Problem 9.16 PSpice|Multisim

A 25Ω resistor and a 10 mH inductor are connected in parallel. This parallel combination is also in parallel with the series combination of a 30Ω resistor and a $10 \mu \mathrm{~F}$ capacitor. These three parallel branches are driven by a sinusoidal current source whose current is $225 \sin \left(2500 t+60^{\circ}\right) \mathrm{A}$.

Part A

Determine the impedances in.
Express your answers in complex form using three significant figures separated by commas.

ANSWER:

$$
Z_{L}, Z_{R 1}, Z_{R 2}, Z_{C}=\square \Omega, \Omega, \Omega, \Omega
$$

Part B

Reference the voltage across the current source as a rise in the direction of the source current, and find the phasor voltage.

Enter your answer using polar notation. Express argument in degrees.
ANSWER:

```
V
\(\square\) V
```


Part C

Choose the correct steady-state expression for $v(t)$.
ANSWER:
$-5.22 \sin \left(2500 t+3930^{\circ}\right) \mathrm{V}$
$-5.22 \cos \left(2500 t+3930^{\circ}\right) \mathrm{V}$ $3930 \cos \left(2500 t-5.22^{\circ}\right) \mathrm{V}$
$3930 \sin \left(2500 t-5.22^{\circ}\right) \mathrm{V}$

Problem 9.18

At a given frequency ω, the circuits in the figures (a) and (b) have the same impedance between the terminals a, b.

Part A

Find R_{1}.
Express your answer in terms of the variables ω, L_{2} and R_{2}.
ANSWER:
$R_{1}=$ \square

Part B

Find L_{1}.
Express your answer in terms of the variables ω, L_{2} and R_{2}.
ANSWER:

$$
L_{1}=
$$

\square

Part C

Find the value of resistance that when connected in series will have the same impedance at $4.8 \mathrm{krad} / \mathrm{s}$ as that of a $6 \mathrm{k} \Omega$ resistor connected in parallel with a 1.4 H inductor.

Express your answer to four significant figures and include the appropriate units.
ANSWER:

$$
R_{1}=
$$

Part D

Find the value of inductance that when connected in series will have the same impedance at $4.8 \mathrm{krad} / \mathrm{s}$ as that of a $6 \mathrm{k} \Omega$ resistor connected in parallel with a 1.4 H inductor.

Express your answer with the appropriate units.

ANSWER:
$L_{1}=$

Problem 9.24 PSpice|Multisim

Part A

For the circuit shown in, find the frequency at which the impedance $Z_{\text {ab }}$ is purely resistive. Suppose $R=$ $400 \Omega, L=400 \mathrm{mH}$, and $C=50 \mu \mathrm{~F}$.

Express your answer using three significant figures.

ANSWER:

```
\omega= rad}/\textrm{s
```


Part B

Find the value of Z_{ab} at the frequency of Part A.
Express your answer to two significant figures and include the appropriate units.
ANSWER:
$Z_{\text {ab }}=$

Problem 9.44

Use source transformations to find the Norton equivalent circuit with respect to the terminals a, b for the circuit shown in . Suppose that $R=13 \Omega$.

Part A

Find the value of Z_{N}.
Express your answer in complex form using three significant figures.
ANSWER:
$Z_{\mathrm{N}}=\square \Omega$

Part B

Find the value of I_{N}.
Express your answer in complex form using three significant figures.
ANSWER:
$\mathrm{I}_{\mathrm{N}}=\square \mathrm{A}$

Problem 9.58

Use the node-voltage method to find the phasor voltage \mathbf{V}_{o} in the circuit shown in the figure when $I_{g}=12+12 j A$.

