Problem 2.27 At an operating frequency of 300 MHz , a lossless $50-\Omega$ air-spaced transmission line 2.5 m in length is terminated with an impedance $Z_{\mathrm{L}}=(40+j 20) \Omega$. Find the input impedance.

Solution: Given a lossless transmission line, $Z_{0}=50 \Omega, f=300 \mathrm{MHz}, l=2.5 \mathrm{~m}$, and $Z_{\mathrm{L}}=(40+j 20) \Omega$. Since the line is air filled, $u_{\mathrm{p}}=c$ and therefore, from Eq. (2.48),

$$
\beta=\frac{\omega}{u_{\mathrm{p}}}=\frac{2 \pi \times 300 \times 10^{6}}{3 \times 10^{8}}=2 \pi \mathrm{rad} / \mathrm{m} .
$$

Since the line is lossless, Eq. (2.79) is valid:

$$
\begin{aligned}
Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right) & =50\left[\frac{(40+j 20)+j 50 \tan (2 \pi \mathrm{rad} / \mathrm{m} \times 2.5 \mathrm{~m})}{50+j(40+j 20) \tan (2 \pi \mathrm{rad} / \mathrm{m} \times 2.5 \mathrm{~m})}\right] \\
& =50[(40+j 20)+j 50 \times 0] 50+j(40+j 20) \times 0 \\
& =(40+j 20) \Omega .
\end{aligned}
$$

Problem 2.28 A lossless transmission line of electrical length $l=0.35 \lambda$ is terminated in a load impedance as shown in Fig. P2.28. Find $\Gamma, S$, and $Z_{\text {in }}$. Verify your results using CD Modules 2.4 or 2.5 . Include a printout of the screen's output display.


Figure P2.28: Circuit for Problem 2.28.

Solution: From Eq. (2.59),

$$
\Gamma=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{(60+j 30)-100}{(60+j 30)+100}=0.307 e^{j 132.5^{\circ}}
$$

From Eq. (2.73),

$$
S=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.307}{1-0.307}=1.89
$$

From Eq. (2.79)

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right) \\
& =100\left[\frac{(60+j 30)+j 100 \tan \left(\frac{2 \pi \mathrm{rad}}{\lambda} 0.35 \lambda\right)}{100+j(60+j 30) \tan \left(\frac{2 \pi \mathrm{rad}}{\lambda} 0.35 \lambda\right)}\right]=(64.8-j 38.3) \Omega .
\end{aligned}
$$



Problem 2.32 A 6-m section of $150-\Omega$ lossless line is driven by a source with

$$
v_{\mathrm{g}}(t)=5 \cos \left(8 \pi \times 10^{7} t-30^{\circ}\right)
$$

and $Z_{\mathrm{g}}=150 \Omega$. If the line, which has a relative permittivity $\varepsilon_{\mathrm{r}}=2.25$, is terminated in a load $Z_{\mathrm{L}}=(150-j 50) \Omega$, determine:
(a) $\lambda$ on the line.
(b) The reflection coefficient at the load.
(c) The input impedance.
(d) The input voltage $\widetilde{V}_{\mathrm{i}}$.
(e) The time-domain input voltage $v_{\mathrm{i}}(t)$.
(f) Quantities in (a) to (d) using CD Modules 2.4 or 2.5 .

## Solution:

$$
\begin{aligned}
v_{\mathrm{g}}(t) & =5 \cos \left(8 \pi \times 10^{7} t-30^{\circ}\right) \mathrm{V} \\
\widetilde{V}_{\mathrm{g}} & =5 e^{-j 30^{\circ}} \mathrm{V}
\end{aligned}
$$



Figure P2.32: Circuit for Problem 2.32.
(a)

$$
\begin{aligned}
& u_{\mathrm{p}}=\frac{c}{\sqrt{\varepsilon_{\mathrm{r}}}}=\frac{3 \times 10^{8}}{\sqrt{2.25}}=2 \times 10^{8} \quad(\mathrm{~m} / \mathrm{s}), \\
& \lambda=\frac{u_{\mathrm{p}}}{f}=\frac{2 \pi u_{\mathrm{p}}}{\omega}=\frac{2 \pi \times 2 \times 10^{8}}{8 \pi \times 10^{7}}=5 \mathrm{~m}, \\
& \beta=\frac{\omega}{u_{\mathrm{p}}}=\frac{8 \pi \times 10^{7}}{2 \times 10^{8}}=0.4 \pi \quad(\mathrm{rad} / \mathrm{m}), \\
& \beta l=0.4 \pi \times 6=2.4 \pi \quad(\mathrm{rad}) .
\end{aligned}
$$

