Problem 4.1 A cube 2 m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density is given by $\rho_{\mathrm{v}}=x y^{2} e^{-2 z}\left(\mathrm{mC} / \mathrm{m}^{3}\right)$.

Solution: For the cube shown in Fig. P4.1, application of Eq. (4.5) gives

$$
\begin{aligned}
Q & =\int_{\mathscr{V}} \rho_{v} d y=\int_{x=0}^{2} \int_{y=0}^{2} \int_{z=0}^{2} x y^{2} e^{-2 z} d x d y d z \\
& =\left.\left.\left.\left(\frac{-1}{12} x^{2} y^{3} e^{-2 z}\right)\right|_{x=0} ^{2}\right|_{y=0} ^{2}\right|_{z=0} ^{2}=\frac{8}{3}\left(1-e^{-4}\right)=2.62 \mathrm{mC} .
\end{aligned}
$$

Figure P4.1: Cube of Problem 4.1.

Problem 4.5 Find the total charge on a circular disk defined by $r \leq a$ and $z=0$ if:
(a) $\rho_{\mathrm{s}}=\rho_{\mathrm{s} 0} \cos \phi\left(\mathrm{C} / \mathrm{m}^{2}\right)$
(b) $\rho_{\mathrm{s}}=\rho_{\mathrm{s} 0} \sin ^{2} \phi\left(\mathrm{C} / \mathrm{m}^{2}\right)$
(c) $\rho_{\mathrm{s}}=\rho_{\mathrm{s} 0} e^{-r}\left(\mathrm{C} / \mathrm{m}^{2}\right)$
(d) $\rho_{\mathrm{s}}=\rho_{\mathrm{s} 0} e^{-r} \sin ^{2} \phi\left(\mathrm{C} / \mathrm{m}^{2}\right)$
where $\rho_{\mathrm{s} 0}$ is a constant.

Solution:

(a)

$$
Q=\int \rho_{\mathrm{s}} d s=\int_{r=0}^{a} \int_{\phi=0}^{2 \pi} \rho_{\mathrm{s} 0} \cos \phi r d r d \phi=\left.\left.\rho_{\mathrm{s} 0} \frac{r^{2}}{2}\right|_{0} ^{a} \sin \phi\right|_{0} ^{2 \pi}=0 .
$$

(b)

$$
\begin{aligned}
Q=\int_{r=0}^{a} \int_{\phi=0}^{2 \pi} \rho_{\mathrm{s} 0} \sin ^{2} \phi r d r d \phi & =\left.\rho_{\mathrm{s} 0} \frac{r^{2}}{2}\right|_{0} ^{a} \int_{0}^{2 \pi}\left(\frac{1-\cos 2 \phi}{2}\right) d \phi \\
& =\left.\frac{\rho_{\mathrm{s} 0} a^{2}}{4}\left(\phi-\frac{\sin 2 \phi}{2}\right)\right|_{0} ^{2 \pi}=\frac{\pi a^{2}}{2} \rho_{\mathrm{s} 0}
\end{aligned}
$$

(c)

$$
\begin{aligned}
Q=\int_{r=0}^{a} \int_{\phi=0}^{2 \pi} \rho_{\mathrm{s} 0} e^{-r} r d r d \phi & =2 \pi \rho_{\mathrm{s} 0} \int_{0}^{a} r e^{-r} d r \\
& =2 \pi \rho_{\mathrm{s} 0}\left[-r e^{-r}-e^{-r}\right]_{0}^{a} \\
& =2 \pi \rho_{\mathrm{s} 0}\left[1-e^{-a}(1+a)\right] .
\end{aligned}
$$

(d)

$$
\begin{aligned}
Q & =\int_{r=0}^{a} \int_{\phi=0}^{2 \pi} \rho_{\mathrm{s} 0} e^{-r} \sin ^{2} \phi r d r d \phi \\
& =\rho_{\mathrm{s} 0} \int_{r=0}^{a} r e^{-r} d r \int_{\phi=0}^{2 \pi} \sin ^{2} \phi d \phi \\
& =\rho_{\mathrm{s} 0}\left[1-e^{-a}(1+a)\right] \cdot \pi=\pi \rho_{\mathrm{s} 0}\left[1-e^{-a}(1+a)\right] .
\end{aligned}
$$

Problem 4.6 If $\mathbf{J}=\hat{\mathbf{y}} 4 x z\left(\mathrm{~A} / \mathrm{m}^{2}\right)$, find the current I flowing through a square with corners at $(0,0,0),(2,0,0),(2,0,2)$, and $(0,0,2)$.

