ECE311

Homework 3 - Solutions

Problem 1:

Determine the region of values for the parameter k so that the systems with the following characteristic equations are stable.

For each case, compute the critical frequency of oscillation ω_{c} :
a. $s^{4}+7 s^{3}+15 s^{2}+(25+k) s+2 k=0$
b. $s^{3}+3 k s^{2}+(k+2) s+4=0$

Solution

a. The characteristic equation is

$$
\begin{equation*}
s^{4}+7 s^{3}+15 s^{2}+(25+k) s+2 k=0 \tag{P5.2.1}
\end{equation*}
$$

Routh's tabulation is

s^{4}	15	$2 k$
s^{3}		
s^{2}	$25+k$	
s^{1}	$\frac{8}{7}$	$2 k$
s^{0}	$\frac{80-k)(25+k)-98 k}{70-k}$	
$2 k$		

For the system to be stable, it must hold that

1. $\frac{80-k}{7}>0 \Rightarrow k<80$
2. $\frac{(80-k)(25+k)-98 k}{80-k}>0 \Rightarrow-71.1<k<28.1$
3. $2 k>0 \Rightarrow k>0$

By combining inequalities (P5.2.2), (P5.2.3), and (P5.2.4), we get

$$
\begin{equation*}
0<k<28.1 \tag{P5.2.5}
\end{equation*}
$$

For $k=28.1=k_{c}$, the characteristic equation has a couple of imaginary roots, while for $k=0$ there is no response $(y(t)=0)$. The angular frequency of oscillation if $k=28.1=k_{c}$ is

$$
\begin{equation*}
\frac{80-k_{c}}{7} s^{2}+2 k_{c}=0 \Rightarrow s^{2}=-7.58 \Rightarrow s= \pm j 2.75 \Rightarrow \omega_{c}=2.75 \mathrm{rad} / \mathrm{s} \tag{P5.2.6}
\end{equation*}
$$

b. The characteristic equation is

$$
\begin{equation*}
s^{3}+3 k s^{2}+(k+2) s+4=0 \tag{P5.2.12}
\end{equation*}
$$

Routh's tabulation is

$$
\begin{array}{c|cc}
s^{3} & 1 & k+2 \\
s^{2} & 3 k & 4 \\
s^{1} & \frac{3 k^{2}+6 k-4}{3 k} & \\
s^{0} & 4 &
\end{array}
$$

The conditions for the stability of the system are

1. $3 k>0 \Rightarrow k>0$
2. $\frac{3 k^{2}+6 k-4}{3 k}>0 \Rightarrow 3 k^{2}+6 k-4>0 \Rightarrow\left\{\begin{array}{l}k<-2.528 \\ \text { or } \\ k>0.528\end{array}\right.$
(P5.2.13),(P5.2.14) $\Rightarrow k>0.528$
From the auxiliary equation of row s^{2}, we get

$$
\begin{equation*}
3 k_{c} s^{2}+4=0 \Rightarrow s^{2}=-2.525 \Rightarrow s= \pm j 1.59 \Rightarrow \omega_{c}=1.59 \mathrm{rad} / \mathrm{s} \tag{P5.2.16}
\end{equation*}
$$

Problem 2:

Signal Flow Graph:

The two forward path gains are $P_{1}=G_{1} G_{2} G_{3}$ and $P_{2}=G_{1} G_{4}$. The five feedback loop gains are $P_{11}=G_{1} G_{2} H_{1}, P_{21}=G_{2} G_{3} H_{2}, P_{31}=-G_{1} G_{2} G_{3}, P_{41}=G_{4} H_{2}$, and $P_{51}=-G_{1} G_{4}$. Hence

$$
\Delta=1-\left(P_{11}+P_{21}+P_{31}+P_{41}+P_{51}\right)=1+G_{1} G_{2} G_{3}-G_{1} G_{2} H_{1}-G_{2} G_{3} H_{2}-G_{4} H_{2}+G_{1} G_{4}
$$

and $\Delta_{1}=\Delta_{2}=1$. Finally,

$$
\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3}+G_{1} G_{4}}{1+G_{1} G_{2} G_{3}-G_{1} G_{2} H_{1}-G_{2} G_{3} H_{2}-G_{4} H_{2}+G_{1} G_{4}}
$$

