
1.1. Function composition Function composition
2.2. Symbolic Matrix Multiplication Symbolic Matrix Multiplication
3.3. Symbolic Matrix Inversion Symbolic Matrix Inversion
4.4. Decision Tree creation Decision Tree creation
55. Solving Covering Problem. Solving Covering Problem
6.6. Solving Solving Satisfiability Satisfiability ProblemProblem
77. Creating a Decision Diagram for . Creating a Decision Diagram for POS POS expressionexpression
8.8. Semantics Database using Semantics Database using graspe graspe functions withfunctions with
very simple analogy reasoningvery simple analogy reasoning
9.9. Society of ants - turtle-like robots Society of ants - turtle-like robots
1010. Robot arm handling rings on three sticks.. Robot arm handling rings on three sticks.

Projects

Function compositionFunction composition

Project #1

Function composition 1Function composition 1
• Multi-input, multi-output function can be composed from logic elements,

comparator and arithmetic elements. The function can be a mixture of binary and
multi-valued signals:

– Logic gates are NOT, OR, AND, EXOR and MUX

– Arithmetic gates are +, * and -

– Comparison gates are > and =

– the number of logic values is arbitrary, but declared for every signal

• Such function is described as the following Lisp data structure

 (f1 (type MOD0)) (f2 (type MOD0)) (f3 (type MOD0))

 (type MOD0 (inputs a b c) (outputs x y z))

 (MOD0 (x = (or (and b c) (not a)))

 (y = (mux a b (or c (not b))))

 (z = (a > (= b (not c)))))

• Create a Lisp program that:
– composes such functions

– displays them in form of truth tables

Function composition 2Function composition 2

a
b
c

x
y
z

a
b
c

x
y
z

a
b
c

x
y
z

MA
CV
DS

SD

RR

EW

SM

SSV
QQQ

ARR
ASS
AWW

f1

f2

f3

(((x f1) = (a f2)) ((y f1) = (b f2)) ((z f1) = (a f3))

 ((SD IN) = (c f2)) ((RR IN) = (b f3)) ((EW IN) = (c f3))

((x f3) = (SM OU)) ((y f3) = (SSV OU)) ….

Function composition 3Function composition 3
•Ideas:
•Use function EVAL or similar to evaluate (simulate) the circuit

•Do loop through all possible values using a binary counter with as many bits as input
variables

•Print in a nice clear format

•There should be two forms of function description for prettyprinting:

• truth tables

•expressions

•Use prettyprint function from Lisp system, do not write it.

•I recommend to use function substitute or similar

•This project can be extended to a general-purpose design and analysis tool reversible
logic and thus publishable. There are no any computer tools like this.

Symbolic Matrix multiplicationSymbolic Matrix multiplication

Project #2

• Given is a n*n matrix A whose entries are symbolic
expressions that use variables and operators +,-,*
and /.

• Given is a n*n matrix B whose entries are symbolic
expressions that use variables and operators +,-,*
and /.

• Write a program that will find matrix C=A*B

• This program can be useful next quarter in the class
to solve the kinematics problems for a robot arm.

Symbolic Matrix multiplicationSymbolic Matrix multiplication

Symbolic Matrix inversionSymbolic Matrix inversion

Project #3

• Given is a 3*3 matrix A whose entries are symbolic
expressions that use variables and operators +,-,*
and /.

• Write a program that will find inverse matrix A-1

such that A-1 *A = 1, where 1 is a unitary matrix

• This program can be useful next quarter in the class
to solve the inverse kinematics problems for various
robots.