Solution: Using Eq. (4.12), the net current flowing through the square shown in Fig. P 4.6 is

$$
I=\int_{S} \mathbf{J} \cdot d \mathbf{s}=\left.\int_{x=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{y}} 4 x z)\right|_{y=0} \cdot(\hat{\mathbf{y}} d x d z)=\left.\left.\left(x^{2} z^{2}\right)\right|_{x=0} ^{2}\right|_{z=0} ^{2}=16 \mathrm{~A}
$$

Figure P4.6: Square surface.

Problem 4.10 A line of charge of uniform density ρ_{ℓ} occupies a semicircle of radius b as shown in Fig. P4.10. Use the material presented in Example 4-4 to determine the electric field at the origin.

Figure P4.10: Problem 4.10.
Solution: Since we have only half of a circle, we need to integrate the expression for $d \mathbf{E}_{1}$ given in Example 4-4 over ϕ from 0 to π. Before we do that, however, we need to set $h=0$ (the problem asks for \mathbf{E} at the origin). Hence,

$$
\begin{aligned}
d \mathbf{E}_{1} & =\left.\frac{\rho_{l} b}{4 \pi \varepsilon_{0}} \frac{(-\hat{\mathbf{r}} b+\hat{\mathbf{z}} h)}{\left(b^{2}+h^{2}\right)^{3 / 2}} d \phi\right|_{h=0} \\
& =\frac{-\hat{\mathbf{r}} \rho_{l}}{4 \pi \varepsilon_{0} b} d \phi \\
\mathbf{E}_{1} & =\int_{\phi=0}^{\pi} d \mathbf{E}_{1}=-\frac{-\hat{\mathbf{r}} \rho_{l}}{4 \varepsilon_{0} b} .
\end{aligned}
$$

Problem 4.11 A square with sides of 2 m has a charge of $40 \mu \mathrm{C}$ at each of its four corners. Determine the electric field at a point 5 m above the center of the square.
Solution: The distance $|R|$ between any of the charges and point P is

$$
|R|=\sqrt{1^{2}+1^{2}+5^{2}}=\sqrt{27} .
$$

$$
\begin{aligned}
\mathbf{E} & =\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{\mathbf{R}_{1}}{|\mathbf{R}|^{3}}+\frac{\mathbf{R}_{2}}{|\mathbf{R}|^{3}}+\frac{\mathbf{R}_{3}}{\mid \mathbf{R} \mathbf{R}^{3}}+\frac{\mathbf{R}_{4}}{|\mathbf{R}|^{3}}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{-\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}} 5}{(27)^{3 / 2}}+\frac{\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}} 5}{(27)^{3 / 2}}+\frac{-\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}} 5}{(27)^{3 / 2}}+\frac{\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}} 5}{(27)^{3 / 2}}\right] \\
& =\hat{\mathbf{z}} \frac{5 Q}{(27)^{3 / 2} \pi \varepsilon_{0}}=\hat{\mathbf{z}} \frac{5 \times 40 \mu \mathrm{C}}{(27)^{3 / 2} \pi \varepsilon_{0}}=\frac{1.42}{\pi \varepsilon_{0}} \times 10^{-6}(\mathrm{~V} / \mathrm{m})=\hat{\mathbf{z}} 51.2(\mathrm{kV} / \mathrm{m}) .
\end{aligned}
$$

Figure P4.11: Square with charges at the corners.

Problem 4.22 Given the electric flux density

$$
\mathbf{D}=\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y) \quad\left(\mathrm{C} / \mathrm{m}^{2}\right)
$$

determine
(a) ρ_{V} by applying Eq. (4.26).
(b) The total charge Q enclosed in a cube 2 m on a side, located in the first octant with three of its sides coincident with the x-, y-, and z-axes and one of its corners at the origin.
(c) The total charge Q in the cube, obtained by applying Eq. (4.29).

Solution:

(a) By applying Eq. (4.26)

$$
\rho_{\mathrm{v}}=\nabla \cdot \mathbf{D}=\frac{\partial}{\partial x}(2 x+2 y)+\frac{\partial}{\partial y}(3 x-2 y)=0
$$

(b) Integrate the charge density over the volume as in Eq. (4.27):

$$
Q=\int_{\mathscr{V}} \nabla \cdot \mathbf{D} d \mathscr{V}=\int_{x=0}^{2} \int_{y=0}^{2} \int_{z=0}^{2} 0 d x d y d z=0
$$

