The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

The Circuit Abstraction

Current flows through a flashlight when the switch is closed

The Circuit Abstraction

We can represent the flashlight as a voltage source (battery) connected to a resistor (light bulb).

The voltage source generates a voltage v across the resistor and a current i through the resistor.

The Circuit Abstraction

We can represent the flow of water by a circuit.

Flow of water into and out of tank are represented as "through" variables r_{i} and r_{o}, respectively. Hydraulic pressure at bottom of tank is represented by the "across" variable $P=\rho g h$.

The Circuit Abstraction

Circuits are important for two very different reasons:

- as physical systems
- power (from generators and transformers to power lines)
- electronics (from cell phones to computers)
- as models of complex systems
- neurons
- brain
- cardiovascular system
- hearing

The Circuit Abstraction

Circuits are basis of enormously successful semiconductor industry.

What design principles enable development of such complex systems?

The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

The primitives are the elements:

- sources,
- capacitors, and
- resistors.

The rules of combination are the rules that govern

- flow of current (through variable) and
- development of voltage (across variable).

Analyzing Circuits: Elements

We will start with the simplest elements: resistors and sources

$v=i R$

$v=V_{0}$

$i=-I_{0}$

Analyzing Simple Circuits

Analyzing simple circuits is straightforward.
Example 1:

The voltage source determines the voltage across the resistor, $v=$ 1 V , so the current through the resistor is $i=v / R=1 / 1=1 \mathrm{~A}$.

Example 2:

The current source determines the current through the resistor, $i=$ 1A, so the voltage across the resistor is $v=i R=1 \times 1=1 \mathrm{~V}$.

Check Yourself

What is the current through the resistor below?

1. 1 A
2. $2 A$
3. OA
4. cannot determine
5. none of the above

Check Yourself

What is the current through the resistor below?

The voltage source forces the voltage across the resistor to be 1 V . Therefore, the current through the resistor is $1 \mathrm{~V} / 1 \Omega=1 \mathrm{~A}$.

Does the current source do anything?

Check Yourself

Does the current source do anything?

If all of the current from current source flowed through the resistor, then it would generate 1 V across the resistor.

Since the voltage generated by the current source is equal to that across the voltage source, the voltage source provides zero current.

The current source supplies all of the current through the resistor!

Check Yourself

What is the current through the resistor below?

1. 1 A
2. $2 A$
3. OA
4. cannot determine
5. none of the above

Analyzing More Complex Circuits

More complex circuits can be analyzed by systematically applying Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL).

Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Example: $-v_{1}+v_{2}+v_{4}=0$ or equivalently $v_{1}=v_{2}+v_{4}$.

How many other KVL relations are there?

Check Yourself

How many KVL equations can be written for this circuit?

1. 3
2. 4
3. 5
4. 6
5. 7

Check Yourself

$\mathrm{A}:-v_{1}+v_{2}+v_{4}=0$
$\mathrm{B}:-v_{2}+v_{3}-v_{6}=0$
$\mathrm{C}:-v_{4}+v_{6}+v_{5}=0$

Check Yourself

$\mathrm{D}:-v_{1}+v_{3}-v_{6}+v_{4}=0$

Check Yourself

$$
\mathrm{E}:-v_{1}+v_{2}+v_{6}+v_{5}=0
$$

Check Yourself

$$
\mathrm{F}:-v_{4}-v_{2}+v_{3}+v_{5}=0
$$

Check Yourself

$$
\mathrm{G}:-v_{1}+v_{3}+v_{5}=0
$$

Check Yourself

There are 7 KVL equations for this circuit.

$$
\begin{aligned}
& \mathrm{A}:-v_{1}+v_{2}+v_{4}=0 \\
& \mathrm{~B}:-v_{2}+v_{3}-v_{6}=0 \\
& \mathrm{C}:-v_{4}+v_{6}+v_{5}=0 \\
& \mathrm{D}:-v_{1}+v_{3}-v_{6}+v_{4}=0 \\
& \mathrm{E}:-v_{1}+v_{2}+v_{6}+v_{5}=0 \\
& \mathrm{~F}:-v_{4}-v_{2}+v_{3}+v_{5}=0 \\
& \mathrm{G}:-v_{1}+v_{3}+v_{5}=0
\end{aligned}
$$

Not all of these equations are linearly independent.

Check Yourself

How many KVL equations can be written for this circuit?

1. 3
2. 4
3. 5
4. 6
5. 7

But not all of these equations are linearly independent.

Analyzing Circuits: KVL

Planar circuits can be characterized by their "inner" loops. KVL equations for the inner loops are independent.