Part A

Express the voltage in polar form.
Enter your answer using polar notation. Express argument in degrees.
ANSWER:

$$
\mathbf{V}_{o}=\square \mathrm{V}
$$

Part B

Express the voltage in rectangular form.
Express your answer in complex form.
ANSWER:

```
V
9.16

\[
\begin{gathered}
c=10 \mathrm{mH} ; n_{1}=25 \Omega ; n_{2}=30 \Omega ; c=10 \mu \mathrm{~F} \\
i_{S}=225 \mathrm{sm}\left(2500 t+60^{\circ}\right) \mathrm{A} \\
\omega
\end{gathered}
\]
a)
\[
\begin{aligned}
& z_{L}=j \omega L=j 25.0 \Omega \\
& z_{n_{1}}=25 \Omega \\
& z_{R_{L}}=30 \Omega \\
& z_{c}=j \frac{1}{j \omega c}=\frac{40}{j}=-j 40 \Omega
\end{aligned}
\]
b)
\[
\begin{aligned}
i_{S} & =225 \sin \left(2500 t+60^{\circ}\right) \\
& =225 \cos \left(2500++60^{\circ}-90^{\circ}\right) \\
I_{s} & =225 \angle-30^{\circ} \\
\tau_{e q} & =[25 / 1(30-j 40)] / 1 / j 25
\end{aligned}
\]
\[
\begin{aligned}
&25 / 1 / 30-j 40)=\frac{25 / 30-j 40)}{25+30-j 40}=\frac{25 / 30-j 40)}{55-j 40} \\
& z_{e q}=\frac{\left[\frac{25 / 30-j 40)}{55-j 40}\right] \times j 25}{\left[\frac{25(30-j 40)}{55-j 40}\right]+j 25} \\
&=\frac{25 / 30-j 40)(j 25)}{25130-j 40)+j 25(55-j 40)} \\
&=\frac{j 25(30-j 40)}{30+410+j 55-j 40}=j 25(30-j 40) \\
&=\frac{j 5130+j 5}{14+j 3} \\
&=j 5 \frac{(30-j 40)(14-j 3)}{196+9}=j 5 \frac{(14-j 3)}{(14-j 3)} \\
&=j \frac{(30 \times 14-j 3 \times 30-j 14 \times 40-40 \times 3)}{205} \\
&\left.=\frac{650+j 300}{41}=173\right)
\end{aligned}
\]
\[
\begin{aligned}
V_{s} & =I_{r} z_{e q} \\
& =225<-30^{\circ}\left(17.461 \angle 24.775^{\circ}\right)
\end{aligned}
\]
b) \(\quad V_{s}=3,928.67 \angle-5.2251^{\circ}\)
c)
\[
v(t)=3,930 \cos \left(2500 t-5.22^{\circ}\right) \mathrm{V}
\]
9.18

\[
z_{L}=n,+j \omega L, \quad z_{n}=\frac{n_{L}\left(j \omega c_{2}\right)}{n_{L}+j \omega c_{L}}
\]

SET \(z_{L}=z_{\mu}\) ? SOL DE FOR \(n_{1}\) STRATEGY: FIND RE \(\left\{Z_{R}\right\}=R_{1}\)
\[
\begin{aligned}
z_{n} & =\frac{j \omega L_{2} n_{L}}{n_{2}+j \omega L_{L}}\left(\frac{n_{2}-j \omega L_{L}}{n_{2}-j \omega L_{2}}\right) \\
& =\frac{\omega^{2} n_{2} L_{2}^{2}}{n_{2}^{2}+\left(\omega L_{2}\right)^{2}}+\frac{j \omega n_{2}^{2} L_{L}}{n_{2}^{2}+\left(\omega L_{L}\right)^{2}}
\end{aligned}
\]
a) \(n_{1}=\frac{\omega^{2} n_{2} L_{2}{ }^{2}}{n_{2}^{2}+\left(\omega L_{2}\right)^{2}}\)
9.18, CONT分.
b) SET IN \(\left\{z_{L}\right\}=\operatorname{IN}\left\{z_{N}\right\}\) :
\[
\begin{aligned}
j \omega L_{1} & =\frac{j \omega n_{L}^{2} L_{2}}{n_{2}^{2}+\left(\omega L_{L}\right)^{2}} \\
L_{1} & =\frac{n_{2}^{2} L_{L}}{n_{2}^{2}+\left(\omega L_{L}\right)^{2}}
\end{aligned}
