The Generalized Orthonormal Expansion
of Functions With Multiple-Valued Inputs
and Some of its Applications

Marek A. Perkowski
Department of Electrical Engineering
Portland State University
P.0. Box 751, Portland, Oregon 97207

Abstract

The paper introduces the fundamental concept of
Generalized Orthonormal Ezpansion, which general-
izes the ring forms of the Shannon expansion to
the logic with multiple-valued (mv) inputs and stan-
dard trivial functions of arbitrary number of variables.
Some applications of the Generalized Orthonormal Ex.
pansion are also presented, including several general-
izalions of canonical forms; both known from the lit-
erature and new. For instance, we define a family of
canonical tree circuits. Such circuits can be consid.
ered for binary and multiple-valued tnput cases. They
can be multi-level (trees and Directed Acyclic Graphs
(DAGs)) or flattened to two-level AND-EXOR cir-
cuils.

1 Introduction

There are several reasons why there is recently an
increased interest in logic synthesis using EXOR. gates
[1,12,30,48,52]. (Such circuits will be called ”Ezor
Circuits”). These reasons include: (1) new technolo-

ies (Programmable Logic Devices (PLD): arithmetic
31], LHS501 [55); Field Programmable Gate Arrays
FPGA) - Actel [21], Xilinx [57], CLi6000 [9]; and
tandard Cells) either include EXOR gates, or al-
low to realize them in ”universal logic modules”. (2
Exor circuits can have smaller cost (usually calculated
as number of terms) than inclusive (AND/OR) cir-
cuits [10,45,47,48). (3) They are always very easily
testable, much better than their inclusive counterparts
(40,42,45]. The methods outlined in this paper are par-
ticularly suitable for the new FPGAs series CLi6000
for which no special design methods have been yet
proposed. This ”cellular logic” devices require reg-
ular connection patterns and provide AND/EXOR
gates in basic blocks, which is an ideal match with
AND/EXOR trees presented below.

The problem of finding the minimal generalized
Reed-Muller (SGRM canonical form of optimal polar-
ity {32] (called also fixed-polarity Reed-Muller (23)), as
well as the problem of finding the minimal Exclusive.
OR Sum of Products (ESOP) of a Boolean function
[3,24,48,50], are the classical ones in logic synthesis

®{This research was partially supported by the NSF grant
MIP-9110772

0195-623X/92 $3.00 © 1992 IEEE

442

theory. Recently efficient solutions have been pro-
posed: to ESOPs in [2], and to GRMs in [15,45), but
the problems are still far from being solved.

A book by Davio [11], and papers by Green [23]
and Sasao [49] give information on the numbers and
properties of various canonical forms being special-
izations of binary ESOPs, which may be useful to
create efficient algorithms for them. In [37,38] we
presented a family of multiple-valued inpul erpan-
sions. Here we will introduce new canonical binary
and multiple-valued forms and expressions. Forms,
Directed Acyclic Graphs (DAGs), Trees and expres-
sions obtained by the tree searc ing methods intro-
duced here will be all called ezpansion circuits or ez-
panstons, for short. Some of them will be canonical,
while others will not. There are three main goals for
the research reported here: (1) to create synthesis
programs, exact and approximate, for all known and
some new canonical forms being subsets of binary and
multiple-valued input ESOPs ?2) to create programs
for their respective tree-like counterparts as well as
tree-like circuits for non-canonical expressions. (3) to
create programs for multi-level multi-output circuits
being mixtures of EXOR, AND and OR gates with
fan-in constraint, based on methods from 2) and to
be applied for the new circuit technologies mentioned
above.