Since this exceeds $2 \pi(\mathrm{rad})$, we can subtract $2 \pi$, which leaves a remainder $\beta l=0.4 \pi$ (rad).
(b) $\Gamma=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{150-j 50-150}{150-j 50+150}=\frac{-j 50}{300-j 50}=0.16 e^{-j 80.54^{\circ}}$.
(c)

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left[\frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l}\right] \\
& =150\left[\frac{(150-j 50)+j 150 \tan (0.4 \pi)}{150+j(150-j 50) \tan (0.4 \pi)}\right]=(115.70+j 27.42) \Omega .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\widetilde{V}_{\mathrm{i}}=\frac{\widetilde{V}_{\mathrm{g}} Z_{\mathrm{in}}}{Z_{\mathrm{g}}+Z_{\mathrm{in}}} & =\frac{5 e^{-j 30^{\circ}}(115.7+j 27.42)}{150+115.7+j 27.42} \\
& =5 e^{-j 30^{\circ}}\left(\frac{115.7+j 27.42}{265.7+j 27.42}\right) \\
& =5 e^{-j 30^{\circ}} \times 0.44 e^{j 7.44^{\circ}}=2.2 e^{-j 22.56^{\circ}} \quad \text { (V) } .
\end{aligned}
$$

(e)

$$
v_{\mathrm{i}}(t)=\mathfrak{R e}\left[\widetilde{V}_{\mathrm{i}} e^{j \omega t}\right]=\mathfrak{R e}\left[2.2 e^{-j 22.56^{\circ}} e^{j \omega t}\right]=2.2 \cos \left(8 \pi \times 10^{7} t-22.56^{\circ}\right) \mathrm{V}
$$



Problem 2.41 A $50-\Omega$ lossless line of length $l=0.375 \lambda$ connects a $300-\mathrm{MHz}$ generator with $\widetilde{V}_{\mathrm{g}}=300 \mathrm{~V}$ and $Z_{\mathrm{g}}=50 \Omega$ to a load $Z_{\mathrm{L}}$. Determine the time-domain current through the load for:
(a) $Z_{\mathrm{L}}=(50-j 50) \Omega$
(b) $Z_{\mathrm{L}}=50 \Omega$
(c) $Z_{\mathrm{L}}=0$ (short circuit)

For (a), verify your results by deducing the information you need from the output products generated by CD Module 2.4.

## Solution:



Figure P2.41: Circuit for Problem 2.41(a).
(a) $Z_{\mathrm{L}}=(50-j 50) \Omega, \beta l=\frac{2 \pi}{\lambda} \times 0.375 \lambda=2.36(\mathrm{rad})=135^{\circ}$.

$$
\Gamma=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{50-j 50-50}{50-j 50+50}=\frac{-j 50}{100-j 50}=0.45 e^{-j 63.43^{\circ}} .
$$

Application of Eq. (2.79) gives:

$$
Z_{\text {in }}=Z_{0}\left[\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right]=50\left[\frac{(50-j 50)+j 50 \tan 135^{\circ}}{50+j(50-j 50) \tan 135^{\circ}}\right]=(100+j 50) \Omega .
$$

Using Eq. (2.82) gives

$$
\begin{aligned}
V_{0}^{+} & =\left(\frac{\widetilde{V}_{\mathrm{g}} Z_{\mathrm{in}}}{Z_{\mathrm{g}}+Z_{\text {in }}}\right)\left(\frac{1}{e^{j \beta l}+\Gamma e^{-j \beta l}}\right) \\
& =\frac{300(100+j 50)}{50+(100+j 50)}\left(\frac{1}{e^{j 135^{\circ}}+0.45 e^{-j 63.43^{\circ}} e^{-j 135^{\circ}}}\right) \\
& =150 e^{-j 135^{\circ}} \quad(\mathrm{V}), \\
\widetilde{I}_{\mathrm{L}} & =\frac{V_{0}^{+}}{Z_{0}}(1-\Gamma)=\frac{150 e^{-j 135^{\circ}}}{50}\left(1-0.45 e^{-j 63.43^{\circ}}\right)=2.68 e^{-j 108.44^{\circ}} \\
i_{\mathrm{L}}(t) & =\mathfrak{R e}\left[\widetilde{I}_{\mathrm{L}} e^{j \omega t}\right] \\
& =\mathfrak{R e}\left[2.68 e^{-j 108.44^{\circ}} e^{j 6 \pi \times 10^{8} t}\right] \\
& =2.68 \cos \left(6 \pi \times 10^{8} t-108.44^{\circ}\right) \quad(\mathrm{A}) .
\end{aligned}
$$

