad(\mathrm{~S} / \mathrm{m})
\end{aligned}
$$

(b) Similarly to Example 4.8, parts b and c,

$$
I=J A=\sigma E A=\left(4.32 \times 10^{-4}\right)\left(\frac{5 \mathrm{~V}}{0.08}\right)\left(\pi\left(4 \times 10^{-3}\right)^{2}\right)=1.36 \quad(\mu \mathrm{~A})
$$

(c) From Eqs. (4.62a) and (4.62b),

$$
\begin{aligned}
& \mathbf{u}_{\mathrm{e}}=-\mu_{\mathrm{e}} \mathbf{E}=-(0.13)\left(\frac{5}{0.08}\right) \frac{\mathbf{E}}{|\mathbf{E}|}=-8.125 \frac{\mathbf{E}}{|\mathbf{E}|} \quad(\mathrm{m} / \mathrm{s}), \\
& \mathbf{u}_{\mathrm{h}}=\mu_{\mathrm{h}} \mathbf{E}=+(0.05)\left(\frac{5}{0.08}\right) \frac{\mathbf{E}}{|\mathbf{E}|}=3.125 \frac{\mathbf{E}}{|\mathbf{E}|} \quad(\mathrm{m} / \mathrm{s}) .
\end{aligned}
$$

(d) To find the resistance, we use what we calculated above,

$$
R=\frac{V}{I}=\frac{5 \mathrm{~V}}{1.36 \mu \mathrm{~A}}=3.68 \quad(\mathrm{M} \Omega)
$$

(e) Power dissipated in the bar is $P=I V=(5 \mathrm{~V})(1.36 \mu \mathrm{~A})=6.8(\mu \mathrm{~W})$.

Problem 4.43 A 100-m-long conductor of uniform cross-section has a voltage drop of 4 V between its ends. If the density of the current flowing through it is 1.4×10^{6} $\left(\mathrm{A} / \mathrm{m}^{2}\right)$, identify the material of the conductor.

Solution: We know that conductivity characterizes a material:

$$
\mathbf{J}=\sigma \mathbf{E}, \quad 1.4 \times 10^{6}\left(\mathrm{~A} / \mathrm{m}^{2}\right)=\sigma\left(\frac{4(\mathrm{~V})}{100(\mathrm{~m})}\right), \quad \sigma=3.5 \times 10^{7} \quad(\mathrm{~S} / \mathrm{m})
$$

From Table B-2, we find that aluminum has $\sigma=3.5 \times 10^{7}(\mathrm{~S} / \mathrm{m})$.

Problem 4.46 A 2×10^{-3}-mm-thick square sheet of aluminum has $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ faces. Find the following:
(a) The resistance between opposite edges on a square face.
(b) The resistance between the two square faces. (See Appendix B for the electrical constants of materials.)

Solution:

(a)

$$
R=\frac{l}{\sigma A}
$$

For aluminum, $\sigma=3.5 \times 10^{7}(\mathrm{~S} / \mathrm{m})$ [Appendix B].

$$
\begin{gathered}
l=5 \mathrm{~cm}, \quad A=5 \mathrm{~cm} \times 2 \times 10^{-3} \mathrm{~mm}=10 \times 10^{-2} \times 10^{-6}=1 \times 10^{-7} \mathrm{~m}^{2} \\
R=\frac{5 \times 10^{-2}}{3.5 \times 10^{7} \times 1 \times 10^{-7}}=14 \quad(\mathrm{~m} \Omega)
\end{gathered}
$$

(b) Now, $l=2 \times 10^{-3} \mathrm{~mm}$ and $A=5 \mathrm{~cm} \times 5 \mathrm{~cm}=2.5 \times 10^{-3} \mathrm{~m}^{2}$.

$$
R=\frac{2 \times 10^{-6}}{3.5 \times 10^{7} \times 2.5 \times 10^{-3}}=22.8 \mathrm{p} \Omega .
$$

Problem 4.48 With reference to Fig. 4-19, find \mathbf{E}_{1} if $\mathbf{E}_{2}=\hat{\mathbf{x}} 3-\hat{\mathbf{y}} 2+\hat{\mathbf{z}} 2(\mathrm{~V} / \mathrm{m})$, $\varepsilon_{1}=2 \varepsilon_{0}, \quad \varepsilon_{2}=18 \varepsilon_{0}$, and the boundary has a surface charge density $\rho_{\mathrm{s}}=3.54 \times 10^{-11}\left(\mathrm{C} / \mathrm{m}^{2}\right)$. What angle does \mathbf{E}_{2} make with the z-axis?
Solution: We know that $\mathbf{E}_{1 \mathrm{t}}=\mathbf{E}_{2 \mathrm{t}}$ for any 2 media. Hence, $\mathbf{E}_{1 \mathrm{t}}=\mathbf{E}_{2 \mathrm{t}}=\hat{\mathbf{x}} 3-\hat{\mathbf{y}} 2$. Also, $\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right) \cdot \hat{\mathbf{n}}=\rho_{\mathrm{s}}($ from Table 4.3 $)$. Hence, $\varepsilon_{1}\left(\mathbf{E}_{1} \cdot \hat{\mathbf{n}}\right)-\varepsilon_{2}\left(\mathbf{E}_{2} \cdot \hat{\mathbf{n}}\right)=\rho_{\mathrm{s}}$, which gives

$$
E_{1 z}=\frac{\rho_{\mathrm{s}}+\varepsilon_{2} E_{2 z}}{\varepsilon_{1}}=\frac{3.54 \times 10^{-11}}{2 \varepsilon_{0}}+\frac{18(2)}{2}=\frac{3.54 \times 10^{-11}}{2 \times 8.85 \times 10^{-12}}+18=20 \quad(\mathrm{~V} / \mathrm{m})
$$