(c) Apply Gauss' law to calculate the total charge from Eq. (4.29)

$$
\begin{aligned}
Q & =\oint \mathbf{D} \cdot d \mathbf{s}=F_{\text {front }}+F_{\text {back }}+F_{\text {right }}+F_{\text {left }}+F_{\text {top }}+F_{\text {bottom }}, \\
F_{\text {front }} & =\left.\int_{y=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y))\right|_{x=2} \cdot(\hat{\mathbf{x}} d z d y) \\
& =\left.\int_{y=0}^{2} \int_{z=0}^{2} 2(x+y)\right|_{x=2} d z d y=\left.\left(\left.2 z\left(2 y+\frac{1}{2} y^{2}\right)\right|_{z=0} ^{2}\right)\right|_{y=0} ^{2}=24, \\
F_{\text {back }} & =\left.\int_{y=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y))\right|_{x=0} \cdot(-\hat{\mathbf{x}} d z d y) \\
& =-\left.\int_{y=0}^{2} \int_{z=0}^{2} 2(x+y)\right|_{x=0} d z d y=-\left.\left(\left.z y^{2}\right|_{z=0} ^{2}\right)\right|_{y=0} ^{2}=-8 \\
F_{\text {right }} & =\left.\int_{x=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y))\right|_{y=2} \cdot(\hat{\mathbf{y}} d z d x) \\
& =\left.\int_{x=0}^{2} \int_{z=0}^{2}(3 x-2 y)\right|_{y=2} d z d x=\left.\left(\left.z\left(\frac{3}{2} x^{2}-4 x\right)\right|_{z=0} ^{2}\right)\right|_{x=0} ^{2}=-4
\end{aligned}
$$

$$
\begin{aligned}
F_{\text {left }} & =\left.\int_{x=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y))\right|_{y=0} \cdot(-\hat{\mathbf{y}} d z d x) \\
& =-\left.\int_{x=0}^{2} \int_{z=0}^{2}(3 x-2 y)\right|_{y=0} d z d x=-\left.\left(\left.z\left(\frac{3}{2} x^{2}\right)\right|_{z=0} ^{2}\right)\right|_{x=0} ^{2}=-12, \\
F_{\text {top }} & =\left.\int_{x=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y))\right|_{z=2} \cdot(\hat{\mathbf{z}} d y d x) \\
& =\left.\int_{x=0}^{2} \int_{z=0}^{2} 0\right|_{z=2} d y d x=0, \\
F_{\text {bottom }} & =\left.\int_{x=0}^{2} \int_{z=0}^{2}(\hat{\mathbf{x}} 2(x+y)+\hat{\mathbf{y}}(3 x-2 y))\right|_{z=0} \cdot(\hat{\mathbf{z}} d y d x) \\
& =\left.\int_{x=0}^{2} \int_{z=0}^{2} 0\right|_{z=0} d y d x=0 .
\end{aligned}
$$

Thus $Q=\oint \mathbf{D} \cdot d \mathbf{s}=24-8-4-12+0+0=0$.

Problem 4.25 The electric flux density inside a dielectric sphere of radius a centered at the origin is given by

$$
\mathbf{D}=\hat{\mathbf{R}} \rho_{0} R \quad\left(\mathrm{C} / \mathrm{m}^{2}\right)
$$

where ρ_{0} is a constant. Find the total charge inside the sphere.

Solution:

$$
\begin{align*}
Q=\oint_{S} \mathbf{D} \cdot d \mathbf{s} & =\left.\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \hat{\mathbf{R}} \rho_{0} R \cdot \hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi\right|_{R=a} \\
& =2 \pi \rho_{0} a^{3} \int_{0}^{\pi} \sin \theta d \theta=-\left.2 \pi \rho_{0} a^{3} \cos \theta\right|_{0} ^{\pi}=4 \pi \rho_{0} a^{3} \tag{C}
\end{align*}
$$

Problem 4.28 If the charge density increases linearly with distance from the origin such that $\rho_{\mathrm{v}}=0$ at the origin and $\rho_{\mathrm{v}}=4 \mathrm{C} / \mathrm{m}^{3}$ at $R=2 \mathrm{~m}$, find the corresponding variation of \mathbf{D}.

Solution:

$$
\begin{aligned}
\rho_{\mathrm{v}}(R) & =a+b R, \\
\rho_{\mathrm{v}}(0) & =a=0, \\
\rho_{\mathrm{v}}(2) & =2 b=40 .
\end{aligned}
$$

Hence, $b=20$.

$$
\rho_{\mathrm{v}}(R)=20 R \quad\left(\mathrm{C} / \mathrm{m}^{3}\right) .
$$

Applying Gauss's law to a spherical surface of radius R,

$$
\begin{aligned}
\oint_{S} \mathbf{D} \cdot d \mathbf{s} & =\int_{V} \rho_{\mathrm{v}} d v, \\
D_{R} \cdot 4 \pi R^{2} & =\int_{0}^{R} 20 R \cdot 4 \pi R^{2} d R=80 \pi \frac{R^{4}}{4}, \\
D_{R} & =5 R^{2} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right), \\
\mathbf{D} & =\hat{\mathbf{R}} D_{R}=\hat{\mathbf{R}} 5 R^{2} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) .
\end{aligned}
$$

Problem 4.30 A square in the $x-y$ plane in free space has a point charge of $+Q$ at corner $(a / 2, a / 2)$, the same at corner $(a / 2,-a / 2)$, and a point charge of $-Q$ at each of the other two corners.
(a) Find the electric potential at any point P along the x-axis.
(b) Evaluate V at $x=a / 2$.

