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Abstract

We present a new reinforcement learning system more suitable to be used in robotics than

existing ones. Existing reinforcement learning algorithms are not speci�cally tailored for robotics

and so they do not take advantage of the robotic perception characteristics as well as of the

expected complexity of task that robots are likely to face. In a robot, the information about

the environment comes from a set of qualitative di�erent sensors and in the main part of tasks

small subsets of these sensors provide enough information to correctly predict the e�ect of

actions. Departing from this analysis, we outline a new reinforcement learning system that aims

at determining relevant subsets of sensors for each action and we present an algorithm that

partially implements this new reinforcement learning architecture. Results of the application

of the algorithm to the problem of learning to walk with a six legged robot are presented

and compared with a well known reinforcement learning algorithm (Q-Learning) showing the

advantages of our approach.
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1 Introduction

Reinforcement Learning (RL) [3] is a promising approach to achieve the control of complex

robots in dynamic environments. However, the adaptation of existent RL algorithms so that

they can be applied to robotics is not free of problems. In this paper, instead of departing from

any existent reinforcement learning algorithm, we analyze the RL paradigm departing from the

special features of robotic tasks and we propose a new RL system based on the characteristics

of robot perception and on the expected complexity of tasks robots are likely to face.

Within the RL framework, the learner must survey the reward derived from the execution of

actions. These surveys are used to execute the actions from which more reward is expected. In

the case of a robot, the reward predictions must be based on its sensor readings1.

If the robot pays attention to all its sensors, then it can in theory predict the e�ects of any

action as correctly as possible. But the use of all the sensor readings to predict the reward is

only necessary for the most complex problems. In general, a reduced subset of sensors provides

su�cient information to correctly anticipate the results of a given action. Paying attention to

all sensors implies to pay attention to many non relevant signals that can be considered as noise

that slows the learning process to the point of making it impractical.

Existent RL algorithms assume that the teacher provides a way to extract the relevant in-

formation to predict the e�ect of actions. However, in real robotic applications, the a priori

knowledge of which are the relevant sensors for achieving a task is not usual. For this reason,

in many robotic problems, existent RL algorithms are applied using all sensors accepting the

complications derived from that but avoiding modi�cations in the algorithms and also avoiding

the problem of determining the relevant subsets of sensors for each action. We propose the

alternative approach consisting in confronting the problem of �nding the relevant subsets of

sensors to avoid the inconveniences of working with all the sensor readings. We believe that this

is a more adequate approach in robotics since the relevant subsets of sensors are likely to have

small cardinality compared with the total amount of sensor of the robot and so, working with

all sensors implies to deal with a lot of noise and �nding the (we assume small) relevant subsets

may be not so di�cult and once identi�ed, the learning will be faster.

Any available knowledge about which are the relevant subsets of sensors for each action should

be used but the teacher is only likely to be able to identify those subsets in simple cases and

so, we have to assign this task to an automatic process. Obviously, a brute force approximation

consisting is testing all the possible subsets of sensors is not a good idea (there are too many of

them!). Since we assume that the relevant subsets of sensors have small cardinality, we propose

1In general, not only the current sensor readings but also the previous ones and the memory of already executed

actions can be relevant to predict the reward. This information as well as the user knowledge about the task

(specially relevant sensor values, : : : ) can be represented as virtual sensors. In the paper, when we refer to sensors

we mean both the physical and the virtual ones (if any).



an incremental search strategy: we start examining subsets of only one sensor and if in a given

situation those subsets are not useful enough to accurately predict the reward of a certain action,

then subsets of higher cardinality are considered. In a degenerate case, our system will iterate

until all the sensors are taken into account to predict the reward of a specially complex action.

Observe that the last case considered by our learning system is the �rst considered one in other

approaches. To implement the proposed search strategy, we need a module able to select from

a collection of (initially simple) subsets of sensors the ones that are useful for any action. A

complementary module will be in charge of modifying the collection of subsets of sensors when

necessary. In this paper we present an algorithm that implements the �rst one of these two

modules.

The paper is organized as follows. First, our algorithm is presented. In section 3, the algorithm

is applied (in simulation) to a robotic task: we confront the task of learning to walk with a six

legged robot. Next we compare our work with other similar ones and �nally we extract some

conclusions of our work and outline ways in which it can be extended.

2 �-Learning

The objective of the �-learning (for Robot-Learning) algorithm is that of determining which is

the subset of sensors (from an initially provided repertory) that gives a more reliable prediction

of the reward of each action. So, the algorithm should learn a reward prediction for each subset

of sensors and action and a con�dence measure to select the most reliable of these predictions

for each action.

