State Assignment Using Partition Pairs

Discuss hypercube method, add slides later on

State Assignment Using Partition Pairs

- This method allows for finding high quality solutions but is slow and complicated
- Only computer approach is practical
- Definition of Partition.
 - \square Set of blocks B_i is a partition of set S if the union of all these blocks forms set S and any two of them are disjoint
 - \Box B1 u B2 u B3 ... = S
 - \square B1 \land B2={}, B2 \land B3 ... = {}, etc
 - \square Example 1: {12,45,36}, {{1,2},{4,5},{3,6}}
 - □ Example 2: {123,345} not a partition but a **set cover**

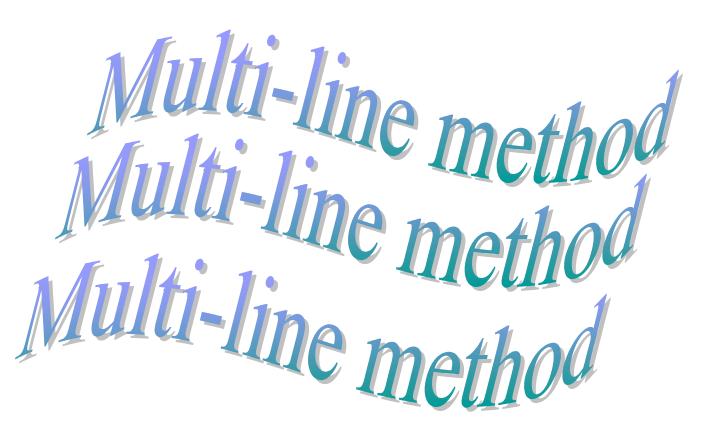
State Assignment Using Partition Pairs

- Definition of X-successor of state S_a
 - The state to which the machine goes from state S_a using input X
- **◆Definition of Partition Pair**
 - P1=> P2 is a partition pair if for every two elements S_a and S_b from any block in P1 and every input symbol X_i the X_i successors of states S_a and S_b are in the same block of P2

State Assignment Using Partition Pairs

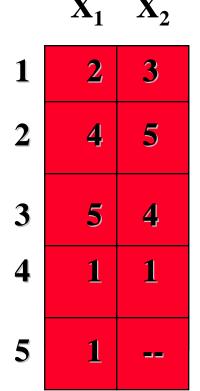
Methods of calculation of Partition Pairs

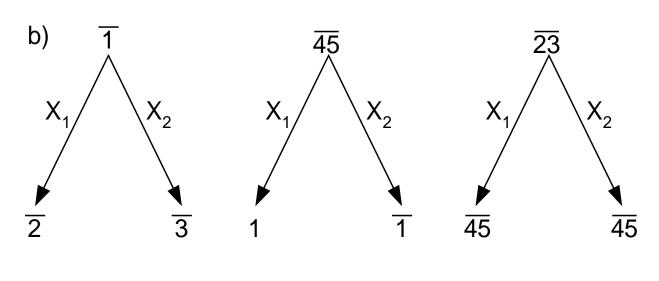
- Partition pair P1 => P2 calculated with known partition P1
- Partition Pair P1 => P2 calculated with known partition P2



Calculation of successor partition from the predecessor partition in the partition pair