(b)

$$
\begin{align*}
Z_{\mathrm{L}} & =50 \Omega \\
\Gamma & =0 \\
Z_{\mathrm{in}} & =Z_{0}=50 \Omega, \\
V_{0}^{+} & =\frac{300 \times 50}{50+50}\left(\frac{1}{e^{j 135^{\circ}}+0}\right)=150 e^{-j 135^{\circ}} \quad(\mathrm{V}), \\
\widetilde{I}_{\mathrm{L}} & =\frac{V_{0}^{+}}{Z_{0}}=\frac{150}{50} e^{-j 135^{\circ}}=3 e^{-j 135^{\circ}} \quad(\mathrm{A}), \\
i_{\mathrm{L}}(t) & =\mathfrak{R e}\left[3 e^{-j 135^{\circ}} e^{j 6 \pi \times 10^{8} t}\right]=3 \cos \left(6 \pi \times 10^{8} t-135^{\circ}\right) \tag{A}
\end{align*}
$$

(c)

$$
\begin{align*}
Z_{\mathrm{L}} & =0 \\
\Gamma & =-1 \\
Z_{\text {in }} & =Z_{0}\left(\frac{0+j Z_{0} \tan 135^{\circ}}{Z_{0}+0}\right)=j Z_{0} \tan 135^{\circ}=-j 50 \\
V_{0}^{+} & =\frac{300(-j 50)}{50-j 50}\left(\frac{1}{e^{j 135^{\circ}}-e^{-j 135^{\circ}}}\right)=150 e^{-j 135^{\circ}} \tag{V}
\end{align*}
$$

$$
\begin{aligned}
\widetilde{I}_{\mathrm{L}} & =\frac{V_{0}^{+}}{Z_{0}}[1-\Gamma]=\frac{150 e^{-j 135^{\circ}}}{50}[1+1]=6 e^{-j 135^{\circ}} \quad(\mathrm{A}), \\
i_{\mathrm{L}}(t) & =6 \cos \left(6 \pi \times 10^{8} t-135^{\circ}\right) \quad \text { (A) } .
\end{aligned}
$$

From output of Module 2.4, at $d=0$ (load)

$$
\widetilde{I}(d)=2.68 \angle-1.89 \mathrm{rad},
$$

which corresponds to

$$
\widetilde{I}(d)=2.68 \angle-108.29^{\circ} .
$$

The equivalent time-domain current at $f=300 \mathrm{MHz}$ is

$$
i_{\mathrm{L}}(t)=2.68 \cos \left(6 \pi \times 10^{8} t-108.29^{\circ}\right) \quad \text { (A). }
$$



Problem 2.42 A generator with $\widetilde{V}_{\mathrm{g}}=300 \mathrm{~V}$ and $Z_{\mathrm{g}}=50 \Omega$ is connected to a load $Z_{\mathrm{L}}=75 \Omega$ through a $50-\Omega$ lossless line of length $l=0.15 \lambda$.
(a) Compute $Z_{\text {in }}$, the input impedance of the line at the generator end.
(b) Compute $\widetilde{I}_{\mathrm{i}}$ and $\widetilde{V}_{\mathrm{i}}$.
(c) Compute the time-average power delivered to the line, $P_{\text {in }}=\frac{1}{2} \mathfrak{R e}\left[\widetilde{V}_{i} \widetilde{I}_{\mathrm{i}}^{*}\right]$.
(d) Compute $\widetilde{V}_{\mathrm{L}}, \widetilde{I}_{\mathrm{L}}$, and the time-average power delivered to the load, $P_{\mathrm{L}}=\frac{1}{2} \mathfrak{R e}\left[\widetilde{V}_{\mathrm{L}} \widetilde{I}_{\mathrm{L}}^{*}\right]$. How does $P_{\text {in }}$ compare to $P_{\mathrm{L}}$ ? Explain.
(e) Compute the time-average power delivered by the generator, $P_{\mathrm{g}}$, and the timeaverage power dissipated in $Z_{\mathrm{g}}$. Is conservation of power satisfied?