A: $-v_{1}+v_{2}+v_{4}=0$
B: $-v_{2}+v_{3}-v_{6}=0$
C: $-v_{4}+v_{6}+v_{5}=0$

Analyzing Circuits: KVL

All possible KVL equations for planar circuits can be generated by combinations of the "inner" loops.

$$
\begin{aligned}
& \mathrm{A}:-v_{1}+v_{2}+v_{4}=0 \\
& \mathrm{~B}:-v_{2}+v_{3}-v_{6}=0 \\
& \mathrm{~A}+\mathrm{B}:-v_{1}+v_{2}+v_{4}-v_{2}+v_{3}-v_{6}=-v_{1}+v_{3}-v_{6}+v_{4}=0
\end{aligned}
$$

KVL: Summary

The sum of the voltages around any closed path is zero.
One KVL equation can be written for every closed path in a circuit. Sets of KVL equations are not necessarily linearly independent.

KCL equations for the "inner" loops of planar circuits are linearly independent.

Kirchhoff's Current Law

The flow of electrical current is analogous to the flow of incompressible fluid (e.g., water).

Current i_{1} flows into a node and two currents i_{2} and i_{3} flow out:

$$
i_{1}=i_{2}+i_{3}
$$

Kirchhoff's Current Law

The net flow of electrical current into (or out of) a node is zero.

Here, there are two nodes, each indicated by a dot.

The net current out of the top node must be zero:

$$
i_{1}+i_{2}+i_{3}=0 .
$$

Kirchhoff's Current Law

Electrical currents cannot accumulate in elements, so current that flows into a circuit element must also flow out.

$$
\begin{aligned}
i_{1} & =i_{4} \\
i_{2} & =i_{5} \\
i_{3} & =i_{6}
\end{aligned}
$$

Since $i_{1}+i_{2}+i_{3}=0$ it follows that

$$
i_{4}+i_{5}+i_{6}=0
$$

Check Yourself

How many linearly independent KCL equations can be written for the following circuit?

1. 1
2. 2
3. 3
4. 4
5. 5

Check Yourself

How many linearly independent KCL equations can be written for the following circuit?

There are four element currents: i_{1}, i_{2}, i_{3}, and i_{4}.
We can write a KCL equation at each of the three nodes:

$$
\begin{aligned}
& i_{1}+i_{2}=0 \\
& i_{2}=i_{3}+i_{4} \\
& i_{1}+i_{3}+i_{4}=0
\end{aligned}
$$

Substituting i_{2} from the second equation into the first yields the third equation. Only two of these equations are linearly independent.

Check Yourself

How many linearly independent KCL equations can be written for the following circuit? 2

1. 1
2. 2
3. 3
4. 4
5. 5

Check Yourself

How many distinct KCL relations can be written for this circuit?

1. 3
2. 4
3. 5
4. 6
5. 7

Check Yourself

A: $\quad i_{1}+i_{2}+i_{3}=0$
B : $\quad-i_{2}+i_{4}+i_{6}=0$
C: $\quad-i_{6}-i_{3}+i_{5}=0$
D : $\quad i_{1}+i_{4}+i_{5}=0$

Check Yourself

These equations are not linearly independent.

$$
\begin{array}{ll}
1: & i_{1}+i_{2}+i_{3}=0 \\
2: & -i_{2}+i_{4}+i_{6}=0 \\
3: & -i_{6}-i_{3}+i_{5}=0 \\
4: & i_{1}+i_{4}+i_{5}=0
\end{array}
$$

Substitute i_{2} from 2 and i_{3} from 3 into 1.

$$
i_{1}+\left(i_{4}+i_{6}\right)+\left(i_{5}-i_{6}\right)=i_{1}+i_{4}+i_{5}
$$

This is equation 4 !

There are only 3 linearly independent KCL equations.

Check Yourself

How many distinct KCL relations can be written for this circuit?

1. 3
2. 4
3. 5
4. 6
5. 7

Analyzing Circuits: KCL

The number of independent KCL equations is one less than the number of nodes.

Previous circuit: four nodes and three independent KCL equations.

This relation follows from a generalization of KCL, as follows.