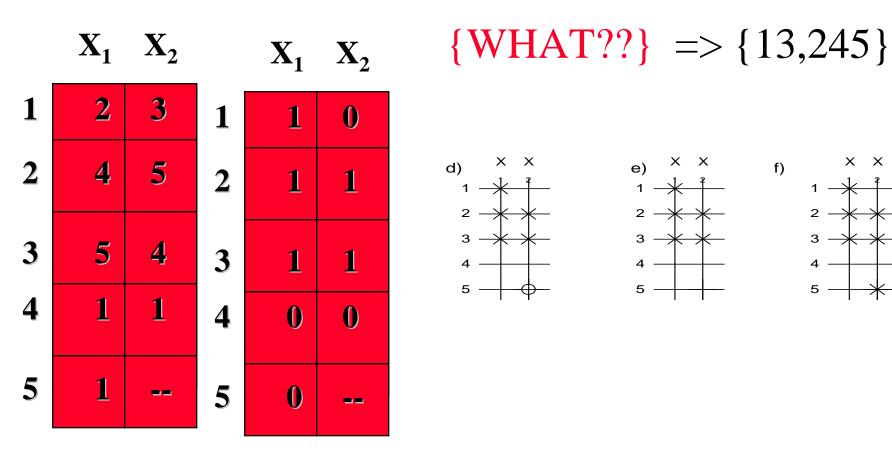
 $\{1,23,45\} \Rightarrow ???$





$$\{1,23,45\} = > \{1,2,3,45\}$$

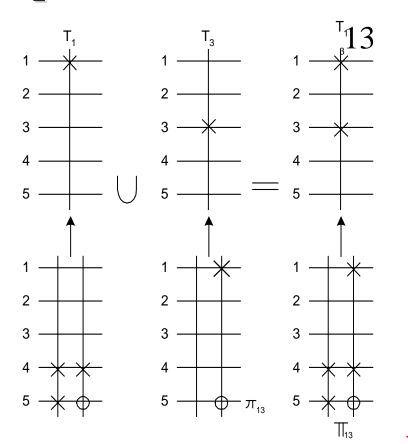
Calculation of successor partition from the successor partition in the partition pair



 $\{1,23,45\} \Longrightarrow \{13,245\}$

(1, 23, 45)

Operations on Partitions represented as Multi-lines



$$\{\{1\}, \{2,3,4,5\}\}\$$
 u $\{\{3\}, \{1,2,4,5\}\} = \{\{1,3\}, \{2,4,5\}\}$

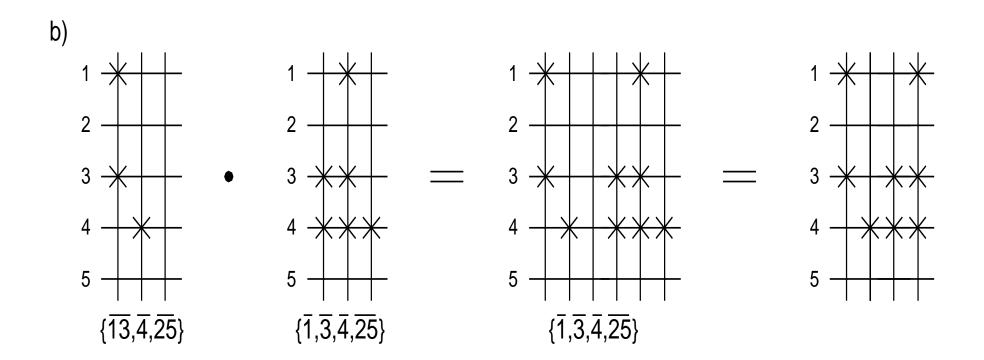
$$\{1, 2345\}$$
 u $\{3,1245\} = \{13,245\}$

Union of images of predecessors

THIS IS **NOT** A SUM OF PARTITIONS OPERATION

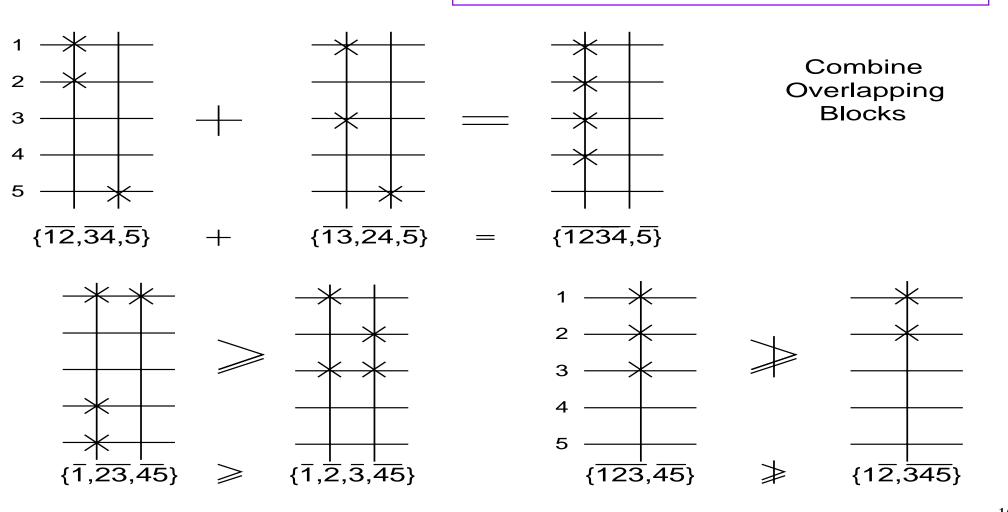
Operations on Partitions represented as Multi-lines