For the reward prediction, our algorithm adjusts the expected average reward for each action

and combination of values of the sensors included in each subset of sensors. In this version of the

algorithm and for simplicity reasons, we store separate statistics for each action and combination

of values of the subsets of sensors. However, since the reward obtained for similar sensor values

is likely the be somehow related, the use of generalization techniques (i.e. clustering or function

approximation techniques) would be greatly helpful to reduce the amount of stored data and to

increase the convergence speed.

For the con�dence measure, the algorithm estimates the average absolute error on the reward

prediction described before (the lower the error the greater the con�dence). If generalization

techniques are used for the reward prediction, they must be also used for the error.

Formally (see algorithm 1), if G is the initially provided collection of subsets of sensors, g is

a member of G, Cg is the Cartesian product of the ranges of the sensors included in g, S(g) is

an element of Cg and a is an action, then we de�ne the mappings:

Rewardg;a : Cg ! R

Errorg;a : Cg ! R

The reward mapping should estimate

q(g; S(g); a) = RS(g);a +

1X

t=1


t
R
�

t

Where RS(g);a is the reward obtained if action a is executed when the sensors in g have values

S(g), R�

t is the reward obtained t steps after the execution of a assuming that after that action

the robot acts optimally and  is a discount rate to balance the importance of future reward

with respect to immediate one. This in�nite addition can be expressed recursively using a

Bellman-like equation:

q(g; S(g); a) = RS(g);a +  V (S0)
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Subset g of the current sensor readingsS(g)

4.- r

Subset g of the current sensor readingsS’(g)

α )(r+   V(S’))γ

j
Max[Q(S’,j)]

α is a learning rate.

V(S’)=

where

is a discount parameter.γ

Inicialization:

Teacher defined inputs:

- Reinforcement Signal

- A collection of subsets of sensors (G)

Algorithm:

Do forever:

2.- a Action to be executed

- Set of Actions (A)

1.- For each g in G

For each subset of sensors g, readings of this group of sensors S(g) and action a

Reinforcement generated by the execution of a.

3.- Execute the action and wait until its conclusion.

5.- For each g in G

6.- Update q(g,S(g),a) and error(g,S(g),a)

a is choosen according to Q(S,j) for the sensor readings S and j in A where

Q(S,j)=q(g,S(g),j)

for g in G with error(g,S(g),j)<=error(g’,S(g’),j) (g’ also in G)

For each g in G

α

α

q(g,S(g),a) q(g,S(g),a)+(1-

error(g,S(g),a)+(1- αerror(g,S(g),a) )  q(g,S(g),a)-(r+   V(S’))γ

q(g,S(g),a)=0   and   error(g,S(g),a)=0

Algorithm 1: The �-Learning algorithm.

3



4.- r

α)(r+   V(s’))γ

j
Max[Q(s’,j)]

Q(s,a)=0 for each state s and action a

- Set  of States (S)

- Set of Actions (A)

- Reinforcement Signal

Current State

Action to be executed

1.- s

2.- a

a is choosen according the information stored in

New State5.- s’

6.- Update Q(s,a)

Q(s,j) for each j in A

αQ(s,a) Q(s,a)+(1-

where

3.- Execute the action and wait until its conclusion.

α

is a discount parameter.

is a learning rate.

γ

Algorithm:

Inicialization:

Teacher defined inputs:

Do forever:

V(s’)=

Reinforcement generated by the execution of a

Algorithm 2: The Q-Learning algorithm.

where V (S0) is a goodness evaluation of the next attained situation after executing a. This

evaluation is the maximum expected reward for the actions executable in that situation.

In step 6 of algorithm 1, you can see that the reward mapping is updated so that it tends to

the value indicated by the Bellman equation. Even not shown in the �gure, the �rst obtained

reward is taken directly as the value for the reward mapping and from then the shown Widrow-

Ho� updating rule is used (this is a simpli�ed MAM updating rule [9] cited in [11]). Observe

that the update is performed for all the monitored subsets of sensors. In this way the executed

action is evaluated from many points of view simultaneously.

The error mapping is updated every time the reward mapping is updated using the same

updating rule.

In step 2, a di�erent reward prediction for each monitored subset of sensors and each action

j is obtained and the error is used to identify the most reliable ones that are used to select the

next action to be executed.

We can compare our algorithm with Q-learning (algorithm 2 [10]), a well known RL algorithm.

This algorithm is based on identifying the state of the environment. This state is suppose to

include the information necessary to obtain a single reward estimation for each action (step 2)

and is also used to update the predicted reward after the action execution (step 6). Q-learning

constructs a reward mapping but it does not need any statistic about its error.
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Figure 1: The simulated six-legged robot (left) and the learning command window (right).

The �-learning memory requirements are of the order

O(ng nc na)

with ng the number of the subsets to be monitored, nc the maximum cardinality of the Carte-

sian products Cg described before and na the number of actions. The Q-learning memory

requirements are

O(ns na)

with ns the number of states. In many cases, ns is the total amount of possible combinations

of values of all the sensors. In this case, since we consider a reduced collection of small subsets

of sensors, ns is much larger than ng nc and the result is that, in general, �-learning uses less

memory than Q-learning.

