

ECE 101 Exploring Electrical Engineering

Circuits 2

- Resistor
- Series and parallel connection of resistors
- Voltage Dividers
- Voltage & Current Sources

Resistor

■ A *resistor* is a passive electronic component that obeys Ohm's Law. It has resistance *R*.

- \blacksquare SI Unit: ohm (Ω)
- **■** Symbol: —\//\/_

■ *I-V* relationship: v(t) = Ri(t)

$$\frac{i(t)}{R} \xrightarrow{V(t)} i(t) = \frac{1}{R} v(t)$$

Resistors Connected in Series (end-to-end)

If N resistors are connected in series, with the i-th resistor having a resistance R_i , then the equivalent resistance $R_{\rm eq}$ is:

$$R_1$$
 R_2 $R_{eq} = R_1 + R_2$ $R_{eq} = R_1 + R_2$

$$R_1 \qquad R_2 \qquad R_3 \qquad \qquad R_{eq} = R_1 + R_2 + R_3$$

$$- \vee \vee \vee - \vee \vee \vee - \vee - \vee - \vee - \vee - \vee \vee - \vee \vee - \vee \vee - \vee$$

$$R_{\rm eq} = \sum_{i=1}^{N} R_i$$

۲

Properties of Series Resistances (DC):

$$I_{\text{in}} \longrightarrow \begin{array}{cccc} R_1 & R_2 & R_3 \\ - \swarrow & \swarrow & - & \swarrow \\ & \longrightarrow & \longrightarrow & \longrightarrow \\ & I_1 & I_2 & I_3 \end{array} \longrightarrow I_{\text{out}}$$

- The amount of current $I_{\rm in}$ entering one end of a series circuit is equal to the amount of current $I_{\rm out}$ leaving the other end.
- The current is the same through each resistor in the series and is equal to $I_{\rm in}$.

$$I_{\rm in} = I_{\rm out} = I_1 = I_2 = I_3$$

The amount of voltage drop across each resistor in a series circuit is given by Ohm's Law.

$$I \longrightarrow \begin{array}{c} R_1 & R_2 & R_3 \\ \longrightarrow & \swarrow & \swarrow & \swarrow & \searrow & \longrightarrow I \\ V_1 & V_2 & V_3 & & & & & \\ V_1 = IR_1 & , & V_2 = IR_2 & , & V_3 = IR_3 \end{array}$$

- By convention, the resistor terminal that the current enters is labeled "+", and the terminal the current exits is labeled "-".
- KVL: total voltage drop = sum of individual drops (watch out for sign!)

Example:

- a) Calculate the current *I* that flows through the resistors.
- b) Find the voltage drop across the 6 Ω resistor.

Solution:

a) Approach – Use Ohm's law:
$$I = \frac{V_{AB}}{R_{eq}}$$

Calculate the equivalent resistance:
$$R_{eq} = (2+6+3)\Omega = 11\Omega$$

Calculate the current:
$$I = \frac{3 \text{ V}}{11 \Omega} \approx \frac{0.273 \text{ A}}{20.273 \text{ A}}$$

b) Use Ohm's law again:
$$V_6 = IR_6 = (0.273 \text{ A})(6 \Omega) \approx 1.64 \text{ V}$$

Example:

- 100 V Source, 5 and 20 ohm resistors in series; find R_s, I, P, V₁, V₂
- 100 V Source, 5 and 20 ohm resistors in parallel; find R_p, I, P, I₁, I₂

100

Resistors Connected in Parallel (side-by-side)

■ If N resistors are in parallel, with the i-th resistor having a resistance R_i , then the equivalent resistance is:

$$R_{\text{eq}} = \left(\sum_{i=1}^{N} \frac{1}{R_i}\right)^{-1} \longleftarrow$$

М

Properties of Parallel Resistances (DC):

- The amount of current I_{in} entering one end of a parallel circuit is equal to the amount of current I_{out} leaving the other end: $I_{in} = I_{out}$
- For parallel resistors, the voltage drop across each resistor is the same: $V_1 = V_2 = V_3$
- KCL: Σ (sum) of currents entering a node = Σ (sum) of currents leaving a node

Example:

- a) Find the current I_x through the 2 Ω resistor.
- b) What is the power dissipated by the 3 Ω resistor?

Assume 3 significant figures.

Solution:

a) Approach – Use Ohm's law: $V_{AB} = IR_{eq}$

Calculate the equivalent resistance: $R_{\text{eq}} = \left(\frac{1}{2} + \frac{1}{6} + \frac{1}{3}\right)^{-1} \Omega = 1 \Omega$

Calculate the voltage drop: $V_{AB} = (4 \text{ A})(1 \Omega) = 4 \text{ V}$

Find the current: $I_x = \frac{V_{AB}}{2 \Omega} = \underline{2.00 \text{ A}}$

b) Use power equation: $P = \frac{V_{AB}^2}{3 \Omega} \approx 5.33 \text{ W}$

7

Voltage Divider

$$V_1 = \frac{R_1}{R_1 + R_2} V_0$$

$$V_2 = \frac{R_2}{R_1 + R_2} V_0$$

Voltage Divider

M,

Example:

$$V_s = 8 \text{ V}$$
 $\stackrel{+}{\leftarrow}$
 $R_b = 3 \Omega$
 V_a

What is the voltage drop across R_a ?

$$V_a = \frac{R_a}{R_a + R_b} V_S$$

$$V_a = \frac{1\Omega}{1\Omega + 3\Omega} (8 \text{ V}) = 2 \text{ V}$$

What is the voltage drop across R_b ?

$$V_b = \frac{R_b}{R_a + R_b} V_S$$

$$V_a = \frac{3\Omega}{1\Omega + 3\Omega} (8 \text{ V}) = 6 \text{ V}$$

DC Voltage & Current Sources

An ideal DC voltage source outputs a constant voltage regardless of the amount of current through it.

An ideal DC current source outputs a constant current regardless of the amount of voltage across it.

Prefixes – common engineering style

■ 10⁻⁹ nano n

■ 10⁻⁶ micro m

■ 10⁻³ milli m

 \blacksquare 10³ kilo k

■ 10⁶ mega M

■ 10⁹ giga G

м

More circuit examples

Find currents i₁ and i₂

Find voltage v

Further questions:

- 1. Find the power in each resistor in the series and parallel examples.
- 2. Are household appliances connected in series or parallel? Why?