Intersection (called also a product) of partitions

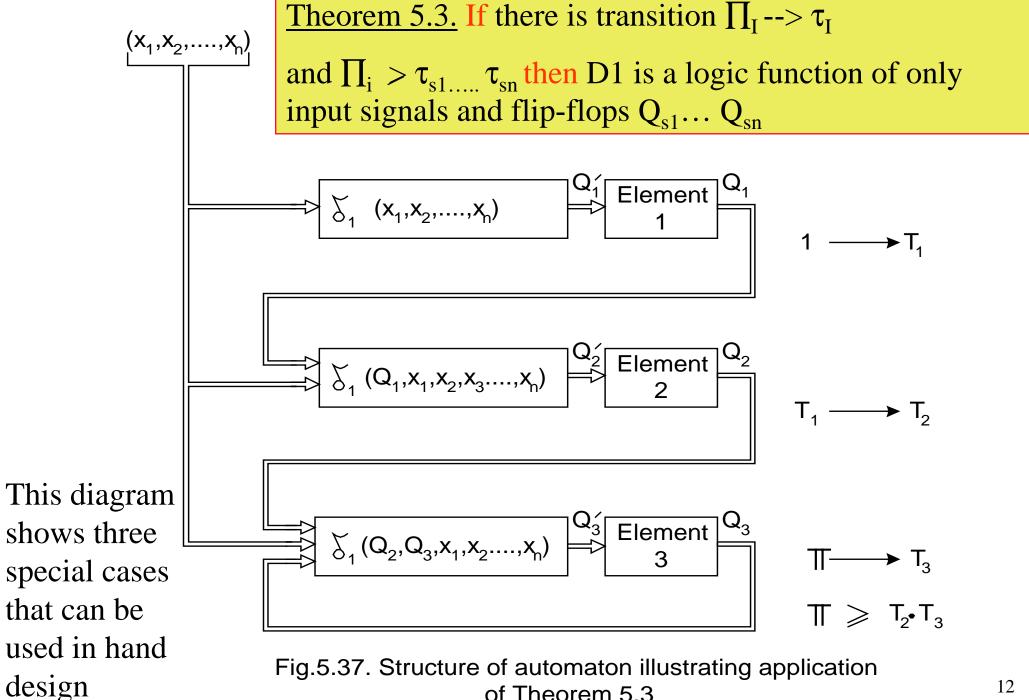


Operations on Partitions represented as Multi-lines

This is **SUM** of partitions. Every two states that are in one block in any of the arguments must be in one block of the result.



- •These methods are used to find a good state assignment.
- •This means, the assignment that minimizes the <u>total</u> <u>number of variables</u> as arguments of excitation (and output) functions.
- •There is a **correspondence** between the structure of the set of all partition pairs for all two-block (proper) partitions of a machine and the realization (decomposition) <u>structure</u> of this machine
- •Simple pairs lead to simple **<u>submachines</u>**