Multiple-valued input ESOP (MIESOP) expres-
sions (see Table 1) correspond to AND-EXOR PLAs
with input decoders. It was stated in [48] that in most
cases AND-EXOR PLAs with input decoders require
fewer products than AND-OR PLAs with input de-
coders. Since efficient algorithms for general ESOPs
still do not exist, the recent research is concentrated on
efficient logic minimization algorithms for some special
cases of ESOPs like: the GRMs [15,23,45], the Kro-
necker Reed-Muller (KRMs [20,23], and the Canonical
Restricted Mixed Polarity (CRM 3 Forms [7,8,10,11].
The Multiple-Valued Input, Generalized Reed-Muller
(MIGRM) forms were introduced in [51,52,53]. The
Kronecker and Pseudo-Kronecker forms are described
in {11,23] and Quasi-Kronecker in [23]. The Multiple-
Valued Input, Multiple-Valued Output Generalized
Reed-Muller (MIOKRM) forms are in [25,28], and the
4-valued MIOESOP logic is described in [i3] (more

exactly, [25,28] and %3] discuss special cases of our
MIOKRMs and MIOESOPs, respectively).

All those forms can be represented as modulo-n
(EXOR in binary output cases) of terms, where each
term is a constant, or a minimum operation (min(A,B)
= if A B then A else B) of literals and a constant. (A
minimum reduces to a product operation for the case
of binary output). In p-valued logic the constants are
0,..,p-1. The literal X;5, where S; € P; is de-
fined as follows: X;5 = 1 if X; € S;; and X;5
= 0 otherwise. The GRM forms, which also include
Reed-Muller (RM) form, are canonical. All literals
in the RM form are positive, all literals in a Nega-
tive RM (NRM) form are negative. RM forms and
NRM forms can be called Restricted GRM (RGRM
forms. In GRM forms all variables are in a fixe
form, i.e. each occurrence of a variable in products
of the form is either consistently positive or consis-
tently negative. In CRMP forms [10,11] the literals
have the same polarity for any subset of correspond-
ing variables (for every subset of variables, if there
are terms, they create a GRM form). For instance,
Ty Z2 23D X1 Tg 3 D &4 £ z¢ 1s not a CRMP
since for the subset of variables z,, z,, z3 since for
CRMP only one polarity of each of its literals is al-
lowed while here variable z; occurs in two polarities:
7% = 2, ;! z1 (the same is the case about
variable z2). The CRMPs include ” consistent” fixed-
polarity GRMs and the ”inconsistent” mixed-polarity
forms introduced in [7]. In ESOP there is no restric-
tion on literal polarities in terms.

The MIGRM forms have all literals with various
but consistent polarities - this is a a multiple-valued
input counterpart of GRMs. MIGRMs are shown to be
equivalent to Multiple-Valued Input Kronecker Reed-
Muller Forms (MIKRMs) in [38,54] and will be called
MIKRMs from now. Correspondingly, MIRKRM
[51,52,53], and MIORKRM ” Restricted” forms can be
considered.

The relations between some constrained forms
of Multiple-Valued Input, Multiple-Valued Output
ESOPs (MIOESOP) expressions introduced in the re-
cent papers are illustrated in Table 1. We attempt to
introduce here a comprehensive and unique terminol-
ogy, since now various inconsistent names are used in
the literature. For the multiple-valued input, binary
output logic, and the multiple-valued input, multiple-
valued output logic the notions of Generalized and Re-
stricted forms and Unrestricted expressions are anal-
ogous to the binary logic. For example, a MICRMP
(see Table 1) is a Multiple-Valued Input, Binary Out-
put Canonical Restricted Mixed Polarity form, where
for every subset of variables there can exist not more
than one MIKRM form. This is a multiple-valued in-
put counterpart of the CRMP.

A motivation for investigating the newly introduced
forms, besides the general arguments listed earlier, is
that they are canonical. Since the binary GRM forms
are used for efficient coding of images [43), it is obvious
that their multiple-valued input generalizations can
give not worse results since, for instance, the number
of MIKRMs is much larger than the number of the

443

binary GRMs. It is thus more probable to find among
them efficient codes for any given image. Finally, the
excellent testability properties which were investigated
basically for strict Reed-Muller forms [27,40,42,45] are
also expansible to forms presented here.