## Solution:



Figure P2.42: Circuit for Problem 2.42.
(a)

$$
\beta l=\frac{2 \pi}{\lambda} \times 0.15 \lambda=54^{\circ},
$$

$$
Z_{\text {in }}=Z_{0}\left[\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right]=50\left[\frac{75+j 50 \tan 54^{\circ}}{50+j 75 \tan 54^{\circ}}\right]=(41.25-j 16.35) \Omega .
$$

(b)

$$
\begin{aligned}
& \widetilde{I}_{\mathrm{i}}=\frac{\widetilde{V}_{\mathrm{g}}}{Z_{\mathrm{g}}+Z_{\text {in }}}=\frac{300}{50+(41.25-j 16.35)}=3.24 e^{j 10.16^{\circ}} \quad(\mathrm{A}) \\
& \widetilde{V}_{\mathrm{i}}=\widetilde{I}_{\mathrm{i}} Z_{\text {in }}=3.24 e^{j 10.16^{\circ}}(41.25-j 16.35)=143.6 e^{-j 11.46^{\circ}} \quad(\mathrm{V}) .
\end{aligned}
$$

(c)

$$
\begin{aligned}
P_{\text {in }}=\frac{1}{2} \mathfrak{R e}\left[\widetilde{V}_{\mathrm{i}} \widetilde{I}_{\mathrm{i}}^{*}\right] & =\frac{1}{2} \mathfrak{R e}\left[143.6 e^{-j 11.46^{\circ}} \times 3.24 e^{-j 10.16^{\circ}}\right] \\
& =\frac{143.6 \times 3.24}{2} \cos \left(21.62^{\circ}\right)=216 \quad(\mathrm{~W}) .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\Gamma & =\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{75-50}{75+50}=0.2, \\
V_{0}^{+} & =\widetilde{V}_{\mathrm{i}}\left(\frac{1}{e^{j \beta l}+\Gamma e^{-j \beta l}}\right)=\frac{143.6 e^{-j 11.46^{\circ}}}{e^{j 54^{\circ}}+0.2 e^{-j 54^{\circ}}}=150 e^{-j 54^{\circ} \quad(\mathrm{V})}, \\
\widetilde{V}_{\mathrm{L}} & =V_{0}^{+}(1+\Gamma)=150 e^{-j 54^{\circ}}(1+0.2)=180 e^{-j 54^{\circ}} \quad(\mathrm{V}), \\
\widetilde{I}_{\mathrm{L}} & =\frac{V_{0}^{+}}{Z_{0}}(1-\Gamma)=\frac{150 e^{-j 54^{\circ}}}{50}(1-0.2)=2.4 e^{-j 54^{\circ}} \quad(\mathrm{A}), \\
P_{\mathrm{L}} & =\frac{1}{2} \mathfrak{R e}\left[\widetilde{V}_{\mathrm{L}} \widetilde{I}_{\mathrm{L}}^{*}\right]=\frac{1}{2} \mathfrak{R e}\left[180 e^{-j 54^{\circ}} \times 2.4 e^{j 54^{\circ}}\right]=216 \quad(\mathrm{~W}) .
\end{aligned}
$$

$P_{\mathrm{L}}=P_{\mathrm{in}}$, which is as expected because the line is lossless; power input to the line ends up in the load.
(e)

Power delivered by generator:

$$
P_{\mathrm{g}}=\frac{1}{2} \mathfrak{R e}\left[\widetilde{V}_{\mathrm{g}} \widetilde{I}_{\mathrm{i}}\right]=\frac{1}{2} \mathfrak{R e}\left[300 \times 3.24 e^{j 10.16^{\circ}}\right]=486 \cos \left(10.16^{\circ}\right)=478.4 \quad(\mathrm{~W})
$$

Power dissipated in $Z_{\mathrm{g}}$ :

$$
P_{Z_{\mathrm{g}}}=\frac{1}{2} \mathfrak{\Re e}\left[\widetilde{I}_{\mathrm{i}} \widetilde{Z}_{Z_{\mathrm{g}}}\right]=\frac{1}{2} \Re \mathfrak{R e}\left[\widetilde{I_{\mathrm{i}} I_{\mathrm{i}}^{*}} Z_{\mathrm{g}}\right]=\frac{1}{2}\left|\widetilde{I}_{\mathrm{i}}\right|^{2} Z_{\mathrm{g}}=\frac{1}{2}(3.24)^{2} \times 50=262.4 \quad(\mathrm{~W}) .
$$

Note 1: $P_{\mathrm{g}}=P_{\mathrm{Zg}_{\mathrm{g}}}+P_{\mathrm{in}}=478.4 \mathrm{~W}$.