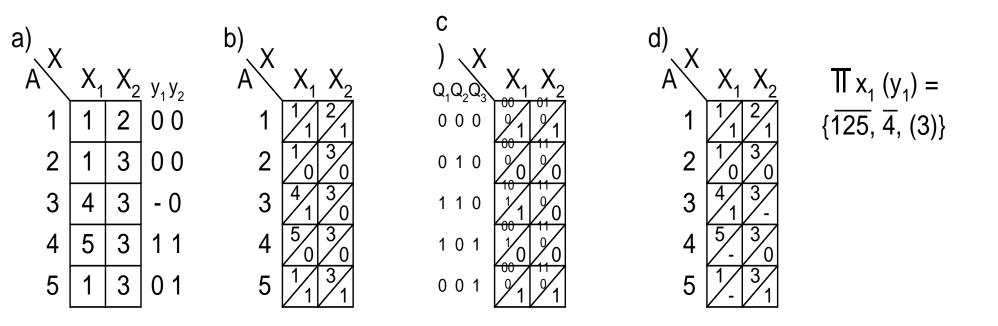


of Theorem 5.3

12

Let us assume D type Flip - Flops

What are good partitions for outputs of the machine?



For machine M2 partitions (1235,4) = T_4 and (125, 34)= T_{34} are good for y_1

Machine M2

For machine M2 partition (123,45)= T_{45} is good for y_2

Calculation of all partition pairs for

of

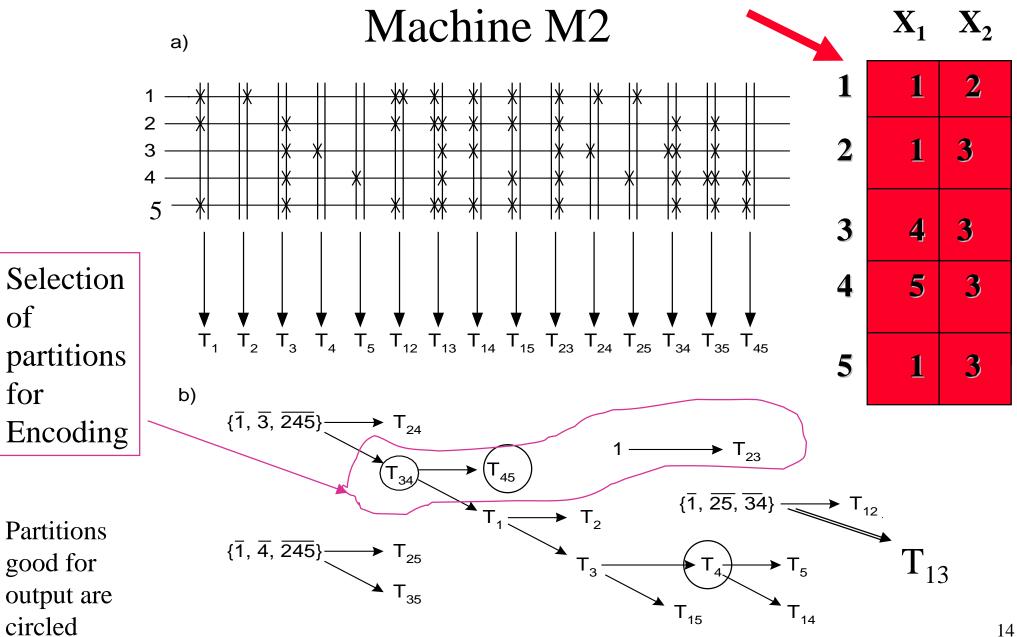
for

Partitions

good for

circled

output are



Selected Partitions

- \bullet T₂₃ is always good since it has a predecessor of 1
- Out of many pairs of proper partitions from the graph we select partitions T_{34} and T_{45} because they are both good for outputs
- So now we know from the main theorem that the (logic) excitation function of the Flip-flop encoded with partition T_{23} will depend only on input signals and not on outputs of other flip-flops
- We know also from the main theorem that the excitation function of flip-flop encoded with T_{45} will depend only on input signals and flip-flop encoded with partition T_{34}
- The question remains how good is partition T_{34} . It is good for output but how complex is its excitation function? This function depends either on two or three flip-flops. Not one flip-flop, because it would be seen in the graph. Definitely it depends on at most three, because the product of partitions T_{23} T_{34} T_{45} is a zero partition
- In class we have done calculations following main theorem to evaluate complexity and the result was that it depends on three.
- Please be ready to understand these evaluation calculations and be able to use them for new examples.

