ECE 101 Exploring Electrical Eng.

- MATLAB
- Arithmetic Operators
- Elementary Math Functions
P.K. Wong and B. Pejcinovic

Arithmetic Operators (Scalar)

Operation	Operator	Key
addition	+	plus
subtraction	-	minus
\& negation		
multiplication	*	asterisk
right division	/	slash
power	^	caret
grouping	()	parentheses

Operator Precedence:

Operation	Association	Precedence
parentheses	highest	
raise to a power		
multiplication, division	Left to Right	
addition, subtraction	Left to Right	lowest

- Precedence \rightarrow specifies which operator is evaluated first when operators of different precedence are adjacent
- Association \rightarrow specifies which operator is evaluated first when operators of the same precedence are adjacent

Try these examples (using MATLAB as calculator):
a) $3+4 \rightarrow 7$
b) $-1+3 \rightarrow 2$
c) $17.52 * 3.14 \rightarrow 55.0128$
d) $3^{\wedge} 1.5 \rightarrow 5.1962$
e) $3^{\wedge}(3 / 2) \rightarrow 5.1962$
f) $3 \wedge 3 / 2 \rightarrow 13.5$
g) $2 *(4+6) \rightarrow 20$
h) $2 * 4+6 \rightarrow 14$
j) $2-2 * 2 \wedge 2 * 2-2 \rightarrow-16$

Elementary Math Functions

Function	Desaription	
$\operatorname{abs} \mathbf{(x)}$	Absolute value	$\|x\|$
$\exp \mathbf{(x)}$	Exponential	e^{x}
factorial (x)	Factorial function	$x!$
$\log \mathbf{(x)}$	Natural logarithm	$\log _{e}(x) \equiv \ln (x)$
$\operatorname{log10(x)}$	Base 10 logarithm	$\log _{10}(x)$
$\operatorname{sqrt} \mathbf{(x)}$	Square root	\sqrt{x}

Note: classic mistake is to exchange or confuse $\log (\mathrm{x})$ and $\log 10(\mathrm{x})$!

Function	Description (xin degrees)	Inverse Function
sind (x)	Sine of x	asind (x)
$\operatorname{cosd} \mathbf{(x)}$	Cosine of x	$\operatorname{acosd}(\mathbf{x})$
tand (x)	Tangent of x	atand (x) $\operatorname{secd}(\mathbf{x})$
Secant of x	asecd (x)	

MATLAB also supports radians versions of these trig functions, e.g. in $\operatorname{sind}(x) x$ is in degrees, but in $\sin (\mathrm{y}) \mathrm{y}$ is in radians.

Example:

$\begin{array}{ll}\sin (\mathrm{pi} / 2) \rightarrow 1 & \text { sind }(90) \rightarrow 1 \\ \operatorname{asin}(1) \rightarrow 1.5708 & \text { asind(1) } \rightarrow 90\end{array}$

Examples to try:
a) $\left.\frac{3^{2}+(-4)^{2}}{\ln (2)} \rightarrow 3^{\wedge} 2+(-4)^{\wedge} 2\right) / \log (2)$
b) $\frac{\cos \left(\frac{\pi}{3}\right)}{1-5^{1 / 3}} \rightarrow \cos (\mathrm{pi} / 3) /\left(1-5^{\wedge}(1 / 3)\right)$
c) $\sqrt{2} e^{-(0.2)^{2}} \quad \rightarrow \operatorname{sqrt}(2) * \exp \left(-0.2^{\wedge} 2\right)$
d) $\log (|-5.2|) \rightarrow \log 10(\mathrm{abs}(-5.2))$