By ”flattening” we understand applying recursively
the Boolean rule, a(b & ¢) = ab @ a c. Flatten-
ing is used to convert trees and multi-level expressions
to two-level expressions, such as Reed-Muller forms,
or ESOPs. In this paper we will introduce Multi-
Valued Input Orthonormal Trees (MIOT), and par-
ticularly the optimum Multi-Valued Input Kronecker
Reed-Muller Trees (MIKRMT) and all their special
cases [fl7] After flattening, such circuits will produce
several known and new generalizations of Generalized
Reed-Muller Forms.

In section 2 the MIKRMs are introduced. Section
3 reviews Canonical Binary Forms. In section 4 we in-
troduce the concept of the Generalized Orthonormal
Ezpansion. The Shannon theorem has been general-
ized in H?] to arbitrary family of disjoint functions sum
of which is equal to 1 (called Orthonormal Expan-
sions), and by Sasao to the logic with multiple-valued
inputs. Those expansions are of AND-OR type, to be
used for inclusive and multiple-valued inclusive syn-
thesis, respectively. On the other hand, three gen-
eralizations of Shannon expansion for Boolean rings
(AND-EXOR type) are known [11,23]. A generaliza-
tion of Shannon expansion for the logic with multiple-
valued inputs, called the Orthogonal Ezpansion and of
AND-EXOR type, was introduced in [IZ;S] All these
generalizations will be further generalized in this pa-
per. The new generalization of this author, called
Generalized Orthonormal Expansion, covers all expan-
sions discussed in [37]; which allows for defining even
larger families of canonical and non-canonical expan-
sions than those from [38]{. Some of those tree expan-
sions are discussed in [37]. A special form of Gen-
eralized Orthonormal Expansion which is used to cre-
ate canonical expansions with respect to single (binary
and multi-valued) variable is also presented and used
in section 5 to create families of expansion circuits
corresponding to them. The circuits generated by the
method shown there include the MIESOPS, MIKRMs,
MIKRMTSs and selected other expansion circuits from
37]. Also, some special cases of the algorithm from
37] which were only mentioned in }37] are now ana-
yzed in more detail, and the new families of expan-
sions corresponding to them are named.

2 MIKRM Forms

A multiple-valued input, two-valued output, com-
pletely specified switching function
f (multiple-valued function , for short) is a map-
pin . le, Xz, ey Xn).' Pl X Pg X .. P,
— fﬂ,]}, where X; is a mulliple-valued variable, and
P, ={0,1, ..., pi - 1} is a set of {ruth values that
this variable may assume. For any subset, S; C P;,
X;5 is a literal of X;. The set of values S; will be
called the polarity of literal X;5. A product of liter-
als, X175 X552 .. X, 5, is referred to as a product
term (also called term or product for short). A (multi-

valued input) sum-of-products ezpression is denoted
as a SOPE. Orthogonal matrix has all rows pairwise
linearly independent (orthogonal) and is a basis of the
vector space, which means tﬁat each binary vector can
be created by an EXOR of rows of this matrix. An
Ezpanded Polarity Matriz (EPM) is a binary orthogo-
nal matrix whose rows correspond to allowed literals.
For instance for p=4 the selected two-input decoder
type determines the following set of allowed literals:
;Xo,u, X013 X023} which is described by the Po-

arity Matriz:
0 X0,1,2
1| = | x013 (1)
1 X0,2,3

When it is assumed that logic value 1 (universe) is
available, 1 is treated as an allowed literal. This cor-
responds to a literal with all possible values, which in
turn means a row of all ones in the EPM. Then, for the

above example the expanded polarity matrix EPM(X)
is:

O
_—

PM(X) = H

1110 X012 X0.1,2
1101 X013 | x013
101 1] < X0:2,3 = | xo23
1111 X0.1,2,3 1
2)
EPM can be also created without the row of 1, for n-
stance EPM for Shannon expansion is (1] (1) . Let

us observe that all possible literals can be created by
exoring rows of the EPM. For short, the Expanded Po-
larity Matrix of variable X; is also called the polarity
of this variable.