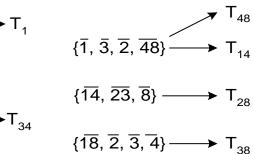
Calculation of Machine M3 C) partition pair T_{13} T_{14} T_{18} T_{23} T_{24} T_{28} T_{34} T_{38} T_{48} graph from multi-line for 3 8 machine 8 3 T₈ is a good output 2 partition Select T₁₈, T₂₄ $T_8 T_{24} T_{13} T_{23}$ $T_{13} T_{24}$

Explain why this is a not good choice - because 2,4 not separated

and T₈

e)

Evaluate complexities of all excitation functions. Next calculate the functions from Kmaps and compare. Give final explanation.



 $\{\overline{14}, \overline{23}, \overline{8}\}$

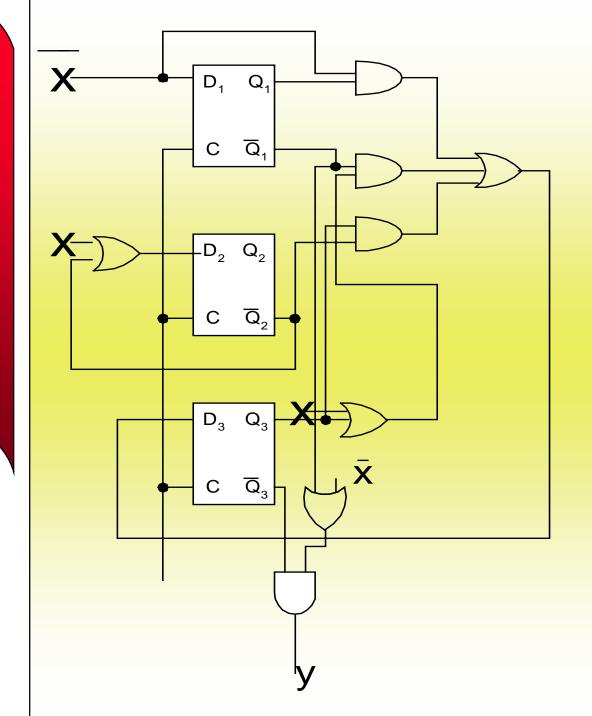
Complete this example to the end as an exercise 16

GRAPH OF PARTITION

PAIRS

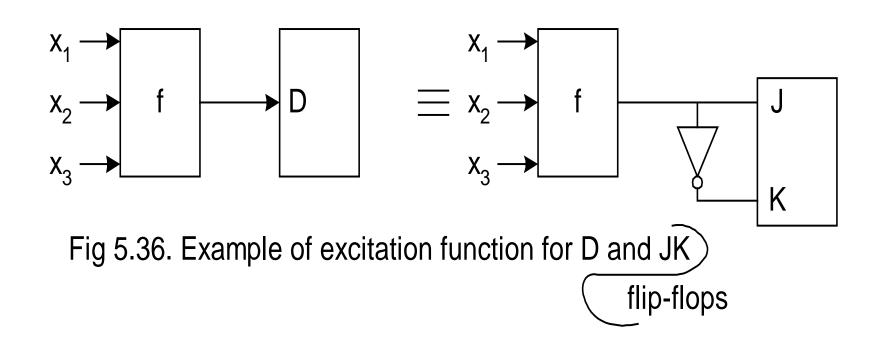
Problem for homework. What can you tell about the partitions from this schematic of a machine?

What can you tell about the partition pairs?