\]

Now Fon
\[
\begin{aligned}
& \omega=3,800 \mathrm{nAD} / \mathrm{s} \\
& n_{2}=5.5 \mathrm{~h} \Omega \\
& L_{2}=1.35 \mathrm{H}
\end{aligned}
\]
c) FRON PART a), \(n_{1}=2,559 \Omega\)
d) FNOM PANT b), \(L,=0.7219\) Ht
9.24
\[
\begin{aligned}
& R=400 \Omega \\
& R=400 \mathrm{mH} \\
& C=50 \mu \mathrm{~F}
\end{aligned}
\]
\[
\begin{aligned}
z_{e q} & =\frac{1}{j \omega c}+\frac{R \cdot j \omega L}{n+j \omega L} \\
& =\frac{-j}{\omega c}+\frac{j \omega n c}{n+j \omega L} \frac{(n-j \omega c)}{(n-j \omega L)} \\
& =\frac{-j}{\omega c}+\frac{j \omega n^{2} L}{n^{2}+(\omega L)^{2}}+\frac{\omega^{2} n c^{2}}{n^{2}+(\omega L)^{2}}
\end{aligned}
\]
b)? W FON WHICH Zeg NUPEL, REAL?
\[
\begin{aligned}
& \Rightarrow \operatorname{sm}\left\{t_{q,}\right\}=0 \\
& -\frac{1}{\omega c}+\frac{\omega n^{2} L}{n^{2}+(\omega c)^{2}}=0 \\
& \frac{\omega^{2} L}{n^{2}+(\omega c)^{2}}=\frac{1}{\omega c} \\
& \omega^{2} n^{2} \angle c=n^{2}+(\omega c)^{2}
\end{aligned}
\]
\[
\begin{gathered}
\omega^{2}\left(n^{2} \angle C-L^{2}\right)=n^{2} \\
\omega=\frac{R}{\sqrt{R^{2} \angle C-L^{2}}}
\end{gathered}
\]

USING SRECIFIED VOLUES, \(\omega=229.4157 \mathrm{MAD} / \mathrm{S}\)
b) Now \(n 0\left\{t_{e q}\right\}=\frac{\omega^{2} n c^{2}}{n^{2}+(\omega c)^{2}}\)

AT THS FREQUENCY (RART a),
\[
R\left\{t_{e c}\right\}=t_{e q}=20 \Omega
\]
(PUNELY RESISTIVE)



Zero phase at 36.566 HZ or \(229 \mathrm{rad} / \mathrm{s}\)


WANT: NORTON EQUIV

\[
\begin{aligned}
& z_{E G}=\frac{j n 30}{n+j 30}-j 30=\frac{j n 30-j 30(n+j 30)}{n+j 30} \\
& z_{E Q}=\frac{900}{n+j 30}
\end{aligned}
\]
9.44, CONT'力.
\[
\begin{aligned}
& 6\left(\frac{j n 30}{n+j 30}\right)\left(\frac{n+j 30}{900}\right) \\
& \frac{j n}{5} \\
& Z_{E Q}=\frac{900}{n+j 30}\left(\frac{n-j 30}{n-j 30}\right)=\frac{900 n-j 23,000}{n^{2}+900}
\end{aligned}
\]
\[
\begin{array}{ll}
\frac{j n}{5} \\
\frac{11}{5}<90^{\circ} \\
\frac{900 n}{n^{2}+900} & a \\
\frac{j 27,000}{n^{2}+900} & 0 b
\end{array}
\]
9.58


NODAL FOR V: \(\frac{V_{0}-2.4 I_{A}}{j 4}+\frac{V_{0}}{5}\)
\[
-(12+j / 2)+I_{1}=0
\]

BUT \(I_{A}=V_{0} /-j 8\)
\[
\frac{v_{0}-2.4\left(\frac{v_{0}}{-j 8}\right)}{j 4}+\frac{v_{0}}{5}-(12+j 12)-\frac{v_{0}}{j 8}=0
\]
\[
\begin{aligned}
& \frac{v_{0}+\frac{0.3 v_{0}}{j}}{j 4}+\frac{v_{0}}{5}-12-j / 2+j \frac{v_{0}}{8}=0 \\
& v_{0}-j 0.3 v_{0}+\frac{v_{0}}{5}(j 4)-(12+j 12)(j 4) \\
& +j \frac{v_{0}}{8}(j 4)=0 \\
& \left.v_{0}(1-j 0.3-0.5+j 0.8)=112+j 12\right) j 4 \\
& \left.v_{0}(0.5+j 0.5)=481-1+j\right) \\
& v_{0}= \\
& =\frac{96(-1+j)}{(1+j) \frac{(1-j)}{(1-j)}} \\
& =
\end{aligned}
\]```