In table 1, you can see a comparison of the complexity of the two main steps of the Q and

�-learning algorithms. In general �-learning increases the times by a factor ng. Since the size of

the collection of monitored subset of sensors is reduced, this cost increment is not an impediment

for the online application of the algorithm.

Algorithm Step Q-Learning �-Learning

Reward prediction (2) O(na) O(ng na)

Information Update (6) O(1) O(ng)

Table 1: Execution time comparison between Q-learning and �-learning. Numbers in the �rst

column refer to steps in algorithms 1 and 2.

3 Learning to Walk

3.1 Experiment Setup

To test �-learning, we confront (in simulation, �gure 1) the task of learning to walk with a six

legged robot as that of �gure 2. This is not a trivial problem but we know enough about it [1]

to interpret the results.

We binarize the leg position sensors in the following way:
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Advance
Direction

0 1

2 3

54

Figure 2: The Genghis II six-legged robot and its schematic top view.

� Vertical position sensors: With value 0 when the corresponding leg is at the ground level

and 1 if not.

� Horizontal position sensors: With value 0 when the leg is more advanced than the central

position of its workspace and 1 if not.

Additionally, we de�ne a set of actions meaningful for the task to be achieved. When walking,

each leg of the robot can be in two di�erent phases:

1. Return Stroke: The leg is lifted and advanced.

2. Power Stroke: The leg is moved to the ground to support the robot body.

In our experiment, the set of actions the robot can execute can be de�ned using six bits, one

for each leg (so we have 64 (26) actions). Each bit indicates if the corresponding leg should be

in return stroke (value 1) or in power stroke (value 0) after the execution of the action. For

instance, the action A : 1 0 1 0 0 0 puts legs 0 and 2 in return stroke and the rest of legs in power

stroke. An automatic user-de�ned mechanism (called global alpha-balance [1]) is in charge of the

coordinated backward movement of legs in power stroke so that the robot advances.

The learning task we aim at achieving can be de�ned as:

Generate the adequate sequence of actions (or gait) so that the robot advances as

much as possible within a limited time departing from an initial posture with all legs

in contact with the ground but in a random advance position.

This implies that the robot has to learn not to fall down and to coordinate the steps of

the di�erent legs to advance as fast as possible. In particular, the robot must produce the gait

depicted in �gure 3 called the tripod gait since it is known to be the fastest stable gait executable

with a six-legged robot [1]. Other gaits can produce higher instantaneous advance speed but its

average speed is lower than that of the tripod gait.

We set up a reinforcement signal that includes the two subtasks the robot should learn:

� Not to fall down: If the robot falls down, the reward it receives is -500.

� Advance: If an action does not produce a fall, then the reward given to the robot is the

displacement of the robot produced by the action.
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A: 0 0 0 0 0 0
R:0

S1

S3
S4

S2

R:0
A: 0 0 0 0 0 0

A: 0 1 1 0 0 1

A: 1 0 0 1 1 0

R:49

R:49

Figure 3: In the tripod gait four di�erent situations are encountered and only three di�erent

actions are used. In the �gure, dashed legs stand for legs in the air after performing a step.

Observe that action A : 000000 always gets reward 0 and so its evaluation must be based on the

future rewards it allows to obtain.

Actions are selected using a Boltzmann exploration rule in which the probability of executing

and action a in a situation S is

p(S; a) =
e
k Q(S;a)

P
8a0 e

k Q(S;a0)

where Q(S; a) is determined depending on the algorithm and k is slightly increased departing

from 0 until a threshold (0.75) is reached so that the best action is chosen with increasing

probability. The rest of parameters were:  0.9, � 0.1 and we limited each experiment to at

most 24 time slices. In this period and using the tripod gait, the robot can accumulate a reward

between 539 and 588 depending on the random initial conditions of the experiment. If the robot

falls down then the corresponding negative reward is applied and a new experiment is started.

The results shown in next sections are the average of ten independent runs. In each run, the

evaluations of the learning process are based on averaging the performance of the robot from 20

random initial postures.

3.2 Results

To apply �-learning, the teacher must de�ne a collection of subsets of sensors. We use subsets

of only one (virtual) sensor in accordance with the incremental approximation to discover the

relevant subset of sensors explained in the introduction.

In �gure 4, you can see the result of applying the algorithm with di�erent increment rates of

the parameter k. If k is increased too fast (so things discovered at initial phases of the learning

are taken as de�nitive), then suboptimal solutions are attained. This is the well known [3]

trade-o� between exploration and exploitation typical of RL.