Any form in which all variables are in the same po-
larity is called a Multiple-Valued Input, Binary Out-
put Restricted KRM (MIRKRM) form. Such a form
1s canonical since the expansion is unique for each of
its variables. It can be shown that for a logic with
3-valued inputs there are 28 various polarities, and
28 MIRKRMs. The number of MIRKRM forms for
a logic with p-valued inputs can be calculated from
the known mathematical results on the number of
orthogonal zero-one matrices. Polarity vector PV =
[PMy, PM,, ..., PM,] is a vector of polarities of in-
put variables Xy, X, ..., X,,. By a Multiple-Valued In-
put Kronecker Reed-Muller (MIKRM) Ezpression for
the polarity vector PV one understands an exclusive-
OR sum of products in which each literal X;% is an
allowed literal for the respective polarity PM; from
PV. It can be proven [53] that a MIKRM expression
is canonical (which means that if for each variable a
single polarity is selected, then there exists only one
MIKRM expression for this set of variables and their
corresponding polarities). Therefore from now on we
will refer to a family of MIKRM forms.

3 Shannon Expansions for Rings and

the Canonical Binary Forms
The well-known Shannon expansion for the case of
ESOP expansion is as follows:

f=2ife, ® % - fer (3)
F = fer ® 2 - [fo; @ fr] 4)
.f = ft.- ® 7z - [fza ® fT.'] (5)

where fr; = f(z1,..,2: = 1,..,z,) and fo& =
f(#1,...,# = 0,...,z,). Let us observe that these
expansion formulas have been applied by several au-
thors for the synthesis of GRM forms for completely
specified functions [11]. Davio [11] and Green [23]
use them as a base of Kronecker Reed-Muller (KRM),
Pseudo-Kronecker Reed-Muller (PKRM), and Quasi-
Kronecker Reed-Muller {QKRM) forms (Green uses
also trees for better explanation). If only rule 4 is
used repeatedly for some fixed order of expansion vari-
ables, the RM Trees are created, which correspond to
RM forms after their flattening. If for every variable
one uses either rule 4 or rule 5, the GRM Trees
are created, from which GRMs are obtained by flat-
tening (which proves in other way why there is 2"
of such forms). If for every variable one uses either
rule 3, rule 4, or rule 5, the KRM Trees are created,
from which KRMs are obtained by flattening (which
proves in other way why there is 3" of such forms). If
rules 3, 4 and 5 are used, but in each subtree there is a
choice of a rule, the PKRM Trees are generated from
which PKRM forms are obtained by flattening. Now,
if additionally we allow the expansion variables to have
various orders (but the same in the entire tree), one
obtains the QKRM Trees, and QKRM flattened forms,
respectively. One can now see that a further natural
generalization is to allow various orders of variables in
subtrees of QKRM trees to create an even wider family
of trees 538,39]. When function f is incompletely spec-
ified and represented by sets ON and OFF [37], the
above three equations are generalized to ones in which
fz: = [ON,,, OFF,] and fs, = [ONs,, OFFy).

4 The Generalized Orthonormal Ex-
"~ pansion for Multiple-Valued Input
Switching Functions

Below we will introduce several categories of ex-
pansions. For each category there are two basic types
of Generalized Orthonormal Expansion: EXOR type
and its dual EQUIVALENCE type. OR-type and
AND-type expansions are their particular cases, re-
spectively. Generalized Orthonormal Expansions in-
clude two main categories: ”Generalized Orthogonal
Ezpansions” and ”Generalized Orthonormal Ezpan-
sions which are not Orthogonal”. Below we will spec-
ify these two expansions in more detail.