JK flip-flops are very important since they include D and T as special cases - you have to know how to prove it

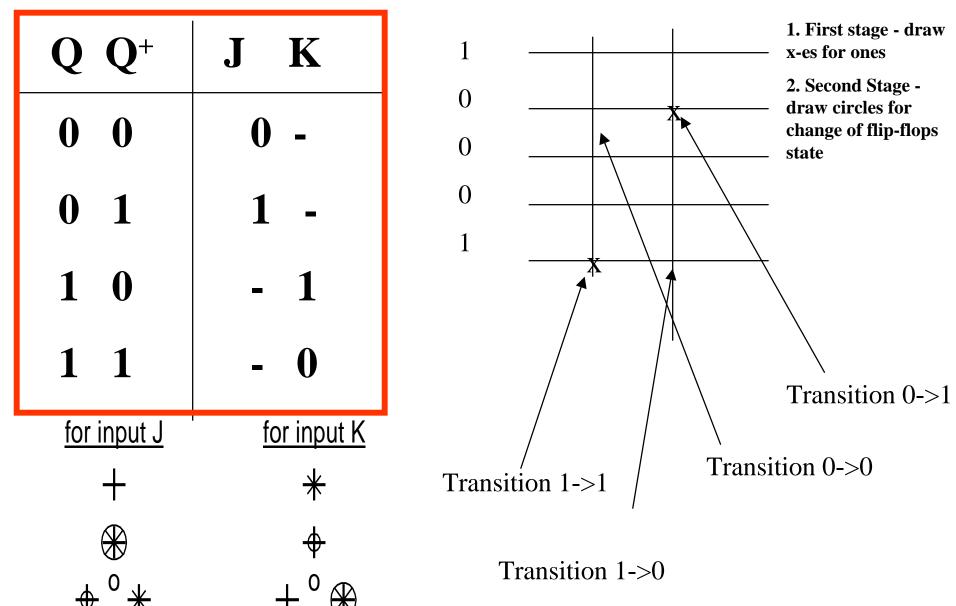
Relation between excitation functions for D and JK flip-flops

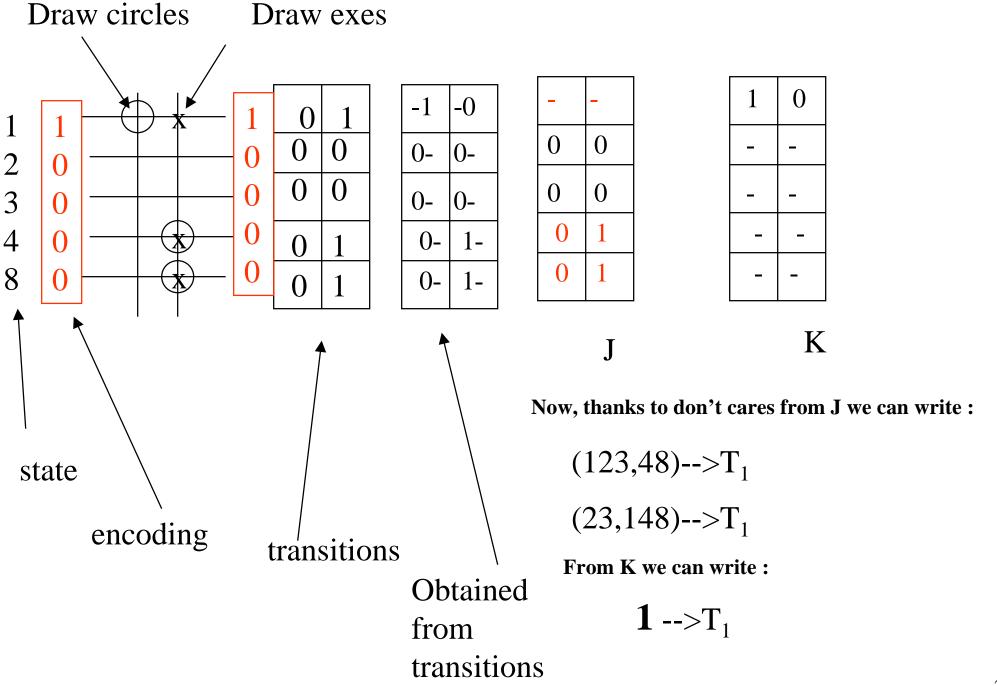


QUESTION: How to do state assignment for JK flip-flops?