Solution: $R_{1}=R_{2}$ and $R_{3}=R_{4}$.

Figure P4.30: Potential due to four point charges.

$$
V=\frac{Q}{4 \pi \varepsilon_{0} R_{1}}+\frac{Q}{4 \pi \varepsilon_{0} R_{2}}+\frac{-Q}{4 \pi \varepsilon_{0} R_{3}}+\frac{-Q}{4 \pi \varepsilon_{0} R_{4}}=\frac{Q}{2 \pi \varepsilon_{0}}\left(\frac{1}{R_{1}}-\frac{1}{R_{3}}\right)
$$

with

$$
\begin{aligned}
& R_{1}=\sqrt{\left(x-\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}, \\
& R_{3}=\sqrt{\left(x+\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}} .
\end{aligned}
$$

At $x=a / 2$,

$$
R_{1}=\frac{a}{2},
$$

$$
\begin{aligned}
R_{3} & =\frac{a \sqrt{5}}{2}, \\
V & =\frac{Q}{2 \pi \varepsilon_{0}}\left(\frac{2}{a}-\frac{2}{\sqrt{5} a}\right)=\frac{0.55 Q}{\pi \varepsilon_{0} a} .
\end{aligned}
$$

Problem 4.33 Show that the electric potential difference V_{12} between two points in air at radial distances r_{1} and r_{2} from an infinite line of charge with density ρ_{ℓ} along the z-axis is $V_{12}=\left(\rho_{\ell} / 2 \pi \varepsilon_{0}\right) \ln \left(r_{2} / r_{1}\right)$.

Solution: From Eq. (4.33), the electric field due to an infinite line of charge is

$$
\mathbf{E}=\hat{\mathbf{r}} E_{\mathrm{r}}=\hat{\mathbf{r}} \frac{\rho_{l}}{2 \pi \varepsilon_{0} r} .
$$

Hence, the potential difference is

$$
V_{12}=-\int_{r_{2}}^{r_{1}} \mathbf{E} \cdot d \mathbf{l}=-\int_{r_{2}}^{r_{1}} \frac{\hat{\mathbf{r}} \rho_{l}}{2 \pi \varepsilon_{0} r} \cdot \hat{\mathbf{r}} d r=\frac{\rho_{l}}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{2}}{r_{1}}\right) .
$$

Problem 4.35 For the electric dipole shown in Fig. 4-13, $d=1 \mathrm{~cm}$ and $|\mathbf{E}|=4$ $(\mathrm{mV} / \mathrm{m})$ at $R=1 \mathrm{~m}$ and $\theta=0^{\circ}$. Find \mathbf{E} at $R=2 \mathrm{~m}$ and $\theta=90^{\circ}$.
Solution: For $R=1 \mathrm{~m}$ and $\theta=0^{\circ},|\mathbf{E}|=4 \mathrm{mV} / \mathrm{m}$, we can solve for q using Eq. (4.56):

$$
\mathbf{E}=\frac{q d}{4 \pi \varepsilon_{0} R^{3}}(\hat{\mathbf{R}} 2 \cos \theta+\hat{\boldsymbol{\theta}} \sin \theta) .
$$

Hence,

$$
\begin{align*}
|\mathbf{E}| & =\left(\frac{q d}{4 \pi \varepsilon_{0}}\right) 2=4 \mathrm{mV} / \mathrm{m} \quad \text { at } \theta=0^{\circ}, \\
q & =\frac{10^{-3} \times 8 \pi \varepsilon_{0}}{d}=\frac{10^{-3} \times 8 \pi \varepsilon_{0}}{10^{-2}}=0.8 \pi \varepsilon_{0} \tag{C}
\end{align*}
$$

Again using Eq. (4.56) to find \mathbf{E} at $R=2 \mathrm{~m}$ and $\theta=90^{\circ}$, we have

$$
\mathbf{E}=\frac{0.8 \pi \varepsilon_{0} \times 10^{-2}}{4 \pi \varepsilon_{0} \times 2^{3}}(\hat{\mathbf{R}}(0)+\hat{\boldsymbol{\theta}})=\hat{\boldsymbol{\theta}} \frac{1}{4} \quad(\mathrm{mV} / \mathrm{m})
$$

