ECE311

Homework 2 - SOLUTIONS

Problems

Determine the stability of the systems with the following characteristic equations:
a. $s^{5}+3 s^{4}+7 s^{3}+20 s^{2}+6 s+15=0$
b. $2 s^{4}+s^{3}+3 s^{2}+5 s+10=0$
c. $s^{5}+2 s^{4}+2 s^{3}+4 s^{2}+11 s+10=0$
d. $s^{5}+2 s^{4}+24 s^{3}+48 s^{2}-25 s-50=0$

Solution

a. The characteristic equation is

$$
\begin{equation*}
s^{5}+3 s^{4}+7 s^{3}+20 s^{2}+6 s+15=0 \tag{P5.1.1}
\end{equation*}
$$

Routh's tabulation is

s^{5}	1	7	6
s^{4}	3	20	15
s^{3}	$1 / 3$	1	
s^{2}	11	15	
s^{1}	$6 / 11$		
s^{0}	15		

There is no change of sign in they first column of Routh's tabulation. Hence, the system is stable.
b. The characteristic equation is

$$
\begin{equation*}
2 s^{4}+s^{3}+3 s^{2}+5 s+10=0 \tag{P5.1.2}
\end{equation*}
$$

Routh's tabulation is written as

s^{4}	2	3	10
s^{3}	1	5	
s^{2}	-7	10	
s^{1}	6.43		
s^{0}	10		

There are two sign changes in the first column of Routh's tabulation $(1 \rightarrow-7 \rightarrow 6.43)$; hence, the characteristic equation has two roots in the right-half s-plane, and the system is unstable.
c. The characteristic equation is

$$
\begin{equation*}
s^{5}+2 s^{4}+2 s^{3}+4 s^{2}+11 s+10=0 \tag{P5.1.3}
\end{equation*}
$$

Routh's tabulation is written as

s^{5}	1	2	11
s^{4}	2	4	10
s^{3}	ε	6	
s^{2}	$\frac{4 \varepsilon-12}{\varepsilon}$	10	
s^{1}	$6+\frac{10}{12} \varepsilon^{2}$		
s^{0}	10		

The first term in row s^{3} was zero and it is replaced by a very small number ε (where, $\varepsilon>0$ and $\lim \varepsilon \rightarrow 0$).
We have $4 \varepsilon-12 / \varepsilon<0$ and $6+(10 / 12) \varepsilon^{2}>0$.
Hence, the system is unstable, and the characteristic equation has two roots in the right-half s-plane.
d. The characteristic equation is

$$
\begin{equation*}
s^{5}+2 s^{4}+24 s^{3}+48 s^{2}-25 s-50=0 \tag{P5.1.4}
\end{equation*}
$$

The system is unstable, because the polynomial $s^{5}+2 s^{4}+24 s^{3}+48 s^{2}-25 s-50$ has two coefficients of different sign. By applying Routh's criterion we obtain the same conclusion.

Routh's tabulation is

s^{5}	1	24	-25
s^{4}	2	48	-50
s^{3}	8	96	
s^{2}	24	-50	
s^{1}	112.7		
s^{0}	-50		

All coefficients of row s^{3} were zero, thus, they have been replaced by the terms of the differentiated auxiliary equation of row s^{4}.
We have

$$
\begin{equation*}
2 s^{4}+48 s^{2}-50=0 \Rightarrow \frac{d}{d t}\left(2 s^{4}+48 s^{2}-50\right)=0 \Rightarrow 8 s^{3}+96 s=0 \tag{P5.1.5}
\end{equation*}
$$

At the first column of Routh's tabulation, there is a change of sign; therefore, the characteristic equation has one root in the right-half s-plane. It can be computed by solving the auxiliary equation $2 s^{4}+48 s^{2}-50=0$.

We have $s_{1,2}^{2}=1$ and $s_{3,4}^{2}=-25$. Thus,

$$
\begin{equation*}
\Rightarrow s_{1,2}= \pm 1 \text { and } s_{3,4}= \pm j 5 \tag{P5.1.6}
\end{equation*}
$$

Hence, the initial equation of relationship (P5.1.4) is written as

$$
(s+1)(s-1)(s+j 5)(s-j 5)(s+2)=0
$$

Notice that the root $s=1$ is at the right-half s-plane.

