Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to have a differential pressure $p(x, t)=10 \mathrm{~N} / \mathrm{m}^{2}$ at $x=0$ and $t=50 \mu \mathrm{~s}$. If the reference phase of $p(x, t)$ is 36°, find a complete expression for $p(x, t)$. The velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Solution: The general form is given by Eq. (1.17),

$$
p(x, t)=A \cos \left(\frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}+\phi_{0}\right)
$$

where it is given that $\phi_{0}=36^{\circ}$. From Eq. (1.26), $T=1 / f=1 /\left(2 \times 10^{3}\right)=0.5 \mathrm{~ms}$. From Eq. (1.27),

$$
\lambda=\frac{u_{\mathrm{p}}}{f}=\frac{330}{2 \times 10^{3}}=0.165 \mathrm{~m} .
$$

Also, since

$$
\begin{aligned}
p(x=0, t=50 \mu \mathrm{~s})=10\left(\mathrm{~N} / \mathrm{m}^{2}\right) & =A \cos \left(\frac{2 \pi \times 50 \times 10^{-6}}{5 \times 10^{-4}}+36^{\circ} \frac{\pi \mathrm{rad}}{180^{\circ}}\right) \\
& =A \cos (1.26 \mathrm{rad})=0.31 A,
\end{aligned}
$$

it follows that $A=10 / 0.31=32.36 \mathrm{~N} / \mathrm{m}^{2}$. So, with t in (s) and x in (m),

$$
\begin{aligned}
p(x, t) & =32.36 \cos \left(2 \pi \times 10^{6} \frac{t}{500}-2 \pi \times 10^{3} \frac{x}{165}+36^{\circ}\right) \quad\left(\mathrm{N} / \mathrm{m}^{2}\right) \\
& =32.36 \cos \left(4 \pi \times 10^{3} t-12.12 \pi x+36^{\circ}\right) \quad\left(\mathrm{N} / \mathrm{m}^{2}\right) .
\end{aligned}
$$

Problem 1.4 A wave traveling along a string is given by

$$
y(x, t)=2 \sin (4 \pi t+10 \pi x)
$$

where x is the distance along the string in meters and y is the vertical displacement. Determine: (a) the direction of wave travel, (b) the reference phase ϕ_{0}, (c) the frequency, (d) the wavelength, and (e) the phase velocity.

Solution:

(a) We start by converting the given expression into a cosine function of the form given by (1.17):

$$
y(x, t)=2 \cos \left(4 \pi t+10 \pi x-\frac{\pi}{2}\right) \quad(\mathrm{cm})
$$

Since the coefficients of t and x both have the same sign, the wave is traveling in the negative x-direction.
(b) From the cosine expression, $\phi_{0}=-\pi / 2$.
(c) $\omega=2 \pi f=4 \pi$,

$$
f=4 \pi / 2 \pi=2 \mathrm{~Hz}
$$

(d) $2 \pi / \lambda=10 \pi$,

$$
\lambda=2 \pi / 10 \pi=0.2 \mathrm{~m}
$$

(e) $u_{\mathrm{p}}=f \lambda=2 \times 0.2=0.4(\mathrm{~m} / \mathrm{s})$.

Problem 1.14 A certain electromagnetic wave traveling in seawater was observed to have an amplitude of $98.02(\mathrm{~V} / \mathrm{m})$ at a depth of 10 m , and an amplitude of 81.87 $(\mathrm{V} / \mathrm{m})$ at a depth of 100 m . What is the attenuation constant of seawater?

Solution: The amplitude has the form $A e^{\alpha z}$. At $z=10 \mathrm{~m}$,

$$
A e^{-10 \alpha}=98.02
$$

and at $z=100 \mathrm{~m}$,

$$
A e^{-100 \alpha}=81.87
$$

The ratio gives

$$
\frac{e^{-10 \alpha}}{e^{-100 \alpha}}=\frac{98.02}{81.87}=1.20
$$

or

$$
e^{-10 \alpha}=1.2 e^{-100 \alpha}
$$

Taking the natural log of both sides gives

$$
\begin{aligned}
\ln \left(e^{-10 \alpha}\right) & =\ln \left(1.2 e^{-100 \alpha}\right) \\
-10 \alpha & =\ln (1.2)-100 \alpha, \\
90 \alpha & =\ln (1.2)=0.18
\end{aligned}
$$

Hence,

$$
\alpha=\frac{0.18}{90}=2 \times 10^{-3} \quad(\mathrm{~Np} / \mathrm{m}) .
$$

Problem 1.16 Evaluate each of the following complex numbers and express the result in rectangular form:
(a) $z_{1}=8 e^{j \pi / 3}$
(b) $z_{2}=\sqrt{3} e^{j 3 \pi / 4}$
(c) $z_{3}=2 e^{-j \pi / 2}$
(d) $z_{4}=j^{3}$
(e) $z_{5}=j^{-4}$
(f) $z_{6}=(1-j)^{3}$
(g) $z_{7}=(1-j)^{1 / 2}$

