ECE 101 Exploring Electrical Engineering

- Circuits 1

- Electric Charge
- Voltage
- Current
- Resistance
- Power

Electric Charge

- Particles can be neutral or charged
- Particle's electric charge (q or Q) affects its motion in the presence of changes in electric potential (aka electric field)
- Charge can be positive or negative.
- SI unit for charge: coulomb ($1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}$)
- Charge of a single electron is $\approx 1.602 \times 10^{-19} \mathrm{C}$.

Voltage

- If there is a difference in electric potential between two spatial points, then a non-zero electric field will exist between them.
- This potential difference causes charged particles to move.
- The voltage V is the amount of work done in moving a charge.
- SI unit for voltage: volt (V) ($1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$)
- Voltage represents external energy supplied to circuit

Current

- Electric current I is the rate at which charge flows through a cross-sectional area A.

$$
\text { Average: } I_{\text {ave }}=\frac{\Delta q}{\Delta t} \quad \text { Instantaneous: } I=\frac{d q}{d t}
$$

\square Charge carriers: electrons (-), ions \& holes (+)
\square Direct current (DC) \rightarrow Carriers move in one direction only.
\square Alternating current (AC) \rightarrow Carrier direction varies periodically with time.
\square In circuit analysis, conventional current is assumed, even if electrons are the primary charge carriers.

- SI unit for current: ampere (A) ($1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$)

Positive charge moving:
From $V_{\text {high }}$ to $V_{\text {low }}$
\rightarrow Energy is dissipated

From $V_{\text {low }}$ to $V_{\text {high }}$
\rightarrow Battery supplies energy

Negative charge moving:
From $V_{\text {low }}$ to $V_{\text {high }}$
\rightarrow Energy is dissipated

From $V_{\text {high }}$ to $V_{\text {low }}$
\rightarrow Battery supplies energy

Resistance

- The resistance R is a measure of the opposition to direct current through a material.
- Interactions of charge carriers with the structure of the material impedes the current.
- Classes of materials:
\square Conductor (low R : e.g., ??)
\square Insulator (high R : e.g., ??)
\square Semiconductor (intermediate R, e.g. ??)
- SI unit for resistance: ohm (Ω)

Ohm's Law

- Current I through some materials is directly proportional to the potential difference ΔV between its ends.
$I \propto \Delta V$
- The resistance R is defined as: $\quad R=\frac{\Delta V}{I}$
- The general form of Ohm's Law is:
$\Delta V=I R$

$$
R=\frac{\Delta V}{I}
$$

$$
I=\frac{\Delta V}{R}
$$

Example:

$$
\begin{gathered}
\stackrel{I}{V_{1}} \stackrel{\xrightarrow{I}=2 \Omega}{V_{2}} \\
I=\frac{\Delta V}{R}=\frac{V_{1}-V_{2}}{R}
\end{gathered}
$$

V_{1}	V_{2}	I	
5 V	0 V	2.5 A	
5 V	2 V	1.5 A	
2 V	5 V	-1.5 A	
1 V	-3 V	2 A	If the potential difference ΔV is zero, no current flows through the resistor.
3 V	3 V	0 A	

Note:

It is understood that Ohm's Law refers to a potential difference. The Δ is usually omitted.

$$
V=I R \quad R=\frac{V}{I} \quad I=\frac{V}{R}
$$

Application of Ohm's Law
■ Given: Material of known resistance R
Voltage V is applied across the material
Result: Current $I=V / R$ will flow through it.
■ Given: Material of known resistance R Known current I flowing through it Result: Voltage $V=I \cdot R$ exists across the material (known as a "voltage drop").

- Given: Known voltage V across the material Known current I through the material Result: Resistance of the material is $R=V / I$.

Power

- Power is the rate at which energy is generated or dissipated by an electrical element.

$$
P=V I=\frac{V^{2}}{R}=I^{2} R
$$

where

$$
\begin{aligned}
& V=\text { Voltage (V or J/C) } \\
& I=\text { Current (A or } \mathrm{C} / \mathrm{s} \text {) } \\
& R=\text { Resistance }(\Omega)
\end{aligned}
$$

Important because:
Measures output of a circuit (sound, light, heat, ...) Physical component can handle only a certain amount of power

- SI unit for power: watt (W) (1 W = $1 \mathrm{~J} / \mathrm{s}$)

Example:

$\stackrel{y=0.25 \mathrm{~A}}{\longrightarrow}$
$V_{1} \xrightarrow{V_{2}}$
What is the voltage drop across the resistor?
$V_{\text {drop }}=I R=(0.25 \mathrm{~A})(4.0 \Omega)=1.0 \mathrm{~V}$

What is the power dissipated by the resistor?
$P=I^{2} R=(0.25 \mathrm{~A})^{2}(4.0 \Omega)=0.25 \mathrm{~W}$

Example:

- Find I and P.

Questions:

- We have $P=V^{2} / R$ and $I^{2} R$. If R is increased, does P increase or decrease?
- Which has higher resistance, a 60 W bulb or a 120 W bulb?
- Which has a thicker filament, a 60 W bulb or a 120 W bulb? Hint: Household power is supplied with a fixed voltage. The current varies depending on the "load", the resistance of whatever is connected to the source.

