ECE 101 Exploring Electrical Engineering

- Circuits 2
- Resistor
- Series and parallel connection of resistors
- Voltage Dividers
- Voltage \& Current Sources

Resistor

- A resistor is a passive electronic component that obeys Ohm's Law. It has resistance R.
- SI Unit: ohm (Ω)
- Symbol: - W-
- I-V relationship: $\quad v(t)=\operatorname{Ri}(t)$

$$
i(t)=\frac{1}{R} v(t)
$$

Black	0	0	0	1Ω		
Brown	1	1	1	10Ω	$\pm 1 \%$	(F)
Red	2	2	2	1008	$\pm 2 \%$	(G)
Orange	3	3	3	$1 \mathrm{~K} \Omega$		
Yellow	4	4	4	$10 \mathrm{~K} \Omega$		
Green	5	5	5	$100 \mathrm{~K} \Omega$	$\pm 0.5 \%$	(D)
Blue	6	6	6	$1 \mathrm{M} \Omega$	$\pm 0.25 \%$	(C)
Violet	7	7	7	$10 \mathrm{M} \Omega$	$\pm 0.10 \%$	(B)
Grey	8	8	8		$\pm 0.05 \%$	
White	9	9	9			
Gold				0.1	$\pm 5 \%$	(J)
Silver				0.01	$\pm 10 \%$	(K)
\longrightarrow						

Resistors Connected in Series (end-to-end)

- If N resistors are connected in series, with the i-th resistor having a resistance R_{i}, then the equivalent resistance $R_{\text {eq }}$ is:

$$
\begin{gathered}
R_{\mathrm{eq}}=R_{1}+R_{2} \\
\longrightarrow \mathrm{~W}
\end{gathered}
$$

$$
\Rightarrow \overbrace{\text { eq }}=R_{1}+R_{2}+R_{3}
$$

$$
R_{\mathrm{eq}}=\sum_{i=1}^{N} R_{i}
$$

Properties of Series Resistances (DC):

- The amount of current $I_{\text {in }}$ entering one end of a series circuit is equal to the amount of current $I_{\text {out }}$ leaving the other end.
- The current is the same through each resistor in the series and is equal to $I_{\text {in }}$.

$$
I_{\mathrm{in}}=I_{\mathrm{out}}=I_{1}=I_{2}=I_{3}
$$

- The amount of voltage drop across each resistor in a series circuit is given by Ohm's Law.

$$
\begin{aligned}
& I \rightarrow \underbrace{R_{V}}_{+} \underbrace{R_{1}}_{V_{1}} \underbrace{R_{2}}_{V_{2}} \underbrace{R_{3}}_{V_{V_{3}}^{(2)}} \rightarrow I \\
& V_{1}=I R_{1}, V_{2}=I R_{2}, V_{3}=I R_{3}
\end{aligned}
$$

- By convention, the resistor terminal that the current enters is labeled " + ", and the terminal the current exits is labeled "-".
- KVL: total voltage drop = sum of individual drops (watch out for sign!)

Example:

a) Calculate the current I that flows through the resistors.
b) Find the voltage drop across the 6Ω resistor.

Solution:
a) Approach - Use Ohm's law: $\quad I=\frac{V_{A B}}{R_{e q}}$

Calculate the equivalent resistance: $R_{\mathrm{eq}}=(2+6+3) \Omega=11 \Omega$
Calculate the current: $I=\frac{3 \mathrm{~V}}{11 \Omega} \approx \underline{\underline{0.273 \mathrm{~A}}}$
b) Use Ohm's law again: $V_{6}=I R_{6}=(0.273 \mathrm{~A})(6 \Omega) \approx 1.64 \mathrm{~V}$

Example:

- 100 V Source, 5 and 20 ohm resistors in series; find $R_{s}, I, P, V_{1}, V_{2}$
- 100 V Source, 5 and 20 ohm resistors in parallel; find $R_{p}, I, P, I_{1}, I_{2}$

Resistors Connected in Parallel (side-by-side)

- If N resistors are in parallel, with the i-th resistor having a resistance R_{i}, then the equivalent resistance is:

$$
\begin{aligned}
& R_{\mathrm{eq}}=\left(\sum_{i=1}^{N} \frac{1}{R_{i}}\right)^{-1} \longmapsto \\
& R_{1} \sum_{R_{2}} R_{2} \Rightarrow R_{\mathrm{eq}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
& R_{1} R_{2} R_{3} \Rightarrow R_{\mathrm{eq}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}
\end{aligned}
$$

Properties of Parallel Resistances (DC):

- The amount of current $I_{\text {in }}$ entering one end of a parallel circuit is equal to the amount of current $I_{\text {out }}$ leaving the other end: $I_{\text {in }}=I_{\text {out }}$
- For parallel resistors, the voltage drop across each resistor is the same: $V_{1}=V_{2}=V_{3}$
- KCL: Σ (sum) of currents entering a node $=\Sigma$ (sum) of currents leaving a node

Example:

a) Find the current I_{x} through the 2Ω resistor.
b) What is the power dissipated by the 3Ω resistor?

Assume 3 significant figures.

Solution:

a) Approach - Use Ohm's law: $V_{A B}=I R_{e q}$

Calculate the equivalent resistance: $R_{\text {eq }}=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{3}\right)^{-1} \Omega=1 \Omega$
Calculate the voltage drop: $V_{A B}=(4 \mathrm{~A})(1 \Omega)=4 \mathrm{~V}$
Find the current: $I_{\mathrm{x}}=\frac{V_{A B}}{2 \Omega}=\underline{\underline{2.00 \mathrm{~A}}}$
b) Use power equation: $P=\frac{V_{A B}^{2}}{3 \Omega} \approx 5.33 \mathrm{~W}$

Voltage Divider

$$
\begin{aligned}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} V_{0} \\
& V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V_{0}
\end{aligned}
$$

Voltage Divider

Example:

What is the voltage drop across R_{a} ?
$V_{a}=\frac{R_{a}}{R_{a}+R_{b}} V_{S}$

$$
V_{a}=\frac{1 \Omega}{1 \Omega+3 \Omega}(8 \mathrm{~V})=2 \mathrm{~V}
$$

What is the voltage drop across R_{b} ?
$V_{b}=\frac{R_{b}}{R_{a}+R_{b}} V_{S} \quad V_{a}=\frac{3 \Omega}{1 \Omega+3 \Omega}(8 \mathrm{~V})=6 \mathrm{~V}$

DC Voltage \& Current Sources

- An ideal DC voltage source outputs a constant voltage regardless of the amount of current through it.

- An ideal DC current source outputs a constant current regardless of the amount of voltage across it.

Prefixes - common engineering style

- 10^{-9} nano n
- 10^{-6} micro m
- $10^{-3} \mathrm{milli}$
m
■ 10^{3} kilo k
- 10^{6} mega M
- 10^{9} giga G

More circuit examples

Find currents i_{1} and i_{2}

Find voltage v

Further questions:

1. Find the power in each resistor in the series and parallel examples.
2. Are household appliances connected in series or parallel? Why?
