State Assignment using Rules

Jacob Boles

Ece 572
Fall 99

Introduction

- In this presentation I will show an example of state assignment by heuristic rules and compare it to the assignment down by partition pairs.
- So that my example is more relevant and unique, I will use the simplified state machine from my project.

CS	NS	
	$X=0$	$X=1$
A	A	B
B	C	F
C	A	D
D	D	E
E	A	A
F	F	C

State Assignment by Rules

- Rule 1
- States with most incoming branches should be assignment least number of 1 's in code.
- This implies that state A which has the most incoming branches by far should be zero. All the other states have about the same number of incoming branches so we take no precedence

$$
\mathrm{A}<=000
$$

State Assignment by Rules

- Rule 2
- State with common next state on the same input condition should be assigned adjacent codes.
- In my example this only occurs for $\mathrm{E} \& \mathrm{C} \& \mathrm{~A}$

E \& C \& A should be adjacent to each other

State Assignment by Rules

- Rule 3
- Next state of same state should be adjacent codes according to adjacency of branch conditions.
- This is a little harder to see but implies ...

Impossible to
do all these with 3 bits!

A adj. B
A adj. D
D adj. E
F adj. C

State Assignment by Rules

- Rule 4
- States that form a chain on same branch should be adjacent codes.

Two chains:
Chain A->B->F->C->D->E Chain B->C->A

State Assignment by Rules

- Our assignment ...

State Assignment by Rules

In this example partition pair method does not give a good solution.

Comparison of results

Rules and heuristics

- Easy to do

Advantages

Disadvantages

- Rules may not always hold true
- Inefficient for large variable problems.

Partitioning

- Will always find best solution if given time
- Better than trying every possibility
- More complex
- Can be slow if problem is large or bad partition

