ECE 101 Exploring Electrical Engineering

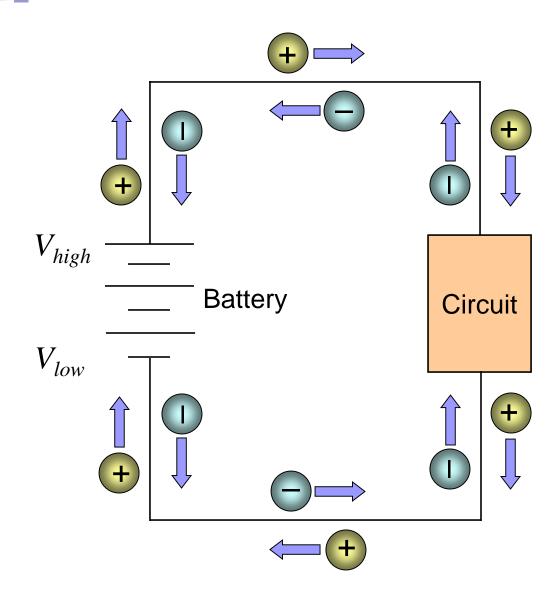
Circuits 1

- Electric Charge
- Voltage
- Current
- Resistance
- Power

Many of the slides are modified from course notes by P.K. Wong and M. Holtzman

Electric Charge

- Particles can be neutral or charged
- Particle's electric charge (q or Q) affects its motion in the presence of changes in electric potential (aka electric field)
- Charge can be positive or negative.
- SI unit for charge: coulomb $(1 C = 1 A \cdot s)$
- Charge of a single electron is $\approx 1.602 \times 10^{-19}$ C.


Voltage

- If there is a difference in electric potential between two spatial points, then a non-zero electric field will exist between them.
- This potential difference causes charged particles to move.
- The voltage V is the amount of work done in moving a charge.
- SI unit for voltage: volt (V) (1 V = 1 J/C)
- Voltage represents external energy supplied to circuit

Current

Electric current I is the rate at which charge flows through a cross-sectional area A.

- □ Charge carriers: electrons (–), ions & holes (+)
- \Box Direct current (DC) \rightarrow Carriers move in one direction only.
- □ Alternating current (AC) → Carrier direction varies periodically with time.
- In circuit analysis, conventional current is assumed, even if electrons are the primary charge carriers.
- SI unit for current: ampere (A) (1 A = 1 C/s)

Positive charge moving: From V_{high} to V_{low} \rightarrow Energy is dissipated

From V_{low} to V_{high} \rightarrow Battery supplies energy

Negative charge moving: From V_{low} to V_{high} \rightarrow Energy is dissipated

From V_{high} to V_{low} \rightarrow Battery supplies energy

Resistance

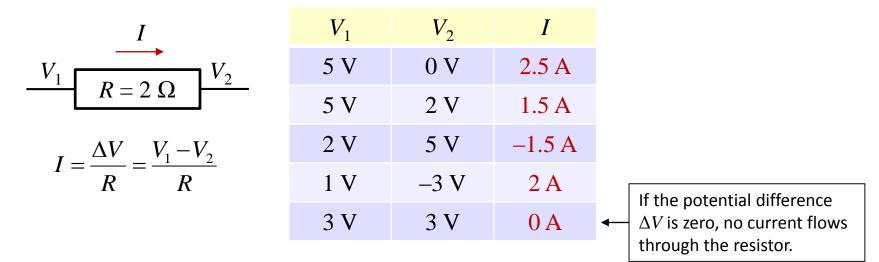
- The resistance R is a measure of the opposition to direct current through a material.
- Interactions of charge carriers with the structure of the material impedes the current.
- Classes of materials:
 - \Box Conductor (low R : e.g., ??)
 - \Box Insulator (high R : e.g., ??)
 - □ Semiconductor (intermediate *R*, e.g. ??)

SI unit for resistance: ohm (Ω)

Ohm's Law

 Current *I* through some materials is directly proportional to the potential difference ΔV between its ends.

 $I \propto \Delta V$


The resistance R is defined as:

$$R = \frac{\Delta V}{I}$$

The general form of Ohm's Law is:

$$\Delta V = IR$$
 $R = \frac{\Delta V}{I}$ $I = \frac{\Delta V}{R}$

Example:

Note:

It is understood that Ohm's Law refers to a potential difference. The Δ is usually omitted.

$$V = IR$$
 $R = \frac{V}{I}$ $I = \frac{V}{R}$

Application of Ohm's Law

- Given: Material of known resistance R
 Voltage V is applied across the material
 Result: Current I = V / R will flow through it.
- Given: Material of known resistance R
 Known current I flowing through it
 - Result: Voltage $V = I \cdot R$ exists across the material (known as a "voltage drop").
- Given: Known voltage V across the material Known current I through the material Result: Resistance of the material is R = V / I.

Power

Power is the rate at which energy is generated or dissipated by an electrical element.

$$P = VI = \frac{V^2}{R} = I^2 R$$

where

- V = Voltage (V or J/C)
- I = Current (A or C/s)
- $R = \text{Resistance} (\Omega)$

Important because:

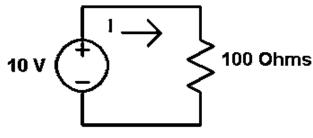
Measures output of a circuit (sound, light, heat, ...) Physical component can handle only a certain amount of power

SI unit for power: watt (W) (1 W = 1 J/s)

Example:

$$I = 0.25 \text{ A}$$

$$V_1 \qquad V_2$$


$$R = 4.0 \Omega$$

What is the voltage drop across the resistor? $V_{drop} = IR = (0.25 \text{ A})(4.0 \Omega) = 1.0 \text{ V}$

What is the power dissipated by the resistor?

 $P = I^2 R = (0.25 \text{ A})^2 (4.0 \Omega) = 0.25 \text{ W}$

Example:

Find I and P.

Questions:

- We have P=V²/R and I²R. If R is increased, does P increase or decrease?
- Which has higher resistance, a 60 W bulb or a 120 W bulb?
- Which has a thicker filament, a 60 W bulb or a 120 W bulb? Hint: Household power is supplied with a fixed voltage. The current varies depending on the "load", the resistance of whatever is connected to the source.