Symbolic Matrix InversionSymbolic Matrix Inversion

Decision Tree CreationDecision Tree Creation

Project #4

Decision Tree CreationDecision Tree Creation
•Given is a table of objects and properties. A cross means that object Oi has a property Pj

Object \ Property P1 P2 P3 P4 P5 P6

O1 X X

O2 X X

O3 X X X

O4 X X X X

O5 X X X

•You ask sequentially questions if an object has some property Pi, i=1…6

•Your goal is to find the which object are you dealing with

•This way your every sequence of questions creates a branch in a decision tree

•The variables along every path can have arbitrary order (free tree)

•Create the tree that has the minimum number of nodes, or the quasi-minimum number of nodes and that
separates all objects that are distinguishable (different rows) to separate leaf nodes of the tree.

•Of course, your program should be applicable to arbitrary table

Object \ Property P1 P2 P3 P4 P5 P6

O1 X X

O2 X X

O3 X X X

O4 X X X X

O5 X X X

Has property P2?

yes no

 P3 P4 P6

O1 X

O5 X X

Objects
O2,O5

Objects
O1,O3,O4

Has property P3?

Explanation of recursion

yes

no

O1

O2

Leaf
nodes
separate
objects

Is it useful?

• This is one of the most famous AI applications in
recognition, control, and problem solving.

• May be useful for voice recognition, situation recognition of
face recognition for our mobile robots guards in FAB
building. Create for test the table of features with objects as
humans from ECE department and properties as they
features - has glasses? Has a red nose? Is he bald? Etc.

• If you are ambitious you can solve this problem with
multivalued variables.

• If you are very ambitious, you can assume continuous
variables.

Covering ProblemCovering Problem

Project #5

• Given is the Object/Property table.

• Select the smallest set of objects that each property is covered by at least one object.
For instance objects O4 and O5 cover all properties.

• Find all solutions with minimum number of objects

• Of course, your solution should be for arbitrary table

Covering ProblemCovering Problem
Object \ Property P1 P2 P3 P4 P5 P6

O1 X X

O2 X X

O3 X X X

O4 X X X X

O5 X X X

Is it useful?
• This is one of the most famous AI applications in

recognition, control, and problem solving.

• May be useful for object recognition, guard problem, self-
test of a robot and many more

• If you are ambitious you can solve the guard problem by
reducing it to covering problem.

Each guard controls the area
that he sees.

We need as many guards as
necessary to control every
green area

How to find the minimum
number of guards?

Guard
location

Not seen

Seen

SatisfiabilitySatisfiability Problem Problem

Project #6

• Given is a Boolean Formula in the form of Product of Sums
(POS) of Binary variables and their negations

• For instance

 ((+ a (not b) c) * (+ (not b) (not c)) * …. Etc

• Every variable can be negated and not negated at the same
time in various sums

• The number of literals (variable or negated variable) in the
sum is arbitrary

• The number of sums is arbitrary

• Find all product of literals that satisfy the POS form or
prove that there is no solution.

• Remember about trees and recursion.

SatisfiabilitySatisfiability Problem Problem

 ((+ a (not b) c) * (+ (not b) (not c)) * (+ (not a) b (not c))) = 1

SatisfiabilitySatisfiability Problem Problem

 ((+ a c) * (+ (not c)) * 1) = 1 (1 * 1 * (+ (not a) (not c)) = 1

b=0 b=1

a=0 a=1

1=1

Solution1=

 (* (not b) (not a))

 (1 * 1 * (+ (not c)) = 1

c=1c=0

1=1

Solution1=

 (* (not b) a (not c))

 (1 * 1 * (+ (not 1)) = 1

Contradiction=no solution

SatisfiabilitySatisfiability Problem Problem

•It is important to select good branching variables,

•the tree is free (arbitrary order in every branch) or ordered, your choice

•use recursion

•Even with random or arbitrary choice of variable orders, you can find a
good solution

•This is a very important practically problem.

•In theory, every NP-complete problem can be reduced to it.

•People in Bell Labs are designing special computer to solve this
problem. Do you have an idea how to do this?