Solution: (Note: In the following solutions, numbers are expressed to only two decimal places, but the final answers are found using a calculator with 10 decimal places.)
(a) $z_{1}=8 e^{j \pi / 3}=8(\cos \pi / 3+j \sin \pi / 3)=4.0+j 6.93$.
(b)
$z_{2}=\sqrt{3} e^{j 3 \pi / 4}=\sqrt{3}\left[\cos \left(\frac{3 \pi}{4}\right)+j \sin \left(\frac{3 \pi}{4}\right)\right]=-1.22+j 1.22=1.22(-1+j)$.
(c) $z_{3}=2 e^{-j \pi / 2}=2[\cos (-\pi / 2)+j \sin (-\pi / 2)]=-j 2$.
(d) $z_{4}=j^{3}=j \cdot j^{2}=-j$, or

$$
z_{4}=j^{3}=\left(e^{j \pi / 2}\right)^{3}=e^{j 3 \pi / 2}=\cos (3 \pi / 2)+j \sin (3 \pi / 2)=-j .
$$

(e) $z_{5}=j^{-4}=\left(e^{j \pi / 2}\right)^{-4}=e^{-j 2 \pi}=1$.
(f)

$$
\begin{aligned}
z_{6}=(1-j)^{3}=\left(\sqrt{2} e^{-j \pi / 4}\right)^{3} & =(\sqrt{2})^{3} e^{-j 3 \pi / 4} \\
& =(\sqrt{2})^{3}[\cos (3 \pi / 4)-j \sin (3 \pi / 4)] \\
& =-2-j 2=-2(1+j) .
\end{aligned}
$$

(g)

$$
\begin{aligned}
z_{7}=(1-j)^{1 / 2}=\left(\sqrt{2} e^{-j \pi / 4}\right)^{1 / 2}= \pm 2^{1 / 4} e^{-j \pi / 8} & = \pm 1.19(0.92-j 0.38) \\
& = \pm(1.10-j 0.45) .
\end{aligned}
$$

Problem 1.19 If $z=-2+j 4$, determine the following quantities in polar form:
(a) $1 / z$,
(b) z^{3},
(c) $|z|^{2}$,
(d) $\mathfrak{I m}\{z\}$,
(e) $\mathfrak{I m}\left\{z^{*}\right\}$.

Solution: (Note: In the following solutions, numbers are expressed to only two decimal places, but the final answers are found using a calculator with 10 decimal places.)
(a)
$\frac{1}{z}=\frac{1}{-2+j 4}=(-2+j 4)^{-1}=\left(4.47 e^{j 116.6^{\circ}}\right)^{-1}=(4.47)^{-1} e^{-j 116.6^{\circ}}=0.22 e^{-j 116.6^{\circ}}$.
(b) $z^{3}=(-2+j 4)^{3}=\left(4.47 e^{j 116.6^{\circ}}\right)^{3}=(4.47)^{3} e^{j 350.0^{\circ}}=89.44 e^{-j 10^{\circ}}$.
(c) $|z|^{2}=z \cdot z^{*}=(-2+j 4)(-2-j 4)=4+16=20$.
(d) $\mathfrak{I m}\{z\}=\mathfrak{I m}\{-2+j 4\}=4$.
(e) $\mathfrak{I m}\left\{z^{*}\right\}=\mathfrak{I m}\{-2-j 4\}=-4=4 e^{j \pi}$.

Problem 1.20 Find complex numbers $t=z_{1}+z_{2}$ and $s=z_{1}-z_{2}$, both in polar form, for each of the following pairs:
(a) $z_{1}=2+j 3$ and $z_{2}=1-j 2$,
(b) $z_{1}=3$ and $z_{2}=-j 3$,
(c) $z_{1}=3 \angle 30^{\circ}$ and $z_{2}=3 \angle-30^{\circ}$,
(d) $z_{1}=3 \angle 30^{\circ}$ and $z_{2}=3 \angle-150^{\circ}$.