Let X = X;3,X2,...,X, be a set of mv in-
put variables, and X1 C X, X1 # &. We
will say that the set of (standard trivial) functions
stfi(Xiy, . Xi) , XiyyXi, € X1, is an or-
thogonal set of functions with respect to set X1

when the matrix EM,,y,, called Ezpansion Mairiz,
is orthogonal with respect to expansion operator
on rows (below the expansion operators are EXOR,
EQUIVALENCE, OR, and AND). Matrix EM,y,
is created as follows. Its columns correspond to
minterms m;(Xj,, ..., X;,) of variables from X1. Its

rows correspond to set of functions stf;(X;,, o Xi).
E]\l,g‘f‘[stf,'(}(,'1 , ...,X‘,_), mj(X.-l, ...,X.‘,)] = 1 iff
stfi(Xiyy s Xi)) 2 my(Xi,..,X:,). Rows of

EM,y;, are called "standard trivial functions” and the
set of standard trivial functions is denoted by STF.
STFg denotes set of standard trivial functions from
matrix orthogonal with respect to EXOR operator.
Matrix is orthogonal when every single minterm can
be created in an unique way from functions speci-
fied by rows of the matrix. In case of EXOR and
EQUIVALENCE operators this means a matrix or-
thogonal with respect to respective bit-wise opera-
tors on rows. (For instance matrix EPM(X) from (2)
is orthogonal with respect to EXOR). In case of an
OR operator this means rows corresponding to single
minterms m;(X;,, ..., X;,). In case of an AND opera-
tor this means rows corresponding to single maxterms
M;(X;,, ..., X;,).

(EXP 1). The Generalized Orthogonal Ezpansion
for Orthogonal Set of Functions STF is described by
the formula:

f
stf; € STFg

(fi - stfi) (6)

We will call the above expansion the EXOR type ez-
pansion, since the expansion is with respect to EXOR
gate. (Matrix EM,s, has rows orthogonal with re-
spect to operator EXOR).

One can observe that the EQUIVALENCE type ez-
pansion can be created that is dual to formula 6.

F= Qi+ sth)

stfi € STFg

We call the above expansion the EQUIVALENCE
lype expansion, since the expansion is with respect to
EQUIVALENCE gate. (Matrix EM,, #; has rows or-
thogonal with respect to operator EQUIVALENCE).
The particular case of formula 6 is created when all
functions stf; € STF are minterms m;(X;,, ..., X;,).

f U & sh) ®)

stf; € STFy

™

We will call 8 the OR type erpansion, since the ex-
pansion is with respect to OR gate, and | replaces ¢
n formula 6, producing formula 8.

The particular case of formula 7, dual to 8, is for-

mula 9:
N

stf; € STFn

f (fi + stfi) (9)

where all functions stf; € STF are maxterms
M;(Xi,,...,X;,). We will call 9 the AND type ez-
pansion, since the expansion is with respect to AND
gate.

445

The expansions of category EXP1 totally elim-
inate the set of variables X1 from the function
f(X1,...,Xp). They will be called Ezpansions that To-
tally Eliminate Variables. The problem of determining
functions f; in this and other orthonormal expansions
is a subject of a forthcoming paper.

)EEXPZ). Particular case of the expansion from
(EXP1) is when it is applied to set X1 of a single
variable. This case is called a Single- Variable, To-
tally Eliminating Variable Expansion and allows to de-
rive simple formula for functions f; in the expansion.
When the (EXP2) EXOR-type expansion is applied to
function f with respect to multiple-valued input vari-
gble)g. of polarity EPM(X;), the following can be
erived:

X%

D

X5 € EPM(X;)

(10)

f X;:Si

where the values of fy s, are calculated as follows:

[fx‘-si]T = [fX.-,,']T [NP]~; [fx.s:] is a vec-
tor of single-literal orthogonal expansions of literal
X5, 0,..,p—1; [fx.,] is a vector of
single-literal standard expansions of single-value lit-
eral Xi, (X. = j)) .7 0)~'-up_ 1; [A]T
means matrix [A] transpose; [4]~! means ma-
trix [A] inverse; NP] is a normalized polarity
matrix, which relates polarities of multiple-valued in-
put literals to single-value literals. In this case, X;5
are the standard trivial functions stf;, and functions
fx,s; correspond to f; from formula 6.

