ECE311: Feedback and Control (Fall 2015)

Instructor:	R. Tymerski, FAB 160-18.
	Office Hours: see web site www.pdx.edu/ece/faculty-office-hours
	Web site: www.ece.pdx.edu/~tymerski

TA: TBD

Course Learning Objectives:

- 1) To apply classical control principles to the design of continuous time control systems, and
- 2) To obtain proficiency with software (Matlab/Simulink) that aids in the design process.

Text book:

Design of Feedback Control Systems, R. Stefani, B. Shahian, C. Savant, and G. Hostetter, 4th Edition, Oxford University Press, 2002.

Useful reference:

Applied Classical and Modern Control System Design, by R. Tymerski et al. Provided on course web site.

Homework:		7%
In class problems/attendance		3%
Mid-term exam:	Week 6, 2nd class (11/4)	25%
Final exam:	Week 10, 2nd class (12/2)	35%
Matlab/Simulink Project and presentation:	Finals week	30%

The project will be in three parts worth 5%, 10% and 15% delivered at different dates. The format for the exams is multiple choice questions. You will need to bring a Scantron form (Form no. 882-E) with you as well as a calculator, and No. 2 pencil and eraser. No make-up exams will be given.

Content: This course introduces classical control theory for the feedback design of continuous time SISO systems. The material covered is in Chapters 1 to 7 of the text. Not all material in these chapters will be covered.

Notes:

- 1) A set of notes is available at the course website: www.ece.pdx.edu/~tymerski
- 2) Recommended exercise problems will be given which students are expected to do, *as a minimum*. The solutions to all problems in the form of the solutions' manual for the text is available at the ECE311 section of the instructor's web site.

Syllabus:

Topics	Topics covered
	Block Diagrams
1	- Transfer Function Representation as a Block Diagram
	- Block Diagram Analysis
	Signal Flow Graphs
2	- Mason's Gain Rule
	System Response
	- Response of First-Order Systems
3	- Response of Second-Order Systems
5	Undamped Natural Frequency and Damping Ratio
	Overshoot, rise time and settling time
	Stability Analysis
	- Coefficient Tests for Stability
	First and Second Order Systems
4	Higher Order Systems
4	- Routh-Hurwitz Test for Stability
	Possible Problems when forming Routh Array
	Left-Column Zeroes of the Routh Array
	Flemature Termination of the Routh Array
	Applications of Routh-Hurwitz Test
	- Parameter Shifting
	Adjustable Systems
5	Relative Stability
	- Kharitonov's Theorem
	Tracking Systems
	- Input signal characterization: step, ramp and parabolic
	- Steady State Error Analysis
	T_{F} Approach
-	Unity-Gain Feedback Approach
6	Steady State Error Coefficients
	- Optimizing Control Systems
	Performance integral indices
	- Control System Sensitivity
<u> </u>	Three-Term (PID) Controllers
7	- Ziegler - Nichols
	- Chien - Hrones – Reswick

8	 <u>Root Locus for Feedback Systems</u> Pole Zero Plots Root Locus Plot Construction Rules for Negative Feedback Systems Root Locus Using Matlab
9	 <u>Frequency Response</u> Steady State System Analysis for Sinusoidal Input Magnitude and Phase Response – Bode Plots Closed Loop Stability Using Bode Plots Phase and Gain Margins Straight Line Asymptote Bode Plot Construction Matlab Functions: Bode, unwrap
10	 <u>Design of Controllers Using Bode Plots</u> Simple Feedback System Design and Simulation Using Matlab/Simulink Practical Example Feedback System Overview - DC to DC Switching Power Converter Various Controller Designs for Above System