Solution:

(a)

$$
\begin{aligned}
& t=z_{1}+z_{2}=(2+j 3)+(1-j 2)=3+j 1 \\
& s=z_{1}-z_{2}=(2+j 3)-(1-j 2)=1+j 5=5.1 e^{j 78.7^{\circ}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& t=z_{1}+z_{2}=3-j 3=4.24 e^{-j 45^{\circ}} \\
& s=z_{1}-z_{2}=3+j 3=4.24 e^{j 45^{\circ}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
t=z_{1}+z_{2} & =3 \angle 30^{\circ}+3 \angle-30^{\circ} \\
& =3 e^{j 30^{\circ}}+3 e^{-j 30^{\circ}}=(2.6+j 1.5)+(2.6-j 1.5)=5.2 \\
s=z_{1}-z_{2} & =3 e^{j 30^{\circ}}-3 e^{-j 30^{\circ}}=(2.6+j 1.5)-(2.6-j 1.5)=j 3=3 e^{j 90^{\circ}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& t=z_{1}+z_{2}=3 \angle 30^{\circ}+3 \angle-150^{\circ}=(2.6+j 1.5)+(-2.6-j 1.5)=0 \\
& s=z_{1}-z_{2}=(2.6+j 1.5)-(-2.6-j 1.5)=5.2+j 3=6 e^{j 30^{\circ}}
\end{aligned}
$$

Problem 1.23 If $z=3-j 4$, find the value of e^{z}.

Solution:

$$
\begin{aligned}
& e^{z}=e^{3-j 4}=e^{3} \cdot e^{-j 4}=e^{3}(\cos 4-j \sin 4), \\
& e^{3}=20.09, \quad \text { and } \quad 4 \mathrm{rad}=\frac{4}{\pi} \times 180^{\circ}=229.18^{\circ} .
\end{aligned}
$$

Hence, $e^{z}=20.08\left(\cos 229.18^{\circ}-j \sin 229.18^{\circ}\right)=-13.13+j 15.20$.

Problem 1.26 Find the phasors of the following time functions:
(a) $v(t)=9 \cos (\omega t-\pi / 3)(\mathrm{V})$
(b) $v(t)=12 \sin (\omega t+\pi / 4)$ (V)
(c) $i(x, t)=5 e^{-3 x} \sin (\omega t+\pi / 6)$ (A)
(d) $i(t)=-2 \cos (\omega t+3 \pi / 4)$ (A)
(e) $i(t)=4 \sin (\omega t+\pi / 3)+3 \cos (\omega t-\pi / 6)$ (A)

Solution:

(a) $\widetilde{V}=9 e^{-j \pi / 3} \mathrm{~V}$.
(b) $v(t)=12 \sin (\omega t+\pi / 4)=12 \cos (\pi / 2-(\omega t+\pi / 4))=12 \cos (\omega t-\pi / 4) \mathrm{V}$, $\widetilde{V}=12 e^{-j \pi / 4} \mathrm{~V}$.
(c)

$$
\begin{aligned}
i(t) & =5 e^{-3 x} \sin (\omega t+\pi / 6) \mathrm{A}=5 e^{-3 x} \cos [\pi / 2-(\omega t+\pi / 6)] \mathrm{A} \\
& =5 e^{-3 x} \cos (\omega t-\pi / 3) \mathrm{A}, \\
\widetilde{I} & =5 e^{-3 x} e^{-j \pi / 3} \mathrm{~A} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
i(t) & =-2 \cos (\omega t+3 \pi / 4), \\
\widetilde{I} & =-2 e^{j 3 \pi / 4}=2 e^{-j \pi} e^{j 3 \pi / 4}=2 e^{-j \pi / 4} \mathrm{~A} .
\end{aligned}
$$

(e)

$$
\begin{aligned}
i(t) & =4 \sin (\omega t+\pi / 3)+3 \cos (\omega t-\pi / 6) \\
& =4 \cos [\pi / 2-(\omega t+\pi / 3)]+3 \cos (\omega t-\pi / 6) \\
& =4 \cos (-\omega t+\pi / 6)+3 \cos (\omega t-\pi / 6) \\
& =4 \cos (\omega t-\pi / 6)+3 \cos (\omega t-\pi / 6)=7 \cos (\omega t-\pi / 6), \\
\widetilde{I} & =7 e^{-j \pi / 6} \mathrm{~A} .
\end{aligned}
$$

Problem 1.27 Find the instantaneous time sinusoidal functions corresponding to the following phasors:
(a) $\widetilde{V}=-5 e^{j \pi / 3}$ (V)
(b) $\widetilde{V}=j 6 e^{-j \pi / 4}(\mathrm{~V})$
(c) $\widetilde{I}=(6+j 8)(\mathrm{A})$
(d) $\tilde{I}=-3+j 2(\mathrm{~A})$
(e) $\tilde{I}=j$ (A)
(f) $\tilde{I}=2 e^{j \pi / 6}$ (A)

Solution:

(a)

$$
\begin{aligned}
\widetilde{V} & =-5 e^{j \pi / 3} \mathrm{~V}=5 e^{j(\pi / 3-\pi)} \mathrm{V}=5 e^{-j 2 \pi / 3} \mathrm{~V}, \\
v(t) & =5 \cos (\omega t-2 \pi / 3) \mathrm{V}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\widetilde{V} & =j 6 e^{-j \pi / 4} \mathrm{~V}=6 e^{j(-\pi / 4+\pi / 2)} \mathrm{V}=6 e^{j \pi / 4} \mathrm{~V}, \\
v(t) & =6 \cos (\omega t+\pi / 4) \mathrm{V}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\widetilde{I} & =(6+j 8) \mathrm{A}=10 e^{j 53.1^{\circ}} \mathrm{A}, \\
i(t) & =10 \cos \left(\omega t+53.1^{\circ}\right) \mathrm{A} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\widetilde{I} & =-3+j 2=3.61 e^{j 146.31^{\circ}} \\
i(t) & =\mathfrak{R e}\left\{3.61 e^{j 146.31^{\circ}} e^{j \omega t}\right\}=3.61 \cos \left(\omega t+146.31^{\circ}\right) \mathrm{A} .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\widetilde{I} & =j=e^{j \pi / 2}, \\
i(t) & =\mathfrak{R e}\left\{e^{j \pi / 2} e^{j \omega t}\right\}=\cos (\omega t+\pi / 2)=-\sin \omega t \mathrm{~A} .
\end{aligned}
$$

(f)

$$
\begin{aligned}
\widetilde{I} & =2 e^{j \pi / 6} \\
i(t) & =\mathfrak{R e}\left\{2 e^{j \pi / 6} e^{j \omega t}\right\}=2 \cos (\omega t+\pi / 6) \mathrm{A}
\end{aligned}
$$

Problem 1.2 For the pressure wave described in Example 1-1, plot
(a) $p(x, t)$ versus x at $t=0$,
(b) $p(x, t)$ versus t at $x=0$.

Be sure to use appropriate scales for x and t so that each of your plots covers at least two cycles.
Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).

Figure P1.2: (a) Pressure wave as a function of distance at $t=0$ and (b) pressure wave as a function of time at $x=0$.

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator that completes 180 vibrations per minute. If it is observed that a given crest, or maximum, travels 300 cm in 10 s , what is the wavelength?
Solution:

$$
\begin{aligned}
f & =\frac{180}{60}=3 \mathrm{~Hz} . \\
u_{\mathrm{p}} & =\frac{300 \mathrm{~cm}}{10 \mathrm{~s}}=0.3 \mathrm{~m} / \mathrm{s} . \\
\lambda & =\frac{u_{\mathrm{p}}}{f}=\frac{0.3}{3}=0.1 \mathrm{~m}=10 \mathrm{~cm} .
\end{aligned}
$$

Problem 1.5 Two waves, $y_{1}(t)$ and $y_{2}(t)$, have identical amplitudes and oscillate at the same frequency, but $y_{2}(t)$ leads $y_{1}(t)$ by a phase angle of 60°. If

$$
y_{1}(t)=4 \cos \left(2 \pi \times 10^{3} t\right),
$$

write the expression appropriate for $y_{2}(t)$ and plot both functions over the time span from 0 to 2 ms .

Solution:

$$
y_{2}(t)=4 \cos \left(2 \pi \times 10^{3} t+60^{\circ}\right) .
$$

Figure P1.5: Plots of $y_{1}(t)$ and $y_{2}(t)$.

Problem 1.6 The height of an ocean wave is described by the function

$$
y(x, t)=1.5 \sin (0.5 t-0.6 x) \quad(\mathrm{m})
$$

Determine the phase velocity and the wavelength, and then sketch $y(x, t)$ at $t=2 \mathrm{~s}$ over the range from $x=0$ to $x=2 \lambda$.
Solution: The given wave may be rewritten as a cosine function:

$$
y(x, t)=1.5 \cos (0.5 t-0.6 x-\pi / 2)
$$

By comparison of this wave with Eq. (1.32),

$$
y(x, t)=A \cos \left(\omega t-\beta x+\phi_{0}\right)
$$

we deduce that

$$
\begin{aligned}
\omega=2 \pi f=0.5 \mathrm{rad} / \mathrm{s}, & \beta=\frac{2 \pi}{\lambda}=0.6 \mathrm{rad} / \mathrm{m}, \\
u_{\mathrm{p}}=\frac{\omega}{\beta}=\frac{0.5}{0.6}=0.83 \mathrm{~m} / \mathrm{s}, & \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.6}=10.47 \mathrm{~m} .
\end{aligned}
$$

At $t=2 \mathrm{~s}, y(x, 2)=1.5 \sin (1-0.6 x)(\mathrm{m})$, with the argument of the cosine function given in radians. Plot is shown in Fig. .

Figure P1.6: Plot of $y(x, 2)$ versus x.