(EXP3). Another particular case of (EXP1) is
when X1 = X. This leads to generalizations of canon-
ical MIKRM, Multiple-valued Input Sum of Products
gMISOPg and Multiple-valued Input Product of Sums
MIPOS

forms to more general types of expansions.
inding f; is done by generalizing the matrix methods
from [54]:

(EXP4). The case of (EXP1) when X1 # X and
card(X1) # 1 is a new type of generalization, which
leads to multi-level layered decomposition, in which
each layer corresponds to set X1 of variables (this is
a generalization of a tree in which a layer corresponds
to a variabkg. This is the most general category of
Generalized Orthogonal Expansions discussed here. It
isb;zlso called Ezpansion that Totally Eliminates Vari-
ables.

(EXP5). A more general case than category
(EXP1) are the Ezpansions that Do Not Totally Elim-
inate Variables. They are Orthonormal expansions
that are not Orthogonal.

By a "normal” (universe creating) set of functions
for a type FUNCTOR of expansion we will call the
set of functions which allows to create the value 1
for FUNCTOR € {EXOR, OR} and the value 0 for
FUNCTOR € {EQUIVALENCE, AND}, by applying
FUNCTOR operator to them, or to their subset. For
instance when FUNCTOR = EXOR the functions de-

scribed by the matrix

X0,2
EPM(X;) = | xo1
X2

1 01

110 11

0 01 (D
are normal since 110 @ 001 = 111 = 1. Analogously,
functions a + b, @ b are normal for FUNCTOR = OR
since (a+b) + (@ b) = 1. From practical point of view
it is reasonable to assume that constant 1 is available.
If we assume 1 available, for EXOR type of expansion
any subset of rows of orthogonal matrix EM,; 1 be-
comes a normal set of functions. Similarly for 0 in the
EQUIVALENCE type expansion.

Matrix EM,y; 1n expansions 6, 7, 8,and 9 can
be created for any set of functions stf; on variables
from set X1 such that:

1. i('lunct).ions stf; are orthogonal (linearly indepen-
ent),

2. functions st f; are normal.

The set of functions stf; that is both orthogonal and
normal will be called the orthonormal set of functions.
The expansion for the orthonormal set of functions,
the Generalized Orthonormal Expansion, is the most
general expansion discussed here. The difference with
the expansion from (EXP1) is that the single expan-
sion does not eliminate totally the variables from X1,
so that another expansions must be next used in the
tree for those variables, but using their different polar-
ities. The expansions are carried out until all pairs of
true and false minterms of function f(Xi,..., X,) are
separated. For instance, in the case of OR expansion,
each product of all standard trivial functions selected
in a branch of a tree should not include 0’s and 1’s of
the function (but can include 0’s and -’s, or 1’s and
-’s). Examples of such expansions are given in [37)].
Expansion (EXP5) becomes additionally the ” Expan-
sion that Totally Eliminates Variables” from (EXP1)
when matrix EM,;; becomes orthogonal (Keep here
in mind that matrix of orthonormal functions can be
not orthogonal). For EXOR type expansion the ma-
trix of orthonormal expansion is created by taking
any normal subset of rows from an orthogonal matrix

EM,;;;,. For OR type expansion the stf; functions
must Le disjoint and add to 1, i.e.:
stfinstf; =0 when i # j, and U stfi =1
stf; € STF
(12)

For AND type expansion the stf; functions must add
pairwise to 1 and intersect to 0:

stf. € STF

stfiUstf; = 1wheni # j, and
(13)

Remark 1. Since conditions 12 and 13 are suffi-
cient for set of functions STF to be used in OR type
orthonormal expansion, when functions stf; are dis-
Jjoint an “inhibiting gate” can be used to create the

stf,- =0

446

remaining function to make a set of normal functions.
For instance, for disjoint functions f;, fa, fs one can
create inexpensively in hardware the function f4
fi + J2 + Js to create the orthonormal set of stan-
dard trivial functions STF = {fy, fa, fs, f4}. Similarly
for AND type expansion.