Creating a Decision Diagram forCreating a Decision Diagram for
POS POS expressionexpression

Project #7

• Given is a Boolean Formula in the form of Product of Sums (POS) of Binary
variables and their negations

• For instance
 ((+ a (not b) c) * (+ (not b) (not c)) * …. Etc
• Every variable can be negated and not negated at the same time in various sums
• The number of literals (variable or negated variable) in the sum is arbitrary
• The number of sums is arbitrary
• Find the tree for given order of variables (not free, ordered)
• Combine recursively every two nodes that represent the same functions until no

more such nodes exist.
• What you get is the famous Binary Decision Diagram for your POS
• Write a program that uses above method to create the Binary Decision Diagram for

given order of expansion variables. (do not look for them, just assume sorted list of
variables)

– Observe the similarity with the previous problem
– Use it.
– Remember about trees and recursion.

Project #8
Semantics Database usingSemantics Database using graspe graspe

functions with very simplefunctions with very simple
analogy reasoninganalogy reasoning

Semantics Database usingSemantics Database using graspe graspe functions with very simple analogy reasoning functions with very simple analogy reasoning

•Given are three figures A, B, C and three figures D1,D2 and D3.

•You have to solve the intelligence test (reasoning by analogy)

•A is to B as C is to what ? You should select only from the set D1, D2 and D3

•Example

Figure B

Figure A

Figure C

Figure D1 Figure D2

Figure D3 Figure D4

Semantics Database usingSemantics Database using graspe graspe functions with very simple analogy reasoning functions with very simple analogy reasoning

•Represent each figure as a semantic network.

•You can use functions GRASPE from my book to process the
semantic network or define your own functions for this task.

•HINTS

• I suggest to describe the transformation from A to B

•Then apply the same transformation to C and compare the
TRANSFORMED (C) with D1, D2 and D3.

•There are other ways to solve this problem.

•Observation (just to give you more motivation)

•We can use this method for robot reasoning by analogy

Project #9
Society of ants - turtle-Society of ants - turtle-

like robotslike robots

Society of ants - turtle-like robotsSociety of ants - turtle-like robots

••Solve the homework 2 in its full formulation, it meansSolve the homework 2 in its full formulation, it means
with several “turtles” and with moving obstacles.with several “turtles” and with moving obstacles.
There are also piles of foodThere are also piles of food
The “turtles” are now called “ants”.The “turtles” are now called “ants”.
In addition to what was in homework 2, ants try to findIn addition to what was in homework 2, ants try to find
“food” and store it in their “homes”.“food” and store it in their “homes”.
If two ants are close to a food, they collaborate to bringIf two ants are close to a food, they collaborate to bring
food to the store.food to the store.
Single ant cannot bring the food. It has to find another ant.Single ant cannot bring the food. It has to find another ant.
Show the stages of the ants collaboration on your screen.Show the stages of the ants collaboration on your screen.

Tower modifying Robot ArmTower modifying Robot Arm

Project #10

• Given are three vertical sticks, 1, 2 and 3, from left to right.

• On each stick you can put one-by-one (like to a stack) an
arbitrary number of rings, called A,B,C,…etc.

• Given is an start situation and goal situation.

• Find the sequence of moves to transform the start situation
to the goal situation or prove that there is no solution, i.e. no
sequence of moves from this start to this goal.

• Each move is described as (RINGi -> Stick j)

• for instance (A 1)(B 2) moves ring A to stick 1 and next
ring B to stick 2

• Assume that each stick is long enough to accommodate all
rings

Tower modifying Robot ArmTower modifying Robot Arm

Tower modifying Robot ArmTower modifying Robot Arm

A

B
C

D
A

BC
D

A
B

CD
A

D

B

D

(B 2)

(C 3)(A 3)

B
C

(B 3)

C
A

START

GOAL

Example of
solution

Tower modifying Robot ArmTower modifying Robot Arm

•Remember that you build a building from a fundament and not from the
roof, this is a very powerful heuristics

•You can use any type of search, but try to minimize the number of
moves