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

node 1: $i_{1}+i_{2}+i_{3}=0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

node 1: $\quad i_{1}+i_{2}+i_{3}=0$
node 2: $\quad-i_{2}+i_{4}+i_{6}=0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

node 1: $\quad i_{1}+i_{2}+i_{3}=0$
node 2: $\quad-i_{2}+i_{4}+i_{6}=0$
nodes $1+2$: $i_{1}+i_{2}+i_{3}-i_{2}+i_{4}+i_{6}=i_{1}+i_{3}+i_{4}+i_{6}=0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

nodes 1+2: $i_{1}+i_{2}+i_{3}-i_{2}+i_{4}+i_{6}=i_{1}+i_{3}+i_{4}+i_{6}=0$
node 3: $\quad-i_{3}-i_{6}+i_{5}=0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

nodes 1+2: $i_{1}+i_{3}+i_{4}+i_{6}=0$
node 3: $-i_{3}-i_{6}+i_{5}=0$
nodes $1+2+3: \quad i_{1}+i_{3}+i_{4}+i_{6}-i_{3}-i_{6}+i_{5}=i_{1}+i_{4}+i_{5}=0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

nodes 1+2: $i_{1}+i_{3}+i_{4}+i_{6}=0$
node 3: $-i_{3}-i_{6}+i_{5}=0$
nodes $1+2+3: \quad i_{1}+i_{3}+i_{4}+i_{6}-i_{3}-i_{6}+i_{5}=i_{1}+i_{4}+i_{5}=0$
Net current out of nodes $1+2+3=$ net current into bottom node!

KCL: Summary

The sum of the currents out of any node is zero.
One KCL equation can be written for every closed surface (which contain one or more nodes) in a circuit.

Sets of KCL equations are not necessarily linearly independent.
KCL equations for every primitive node except one (ground) are linearly independent.

KVL, KCL, and Constitutive Equations

Circuits can be analyzed by combining

- all linearly independent KVL equations,
- all linearly independent KCL equations, and
- one constitutive equation for each element.

KVL, KCL, and Constitutive Equations

Unfortunately, there are a lot of equations and unknowns.

12 unknowns: $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ and i_{6}.
12 equations: $3 \mathrm{KVL}+3 \mathrm{KCL}+5$ for resistors +1 for V source

This circuit is characterized by 12 equations in 12 unknowns!

Node Voltages

The "node" method is one (of many) ways to systematically reduce the number of circuit equations and unknowns.

- label all nodes except one: ground (gnd) $\equiv 0$ volts
- write KCL for each node whose voltage is not known

KCL at e_{1} :

$$
\frac{e_{1}-V_{0}}{R_{2}}+\frac{e_{1}-e_{2}}{R_{6}}+\frac{e_{1}}{R_{4}}=0
$$

KCL at e_{2} :
$\frac{e_{2}-V_{0}}{R_{3}}+\frac{e_{2}-e_{1}}{R_{6}}+\frac{e_{2}}{R_{5}}=0$

- solve (here just 2 equations and 2 unknowns)

Loop Currents

The "loop current" method is another way to systematically reduce the number of circuit equations and unknowns.

- label all the loop currents
- write KVL for each loop

$$
\begin{aligned}
& \text { Ioop } a \text { : } \\
& -V_{0}+R_{2}\left(i_{a}-i_{b}\right)+R_{4}\left(i_{a}-i_{c}\right)=0 \\
& \text { Ioop } b \text { : } \\
& R_{2}\left(i_{b}-i_{a}\right)+R_{3}\left(i_{b}\right)+R_{6}\left(i_{b}-i_{c}\right)=0 \\
& \text { Ioop } c \text { : } \\
& R_{4}\left(i_{c}-i_{a}\right)++R_{6}\left(i_{c}-i_{b}\right)+R_{5}\left(i_{c}\right)=0
\end{aligned}
$$

- solve (here just 3 equations and 3 unknowns)

Analyzing Circuits: Summary

We have seen three (of many) methods for analyzing circuits.
Each one is based on a different set of variables:

- currents and voltages for each element
- node voltages
- loop currents

Each requires the use of all constitutive equations.
Each provides a systematic way of identifying the required set of KVL and/or KCL equations.

Check Yourself

Determine the current I in the circuit below.

1. 1 A
2. $\frac{5}{3} \mathrm{~A}$
3. -1 A
4. -5 A
5. none of the above

Check Yourself

Node method:

KCL at node e :

$$
\begin{aligned}
& \frac{e-15}{3}+\frac{e}{2}=10 \rightarrow \frac{5}{6} e=15 \quad \rightarrow \quad e=18 \\
& I=\frac{15-18}{3}=-1 \mathrm{~A}
\end{aligned}
$$

Check Yourself

Loop method:

KVL for left loop:

$$
-15+3 I+2(I+10)=0 \quad \rightarrow \quad 5 I=-5 \quad \rightarrow \quad I=-1 \mathrm{~A}
$$

Check Yourself

Determine the current I in the circuit below. 3

1. 1 A
2. $\frac{5}{3} \mathrm{~A}$
3. -1 A
4. -5 A
5. none of the above

Common Patterns

Circuits can be simplified when two or more elements behave as a single element.