Remark 2. Let us observe that when the standard
trivial functions are EXORs of variables, they are the
same as the standard trivial functions used in Walsh
expansions [17,18]. Expansions such as

f(z1,22,23,24) = (21022) fr,02, + (21 22) frg

14
can be created. A set of standard trivial function(s o}
any spectral transform [15,16,17,18] can be used this
way. Spectral coefficients give correlation of function
f to standard trivial functions and can be thus used
to find good polarities for expansion.

More detailed analysis of applications of the Gener-
alized Orthonormal Expansion 1s included in our forth-
coming paper. Here we will briefly reiterate some key
issues.

1. The Generalized Orthonormal Expansion applied
in various restricted ways to a multiple-valued in-
put function creates a family of canonical tree ex-
pansions. These expansions are called Orthonor-
mal Trees and are analogous to those for binary
[11] and multiple-valued input [38] logic, but are
much more general. The multiple-valued input
function to be manipulated by those expansions
(whether completely or incompletely specified) is
represented in a disjoint or ESOP representation;
as arrays of disjoint cubes; Ordered Multiple-
valued Decision Diagrams (OMDDs), ESOP ar-
ray of cubes, or other disjoint or ESOP represen-
tation).

2. Applying the expansion in a tree uniformly for a
fixed order of expansion variables of the same po-
larity one obtains the Single Polarity Orthonor-
mal Trees (SPO) that are the generalizations of
the binary and multiple-valued input Single Po-
l[arity %eed-Muller Trees (such as MIRKRM Trees
38,39]).

3. Applying the expansion in a tree uniformly for a
fixed order of expansion variables of various polar-
ities one obtains trees that are generalizations of
the Multiple- Valued Kronecker Reed-Muller Trees
{MIKRM Trees). We will call them Multiple Po-

arity Consistent Orthonormal Trees.

4. Applying the expansion in a tree for a fixed or-
er of expansion variables, but selecting vari-
ous variable polarities in different sub-expressions
S;ub—trees one obtains the generalizations of the
ultiple- Valued Pseudo-Kronecker Reed-Muller
Trees (MIPKRM Trees). We will call them Mul-
tiple Polarity Inconsisient Orthonormal Trees.

5. Applying the expansion in a tree for all possi-
ble but fixed orders of expansion variables, and

10.

11.

12.

selecting various variable polarities in different
sub-expressions (sub-trees) one obtains general-
izations of the Multiple- Valued Quasi-Kronecker
Reed-Muller Trees (MIQKRM Trees). We will
call them Multiple Polarity Multiple Order Or-
thonormal Trees.

. Applying the expansion in a tree for all possi-

ble orders of expansion variables, selecting vari-
ous orders in various sub-trees, and selecting vari-
ous variable polarities in different sub-expressions
(sub-trees) one obtains generalizations of the
above expansions. These new expansions are also
generalizations of circuit expansion families pre-
sented in the next section.

. The expansion algorithm can be applied with lit-

tle modification to multi-output functions: it is
applied to a vector of single-output functions,
step-by-step for each component function sep-
arately. The logically equivalent sub-trees can
be combined, which leads to DAG circuits SThis
transformation preserves the canonicity of the
tree circuits). It is also possible to combine only
some common sub-trees to preserve planar netlist
of the forest of trees for better placement to FP-
GAs.

. The trees from all the above new families

of canonical trees can be flattened to re-
spective canonical mv forms. This leads to
MIRKRM forms, MIKRM forms, MIPKRM
Eorms, MIQKRM forms, and new mv canonical
orms.

. Several other families of Orthonormal Trees can

be created by restricting types of expansions (i.e.
applying in the node of the search tree not all
possible expansions, but only the expansions of
certain type, such as EXOR type expansion, OR,
AND, EQUIVALENCE, or other). Other fami-
lies can be created by selecting various numbers
of variables in one expansion. Yet another fami-
lies can be obtained by considering separately the
variable eliminating expansions (Orthogonal Ex-
pansions) and several special subcategories of Or-
thonormal Expansions being not Orthogonal.