Problem 2.75 Generate a bounce diagram for the voltage $V(z, t)$ for a 1-m-long lossless line characterized by $Z_{0}=50 \Omega$ and $u_{\mathrm{p}}=2 c / 3$ (where $c$ is the velocity of light) if the line is fed by a step voltage applied at $t=0$ by a generator circuit with $V_{\mathrm{g}}=60 \mathrm{~V}$ and $R_{\mathrm{g}}=100 \Omega$. The line is terminated in a load $R_{\mathrm{L}}=25 \Omega$. Use the bounce diagram to plot $V(t)$ at a point midway along the length of the line from $t=0$ to $t=25 \mathrm{~ns}$.

## Solution:

$$
\begin{aligned}
& \Gamma_{\mathrm{g}}=\frac{R_{\mathrm{g}}-Z_{0}}{R_{\mathrm{g}}+Z_{0}}=\frac{100-50}{100+50}=\frac{50}{150}=\frac{1}{3} \\
& \Gamma_{\mathrm{L}}=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{25-50}{25+50}=\frac{-25}{75}=\frac{-1}{3}
\end{aligned}
$$

From Eq. (2.149b),

$$
V_{1}^{+}=\frac{V_{\mathrm{g}} Z_{0}}{R_{\mathrm{g}}+Z_{0}}=\frac{60 \times 50}{100+50}=20 \mathrm{~V}
$$

Also,

$$
T=\frac{l}{u_{\mathrm{p}}}=\frac{l}{2 c / 3}=\frac{3}{2 \times 3 \times 10^{8}}=5 \mathrm{~ns} .
$$

The bounce diagram is shown in Fig. P2.75(a) and the plot of $V(t)$ in Fig. P2.75(b).


Figure P2.75: (a) Bounce diagram for Problem 2.75.


Figure P2.75: (b) Time response of voltage.

Problem 2.78 In response to a step voltage, the voltage waveform shown in Fig. P2.78 was observed at the sending end of a shorted line with $Z_{0}=50 \Omega$ and $\varepsilon_{\mathrm{r}}=4$. Determine $V_{\mathrm{g}}, R_{\mathrm{g}}$, and the line length.


Figure P2.78: Voltage waveform of Problem 2.78.

## Solution:

$$
\begin{aligned}
u_{\mathrm{p}} & =\frac{c}{\sqrt{\varepsilon_{\mathrm{r}}}}=\frac{3 \times 10^{8}}{\sqrt{4}}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}, \\
7 \mu \mathrm{~s} & =7 \times 10^{-6} \mathrm{~s}=\frac{2 l}{u_{\mathrm{p}}}=\frac{2 l}{1.5 \times 10^{8}} .
\end{aligned}
$$

Hence, $l=525 \mathrm{~m}$.
From the voltage waveform, $V_{1}^{+}=12 \mathrm{~V}$. At $t=7 \mu \mathrm{~s}$, the voltage at the sending end is

$$
V(z=0, t=7 \mu \mathrm{~s})=V_{1}^{+}+\Gamma_{\mathrm{L}} V_{1}^{+}+\Gamma_{\mathrm{g}} \Gamma_{\mathrm{L}} V_{1}^{+}=-\Gamma_{\mathrm{g}} V_{1}^{+} \quad\left(\text { because } \Gamma_{\mathrm{L}}=-1\right) .
$$

Hence, $3 \mathrm{~V}=-\Gamma_{\mathrm{g}} \times 12 \mathrm{~V}$, or $\Gamma_{g}=-0.25$. From Eq. (2.153),

$$
R_{\mathrm{g}}=Z_{0}\left(\frac{1+\Gamma_{\mathrm{g}}}{1-\Gamma_{\mathrm{g}}}\right)=50\left(\frac{1-0.25}{1+0.25}\right)=30 \Omega .
$$

Also,

$$
V_{1}^{+}=\frac{V_{\mathrm{g}} Z_{0}}{R_{\mathrm{g}}+Z_{0}}, \quad \text { or } \quad 12=\frac{V_{\mathrm{g}} \times 50}{30+50}
$$

which gives $V_{\mathrm{g}}=19.2 \mathrm{~V}$.

