
Problem 4.1 A cube 2 m on a side is located in the first octant in a Cartesian
coordinate system, with one of its corners at the origin. Find the total charge
contained in the cube if the charge density is given byρv = xy2e−2z (mC/m3).

Solution: For the cube shown in Fig. P4.1, application of Eq. (4.5) gives
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Figure P4.1: Cube of Problem 4.1.



Problem 4.5 Find the total charge on a circular disk defined byr ≤ a andz= 0 if:

(a) ρs = ρs0cosφ (C/m2)

(b) ρs = ρs0sin2 φ (C/m2)

(c) ρs = ρs0e−r (C/m2)

(d) ρs = ρs0e−r sin2 φ (C/m2)
whereρs0 is a constant.

Solution:
(a)

Q =
∫

ρs ds=
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r=0

∫ 2π

φ=0
ρs0cosφ r dr dφ = ρs0
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Q =
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ρs0sin2 φ r dr dφ = ρs0
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(c)

Q =
∫ a

r=0

∫ 2π

φ=0
ρs0e

−r r dr dφ = 2πρs0

∫ a

0
re−r dr

= 2πρs0
[

−re−r −e−r]a
0

= 2πρs0[1−e−a(1+a)].

(d)

Q =
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r=0
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φ=0
ρs0e

−r sin2 φ r dr dφ

= ρs0
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r=0
re−r dr
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sin2 φ dφ

= ρs0[1−e−a(1+a)] ·π = πρs0[1−e−a(1+a)].



Problem 4.6 If J = ŷ4xz (A/m2), find the currentI flowing through a square with
corners at(0,0,0), (2,0,0), (2,0,2), and(0,0,2).

Solution: Using Eq. (4.12), the net current flowing through the square shown in Fig.
P4.6 is

I =
∫

S
J ·ds=
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Figure P4.6: Square surface.



Problem 4.10 A line of charge of uniform densityρℓ occupies a semicircle of
radiusb as shown in Fig. P4.10. Use the material presented in Example 4-4 to
determine the electric field at the origin.
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Figure P4.10: Problem 4.10.

Solution: Since we have only half of a circle, we need to integrate the expression for
dE1 given in Example 4-4 overφ from 0 toπ. Before we do that, however, we need
to seth = 0 (the problem asks forE at the origin). Hence,

dE1 =
ρl b

4πε0

(−r̂ b+ ẑh)

(b2 +h2)3/2
dφ
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dE1 = −−r̂ ρl

4ε0b
.



Problem 4.11 A square with sides of 2 m has a charge of 40µC at each of its four
corners. Determine the electric field at a point 5 m above the center of the square.

Solution: The distance|R| between any of the charges and pointP is

|R| =
√

12 +12 +52 =
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Figure P4.11: Square with charges at the corners.



Problem 4.22 Given the electric flux density

D = x̂2(x+y)+ ŷ(3x−2y) (C/m2)

determine

(a) ρv by applying Eq. (4.26).

(b) The total chargeQ enclosed in a cube 2 m on a side, located in the first octant
with three of its sides coincident with thex-, y-, andz-axes and one of its
corners at the origin.

(c) The total chargeQ in the cube, obtained by applying Eq. (4.29).

Solution:
(a) By applying Eq. (4.26)

ρv = ∇ ·D =
∂
∂x

(2x+2y)+
∂
∂y

(3x−2y) = 0.

(b) Integrate the charge density over the volume as in Eq. (4.27):

Q =
∫

V

∇ ·D dV =
∫ 2

x=0

∫ 2

y=0

∫ 2

z=0
0 dx dy dz= 0.

(c) Apply Gauss’ law to calculate the total charge from Eq. (4.29)

Q = n

∫

D ·ds= Ffront +Fback+Fright +Fleft +Ftop+Fbottom,
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z=0
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Fleft =
∫ 2

x=0

∫ 2

z=0
(x̂2(x+y)+ ŷ(3x−2y))
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x=0
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ThusQ = n

∫

D ·ds= 24−8−4−12+0+0 = 0.



Problem 4.25 The electric flux density inside a dielectric sphere of radiusa
centered at the origin is given by

D = R̂ρ0R (C/m2)

whereρ0 is a constant. Find the total charge inside the sphere.

Solution:

Q = n

∫

S
D ·ds=

∫ π

θ=0

∫ 2π

φ=0
R̂ρ0R· R̂R2sinθ dθ dφ

∣
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= 2πρ0a3
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0
sinθ dθ = −2πρ0a3cosθ |π0 = 4πρ0a3 (C).



Problem 4.28 If the charge density increases linearly with distance from the origin
such thatρv = 0 at the origin andρv = 4 C/m3 at R= 2 m, find the corresponding
variation ofD.

Solution:

ρv(R) = a+bR,

ρv(0) = a = 0,

ρv(2) = 2b = 40.

Hence,b = 20.
ρv(R) = 20R (C/m3).

Applying Gauss’s law to a spherical surface of radiusR,

n

∫

S
D ·ds=

∫

V
ρv dV ,

DR ·4πR2 =
∫ R

0
20R·4πR2 dR= 80π

R4

4
,

DR = 5R2 (C/m2),

D = R̂DR = R̂5R2 (C/m2).



Problem 4.30 A square in thex–y plane in free space has a point charge of+Q at
corner(a/2,a/2), the same at corner(a/2,−a/2), and a point charge of−Q at each
of the other two corners.

(a) Find the electric potential at any pointP along thex-axis.

(b) EvaluateV atx = a/2.

Solution: R1 = R2 andR3 = R4.
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Figure P4.30:Potential due to four point charges.
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.



Problem 4.33 Show that the electric potential differenceV12 between two points in
air at radial distancesr1 andr2 from an infinite line of charge with densityρℓ along
thez-axis isV12 = (ρℓ/2πε0) ln(r2/r1).

Solution: From Eq. (4.33), the electric field due to an infinite line of charge is

E = r̂Er = r̂
ρl

2πε0r
.

Hence, the potential difference is

V12 = −
∫ r1

r2

E ·dl = −
∫ r1

r2

r̂ρl

2πε0r
· r̂ dr =

ρl

2πε0
ln

(

r2

r1

)

.



Problem 4.35 For the electric dipole shown in Fig. 4-13,d = 1 cm and|E| = 4
(mV/m) atR= 1 m andθ = 0◦. FindE atR= 2 m andθ = 90◦.

Solution: ForR= 1 m andθ = 0◦, |E|= 4 mV/m, we can solve forqusing Eq. (4.56):

E =
qd

4πε0R3(R̂2cosθ + θ̂θθsinθ).

Hence,

|E| =
(

qd
4πε0

)

2 = 4 mV/m atθ = 0◦,

q =
10−3×8πε0

d
=

10−3×8πε0

10−2 = 0.8πε0 (C).

Again using Eq. (4.56) to findE atR= 2 m andθ = 90◦, we have

E =
0.8πε0×10−2

4πε0×23 (R̂(0)+ θ̂θθ) = θ̂θθ
1
4

(mV/m).