A "one-port" is a circuit that can be represented as a single element.

A one-port has two terminals. Current enters one terminal (+) and exits the other $(-)$, producing a voltage (v) across the terminals.

Series Combinations

The series combination of two resistors is equivalent to a single resistor whose resistance is the sum of the two original resistances.

$$
v=R_{1} i+R_{2} i
$$

$$
v=R_{S} i
$$

$$
R_{s}=R_{1}+R_{2}
$$

The resistance of a series combination is always larger than either of the original resistances.

Parallel Combinations

The parallel combination of two resistors is equivalent to a single resistor whose conductance ($1 /$ resistance) is the sum of the two original conductances.

$$
i=\frac{v}{R_{1}}+\frac{v}{R_{2}}
$$

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{1}+R_{2}}{R_{1} R_{2}} \quad \rightarrow \quad R_{p}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \equiv R_{1} \| R_{2}
$$

The resistance of a parallel combination is always smaller than either of the original resistances.

Check Yourself

What is the equivalent resistance of the following one-port.

1. 0.5
2. 1
3. 2
4. 3
5. 5

Check Yourself

Combine two rightmost resistors (series):

Combine rightmost parallel resistors, then the resulting series.

Check Yourself

What is the equivalent resistance of the following one-port.

1. 0.5
2. 1
3. 2
4. 3
5. 5

Voltage Divider

Resistors in series act as voltage dividers.

$$
\begin{aligned}
& I=\frac{V}{R_{1}+R_{2}} \\
& V_{1}=R_{1} I=\frac{R_{1}}{R_{1}+R_{2}} V \\
& V_{2}=R_{2} I=\frac{R_{2}}{R_{1}+R_{2}} V
\end{aligned}
$$

Current Divider

Resistors in parallel act as current dividers.

$$
\begin{aligned}
& V=\left(R_{1} \| R_{2}\right) I \\
& I_{1}=\frac{V}{R_{1}}=\frac{R_{1} \| R_{2}}{R_{1}} I=\frac{1}{R_{1}} \frac{R_{1} R_{2}}{R_{1}+R_{2}} I=\frac{R_{2}}{R_{1}+R_{2}} I
\end{aligned}
$$

$$
I_{2}=\frac{V}{R_{2}}=\frac{R_{1} \| R_{2}}{R_{2}} I=\frac{1}{R_{2}} \frac{R_{1} R_{2}}{R_{1}+R_{2}} I=\frac{R_{1}}{R_{1}+R_{2}} I
$$

Check Yourself

Which of the following is true?

$$
\begin{aligned}
& \text { 1. } V_{o} \leq 3 \mathrm{~V} \\
& \text { 2. } 3 \mathrm{~V}<V_{o} \leq 6 \mathrm{~V} \\
& \text { 3. } 6 \mathrm{~V}<V_{o} \leq 9 \mathrm{~V} \\
& \text { 4. } 9 \mathrm{~V}<V_{o} \leq 12 \mathrm{~V} \\
& \text { 5. } V_{o}>12 \mathrm{~V}
\end{aligned}
$$

Check Yourself

Add the top two resistances to get the series equivalent: 4Ω.
Then find the parallel equivalent: $\frac{12 \Omega \times 6 \Omega}{12 \Omega+6 \Omega}=4 \Omega$.

Now apply the voltage divider relation: $V_{o}=\frac{4 \Omega}{4 \Omega+4 \Omega} \times 15 \mathrm{~V}=7.5 \mathrm{~V}$.

Check Yourself

Which of the following is true? 3

$$
\begin{aligned}
& \text { 1. } V_{o} \leq 3 \mathrm{~V} \\
& \text { 2. } 3 \mathrm{~V}<V_{o} \leq 6 \mathrm{~V} \\
& \text { 3. } 6 \mathrm{~V}<V_{o} \leq 9 \mathrm{~V} \\
& \text { 4. } 9 \mathrm{~V}<V_{o} \leq 12 \mathrm{~V} \\
& \text { 5. } V_{o}>12 \mathrm{~V}
\end{aligned}
$$

Summary

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

We have seen three (of many) methods for analyzing circuits.
Each one is based on a different set of variables:

- currents and voltages for each element
- node voltages
- loop currents

We can simplify analysis by recognizing common patterns:

- series and parallel combinations
- voltage and current dividers