The algorithm identi�es the best action for each situation but due to the probabilistic action

selection mechanism we use, the average accumulated reward for each experiment is lower than

the optimal one (observe that the best results shown in �gure 4 are around 525 and as explained

before, this quantity could be greater). In �gure 5, you can see a typical probability assignment

achieved using �-learning for the situations and actions included in the tripod gait.

This problem can be also confronted using Q-learning. In this case the teacher has to de�ne a

state. This can be achieved concatenating the 12 binary virtual sensors described before. This

produces a space of states with cardinality 4096 (212). In �gure 6 you can see the best result
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Figure 4: The performance using �-learning with various parameter settings of the action selec-

tion mechanism.
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Figure 5: Typical action probability distribution assigned by �-learning.
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to the algorithm. In �gure 7, we can see the results when we use none, 4 and 12 random sensors

with the same set of learning parameters: the performance decreases but not dramatically.

Experimentally we have observed that if the exploration parameter k is adjusted speci�cally for

each case (increasing more slowly if more noisy sensors are present) a better performance than

that shown in �gure 7 can be achieved.

A similar experiment was performed using Q-learning. In �gure 8, you can see the per-

formance of Q-learning with only 1 and 2 random sensors. The addition of such amount of

irrelevant sensors as those we use for �-learning is almost impossible: if we de�ne the state as

the concatenation of input sensors, the size of the data stored increases exponentially with the

number of sensors and so does the convergence time.

4 Related Work

The main part of existing RL algorithms do not work with subsets of sensors but with all the

sensor readings simultaneously and try to accelerate the learning process using generalization

techniques (see [6] for instance).

Our RL system can be seen as just another generalization technique since the reward predicted

from a subset of sensors can be used in all situations where these sensors have the same readings

independently of the readings of all other sensors. The di�erence is that we work with many

alternative generalizations (one for each considered subset of sensors and the one that produces

minimal error is used) while in other generalization methods only one way of generalizing in the

space of sensors is considered at a time.

There exist other RL approaches that do not use all the sensor readings to predict the e�ect

of actions [11]. The main di�erence between those approaches and ours is that they use a

genetic algorithm to �nd out the relevant subsets of sensors while we advocate for the use of an

incremental strategy that is likely to be more e�cient for robotic tasks.

The problem of learning to walk with a six legged robot has been addressed by other authors

before with di�erent formalizations. In [5] speci�c methods based on immediate reward are used

and in [7] a simpli�ed version of the problem is used to test an algorithm able to deal with Non-

Markovian spaces of states. By its side, [2] uses a learning architecture based on self-organizing

neural networks and [4] proposes an evolutionary strategy to develop a neural network to control

the gait of the robot.

5 Conclusions and Future Work

In this paper we have outlined a RL system that takes advantage of the special characteristics

of the robotic problems so that they can be learned more e�ciently. The exploitation of these

special features is necessary if we aim at applying RL to control real robots.

We decompose the general problem of applying RL to a robotics in three subproblems that

consists in:

1. Determining interesting subsets of sensors. To �nd them we propose an incremental strat-

egy based on testing �rst simple subsets and test more complex ones only when necessary.

2. Finding mappings from subsets of sensors to reward predictions.

3. Determining which mapping to use in a given situation.

Our assumption is that in the case of robots, the combined di�culty of these tree problems

is lower than that of �nding a global mapping from all sensors to reward predictions. The

experiments run until now seem to validate that assumption but there is still much work to do

to con�rm this impression. There are two main lines of future work:
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� Improve the presented algorithm: In this line, we plan to:

{ Use generalization techniques to generate the reward and error mappings for each

subset of sensors and action.

{ De�ne a new action selection mechanism more adequate for our formalization. This

mechanism could use not only the reward prediction but also the error prediction

and the number of times an action has been executed to decide whether or not that

action is worth to be executed again.

{ Apply it to more complex problems.

� Extend the presented algorithm: As stated before the presented algorithm is only the

kernel of a general learning system. The next module to be developed will be in charge of

modifying the collection of monitored sets of sensors. The information collected for small

subsets of sensors can be used to monitor only the most potentially useful subsets of higher

cardinality guiding the search in the large space of subsets of sensors. With this module

the problems caused by non-relevant subsets of sensors outlined in section 3.2 would be

minimized and we could confront problems where more complex combinations of sensors

need to be considered. Another future module of our learning system will deal with the

automatic generation of virtual sensors (including previous sensor readings for instance)

so that they can be considered in the learning process.

From a more general point of view, the work presented in this paper is the �rst step toward

the relaxation of some assumptions present in usual RL formalizations [8] concerning how the

environment is perceived by the robot (this is the assumption relaxed in this paper), which

action model is more adequate for robotic learning and when the e�ects of actions are detected

by the robot. New algorithms based on these relaxed assumptions are necessary to overcome

the challenge of facing increasingly complex tasks with increasingly sophisticated robots.
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