ECE311

Homework 2 - SOLUTIONS

Problems

- Determine the stability of the systems with the following characteristic equations: a. $s^5 + 3s^4 + 7s^3 + 20s^2 + 6s + 15 = 0$
 - b. $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$
 - c. $s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 = 0$
 - d. $s^5 + 2s^4 + 24s^3 + 48s^2 25s 50 = 0$

Solution

a. The characteristic equation is

$$s^{5} + 3s^{4} + 7s^{3} + 20s^{2} + 6s + 15 = 0$$
 (P5.1.1)

Routh's tabulation is

s^5	1	7	6
s^4	3	20	15
s^3	3 1/3 11	1	
s^2	11	15	
s^1	6/11		
s^0	6/11 15		

There is no change of sign in the first column of Routh's tabulation. Hence, the system is stable.

b. The characteristic equation is

$$2s^4 + s^3 + 3s^2 + 5s + 10 = 0 (P5.1.2)$$

Routh's tabulation is written as

There are two sign changes in the first column of Routh's tabulation $(1 \rightarrow -7 \rightarrow 6.43)$; hence, the characteristic equation has two roots in the right-half *s*-plane, and the system is unstable.

c. The characteristic equation is

$$s^{5} + 2s^{4} + 2s^{3} + 4s^{2} + 11s + 10 = 0$$
(P5.1.3)

Routh's tabulation is written as

The first term in row s^3 was zero and it is replaced by a very small number ε (where, $\varepsilon > 0$ and $\lim \varepsilon \to 0$).

We have $4\varepsilon - 12/\varepsilon < 0$ and $6 + (10/12)\varepsilon^2 > 0$.

Hence, the system is unstable, and the characteristic equation has two roots in the right-half *s*-plane.

d. The characteristic equation is

$$s^{5} + 2s^{4} + 24s^{3} + 48s^{2} - 25s - 50 = 0$$
 (P5.1.4)

The system is unstable, because the polynomial $s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50$ has two coefficients of different sign. By applying Routh's criterion we obtain the same conclusion.

Routh's tabulation is

$$s^{5}$$
 1 24 -25
 s^{4} 2 48 -50
 s^{3} 8 96
 s^{2} 24 -50
 s^{1} 112.7
 s^{0} -50

All coefficients of row s^3 were zero, thus, they have been replaced by the terms of the differentiated auxiliary equation of row s^4 .

We have

$$2s^4 + 48s^2 - 50 = 0 \Longrightarrow \frac{d}{dt}(2s^4 + 48s^2 - 50) = 0 \Longrightarrow 8s^3 + 96s = 0$$
(P5.1.5)

At the first column of Routh's tabulation, there is a change of sign; therefore, the characteristic equation has one root in the right-half *s*-plane. It can be computed by solving the auxiliary equation $2s^4 + 48s^2 - 50 = 0$.

We have $s_{1,2}^2 = 1$ and $s_{3,4}^2 = -25$. Thus,

$$\Rightarrow s_{1,2} = \pm 1$$
 and $s_{3,4} = \pm j5$ (P5.1.6)

Hence, the initial equation of relationship (P5.1.4) is written as

$$(s+1)(s-1)(s+j5)(s-j5)(s+2) = 0$$

Notice that the root s = 1 is at the right-half *s*-plane.