ECE222

Quiz 3

The switch in the circuit shown below has been in the left position for a long time before moving to the right position at $t=0$. Find $i_{L}(t), t \geq 0$. (Show all your work).

$$
t<0
$$

$V_{0}=v_{o}\left(0^{-}\right)=v_{o}\left(0^{+}\right)=\frac{3000}{4000}(100)=75 \mathrm{~V}$
$I_{0}=i_{\mathrm{L}}\left(0^{-}\right)=i_{\mathrm{L}}\left(0^{+}\right)=100 \mathrm{~mA}$

$\alpha=\frac{1}{2 R C}=\frac{1}{2(40)\left(25 \times 10^{-6}\right)}=500 \mathrm{rad} / \mathrm{s}$
$\omega_{o}=\sqrt{\frac{1}{L C}}=\sqrt{\frac{1}{\left(250 \times 10^{-3}\right)\left(25 \times 10^{-6}\right)}}=400$
$\therefore \alpha^{2}>\omega_{o}^{2}$ overdamped
$s_{1,2}=-500 \pm \sqrt{500^{2}-400^{2}}=-200,-800$
$i_{L}=I_{f}+A_{1} e^{-200 t}+A_{2} e^{-800 t}$
$I_{f}=100 \mathrm{~mA}$

$$
i_{L}(0)=0.1+A_{1}+A_{2}=0.1 \quad \text { so } \quad A_{1}+A_{2}=0
$$

$$
\frac{d i_{L}}{d t}(0)=-200 A_{1}-800 A_{2}=\frac{V_{0}}{L}=\frac{75}{0.25}=300
$$

Solving, $\quad A_{1}=0.5, \quad A_{2}=-0.5$

$$
\therefore \quad i_{L}(t)=0.1+0.5 e^{-200 t}-0.5 e^{-800 t} \mathrm{~A}
$$