Fig.5.36

Let us first recall excitation tables for JK Flip-flops



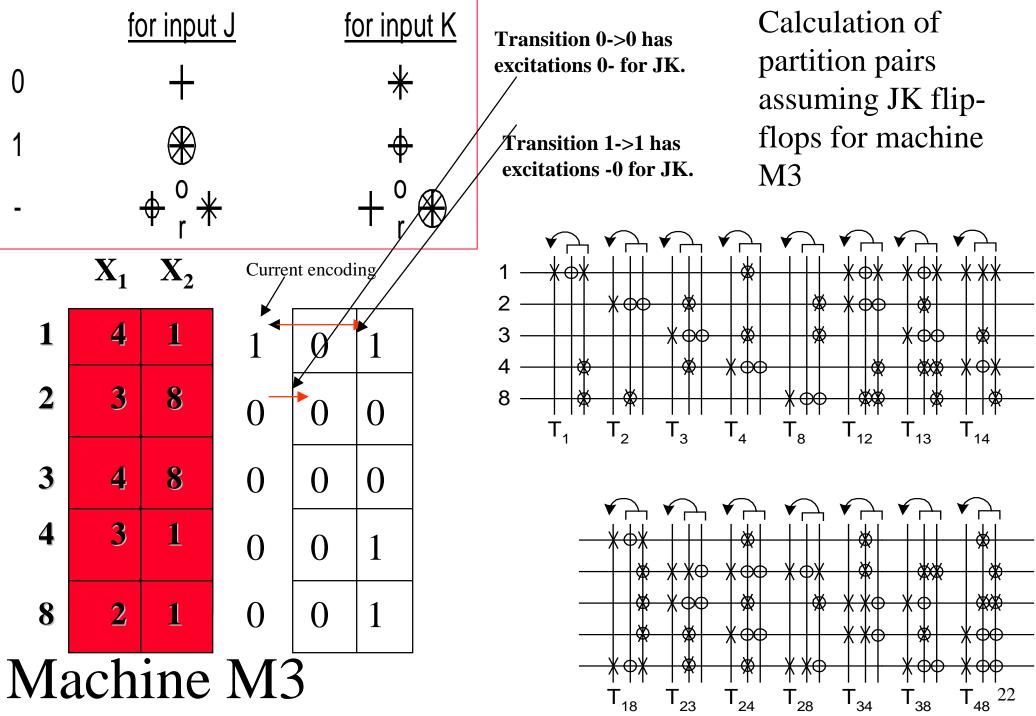


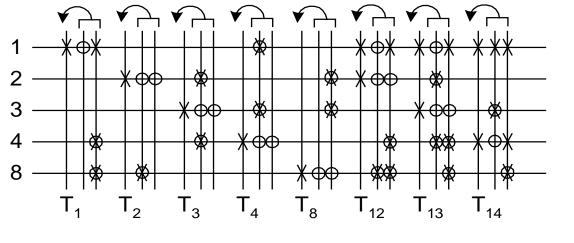
For this task we will adapt the Multi-line method

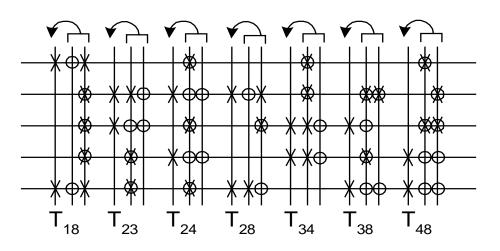
Rules for State Assignment of JK Flip-Flops

	for input J	for input K
0	+	*
1		
-	+ ° +	$+^{\circ}_{r}$

These are the mechanical rules for you to follow, but where they come from?







The subsequent stages are the following.

- 1. From multiline draw the graph of transitions for both J and K inputs.
- 2. Mark partitions good for output
- 3. Find partition pairs that simplify the total cost, exactly the same as before.

There fore the multi-line method can be extended for any type of flip-flops and for incompletely specified machines. Fig.5.43.
Schematic of
FSM from
Example 5.7
realized with
JK Flip-flops