Hence, $\mathbf{E}_{1}=\hat{\mathbf{x}} 3-\hat{\mathbf{y}} 2+\hat{\mathbf{z}} 20(\mathrm{~V} / \mathrm{m})$. Finding the angle \mathbf{E}_{2} makes with the z-axis:

$$
\mathbf{E}_{2} \cdot \hat{\mathbf{z}}=\left|\mathbf{E}_{2}\right| \cos \theta, \quad 2=\sqrt{9+4+4} \cos \theta, \quad \theta=\cos ^{-1}\left(\frac{2}{\sqrt{17}}\right)=61^{\circ} .
$$

Problem 4.50 If $\mathbf{E}=\hat{\mathbf{R}} 150(\mathrm{~V} / \mathrm{m})$ at the surface of a $5-\mathrm{cm}$ conducting sphere centered at the origin, what is the total charge Q on the sphere's surface?

Solution: From Table 4-3, $\hat{\mathbf{n}} \cdot\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right)=\rho_{\mathrm{s}} . \mathbf{E}_{2}$ inside the sphere is zero, since we assume it is a perfect conductor. Hence, for a sphere with surface area $S=4 \pi a^{2}$,

$$
\begin{aligned}
D_{1 \mathrm{R}} & =\rho_{\mathrm{s}}, \quad E_{1 \mathrm{R}}=\frac{\rho_{\mathrm{s}}}{\varepsilon_{0}}=\frac{Q}{S \varepsilon_{0}} \\
Q=E_{\mathrm{R}} S \varepsilon_{0} & =(150) 4 \pi(0.05)^{2} \varepsilon_{0}=\frac{3 \pi \varepsilon_{0}}{2} \quad \text { (C). }
\end{aligned}
$$

Problem 4.51 Figure P4.51 shows three planar dielectric slabs of equal thickness but with different dielectric constants. If \mathbf{E}_{0} in air makes an angle of 45° with respect to the z-axis, find the angle of \mathbf{E} in each of the other layers.

Figure P4.51: Dielectric slabs in Problem 4.51.

Solution: Labeling the upper air region as region 0 and using Eq. (4.99),

$$
\begin{aligned}
& \theta_{1}=\tan ^{-1}\left(\frac{\varepsilon_{1}}{\varepsilon_{0}} \tan \theta_{0}\right)=\tan ^{-1}\left(3 \tan 45^{\circ}\right)=71.6^{\circ}, \\
& \theta_{2}=\tan ^{-1}\left(\frac{\varepsilon_{2}}{\varepsilon_{1}} \tan \theta_{1}\right)=\tan ^{-1}\left(\frac{5}{3} \tan 71.6^{\circ}\right)=78.7^{\circ}, \\
& \theta_{3}=\tan ^{-1}\left(\frac{\varepsilon_{3}}{\varepsilon_{2}} \tan \theta_{2}\right)=\tan ^{-1}\left(\frac{7}{5} \tan 78.7^{\circ}\right)=81.9^{\circ} .
\end{aligned}
$$

In the lower air region, the angle is again 45°.

Problem 4.52 Determine the force of attraction in a parallel-plate capacitor with $A=5 \mathrm{~cm}^{2}, d=2 \mathrm{~cm}$, and $\varepsilon_{\mathrm{r}}=4$ if the voltage across it is 50 V .

Solution: From Eq. (4.131),

$$
\begin{equation*}
\mathbf{F}=-\hat{\mathbf{z}} \frac{\varepsilon A|\mathbf{E}|^{2}}{2}=-\hat{\mathbf{z}} 2 \varepsilon_{0}\left(5 \times 10^{-4}\right)\left(\frac{50}{0.02}\right)^{2}=-\hat{\mathbf{z}} 55.3 \times 10^{-9} \tag{N}
\end{equation*}
$$

Problem 4.53 Dielectric breakdown occurs in a material whenever the magnitude of the field \mathbf{E} exceeds the dielectric strength anywhere in that material. In the coaxial capacitor of Example 4-12,
(a) At what value of r is $|E|$ maximum?
(b) What is the breakdown voltage if $a=1 \mathrm{~cm}, b=2 \mathrm{~cm}$, and the dielectric material is mica with $\varepsilon_{\mathrm{r}}=6$?

Solution:

(a) From Eq. (4.114), $\mathbf{E}=-\hat{\mathbf{r}} \rho_{l} / 2 \pi \varepsilon r$ for $a<r<b$. Thus, it is evident that $|\mathbf{E}|$ is maximum at $r=a$.
(b) The dielectric breaks down when $|\mathbf{E}|>200(\mathrm{MV} / \mathrm{m})$ (see Table 4-2), or

$$
|\mathbf{E}|=\frac{\rho_{l}}{2 \pi \varepsilon r}=\frac{\rho_{l}}{2 \pi\left(6 \varepsilon_{0}\right)\left(10^{-2}\right)}=200 \quad(\mathrm{MV} / \mathrm{m})
$$

which gives $\rho_{l}=(200 \mathrm{MV} / \mathrm{m})(2 \pi) 6\left(8.854 \times 10^{-12}\right)(0.01)=667.6(\mu \mathrm{C} / \mathrm{m})$.
From Eq. (4.115), we can find the voltage corresponding to that charge density,

$$
V=\frac{\rho_{l}}{2 \pi \varepsilon} \ln \binom{b}{a}=\frac{(667.6 \mu \mathrm{C} / \mathrm{m})}{12 \pi\left(8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)} \ln (2)=1.39 \quad(\mathrm{MV})
$$

Thus, $V=1.39(\mathrm{MV})$ is the breakdown voltage for this capacitor.