Orthonormal (and also non-orthonormal) expan-
sions can be constructed for arbitrary sets of mv
functions, possibly modifying first the functions
to make them normal and/or linearly indepen-
dent. This leads to new general decomposition
methods for standard library modules of certain
type.

The above four expansion types can be com-
prehensively generalized to arbitrary Symmetric
Function Type Expansions and next to Arbitrary
Function Type Expansions.

The expansions can be also generalized by replac-
ing standard trivial functions in formulas with

447

some func-
tions of them, for instance (6) is generalized to:

[= @uf.» € STF1, stf; € STF,3 (fij

13. All the above expansions can be also generalized

to incompletely specified functions [37].

5 The Family of Single Variable EXOR
Type Expansions for Multiple Val-
ued Input Logic

Our tree searching algorithm for tree expansion op-
erates on functions represented as [ON, OFF] disjoint
cube arrays. It applies recursively the expansion for-
mulas described above so that one obtains all tree ex-
pansions of a certain category and type. Each solu-
tion obtained by the algorithm is a multi-level circuit,
tree or DAG, which can be directly mapped to the
above mentioned FPGA technologies. Also, the tree
can be next flattened to expressions to be realized in
AND/EXOR PLAs. Below we will describe only the
trees for single-variable EXOR expansions from sec-
tion 4.

The search uses several heuristics for selection of
variables and expansion types in every node of the ex-
panded part of the search tree. For instance, for the

MIESOP of disjoint cubes, let us denote by FR(X;5?)

the number of cubes with literal X;5. The variable X;
is selected for expansion which has the highest value
of FR(X;5) among all values of i and j. The se-
lected type of orthogonal expansion is executed for
this variable for expanded polarity matrix composed
of the most frequent literals from the cubes which in-
clude this variable. (A specialization of this method
for binary GRMs is the well-known heuristics of select-
ing the polarity of variable which occurs most among
the cubes [16,37 45]). Other heuristics are discussed in
more detail in ((37 .

The selected expansion for the selected variable
is applied either to the entire expression, or to its
fxs part created by the former expansion. There-

fore, all those expansions are deterministic. DAGs
can be created by factorization of common sub-trees
in the trees, which is a unique process, also for multi-
output functions. Instead of factorizing, the identical
sub-functions are recognized by tautolc;g)during the
expansion process, which technique is usable for
incompletely specifed functions.

Table 2 presents the characterization of all ”Deter-
ministic, Non-partitioned Tree Ezpansions” and cor-
responding flattened forms. The code of the tree ex-
pansion (column 5), which totally specifies the type
of expansion is created by concatenating the codes of
partial expansion types parameters from the headings
of the first four columns: entire/part denotes ex-
panding entire expression in nodes (E), or partitioning
the expression first (P) (not used in Table 2, used for
non-deterministic and partitioned algorithms); or-
der of variables can be S, which means that a single
and predetermined before search order of variables is
used in all expansions; V, which means that all possi-
ble orders are investigated, but they are global in the

- stf; -stf;).

entire tree; order D means dynamically selected vari-
ables in each sub-tree independently. Relation of
order of subtrees can be G, or F, G means the same ex-
pansion on each level of a tree, F means flexible choice
of expansion type in a subtree. Expansion types are
1,2, and 3, corresponding to expansions (3), (4), and
(5), respectively. The sixth column gives the name of
the respective flattened form, if known.

The ”Partitioned” Tree Ezpansions are similar to
the one outlined above, but the expression in each
node is first partitioned to groups, and the expan-
sions are done in those groups independently. There
are several rules to create these partitions. For in-
stance, CRMPs can be created from any ESOP by
first using (3) for variable X; expansion, and next
each subfunction (the Ix,s; part) is partitioned sep-
arately. It is partitioned in a non-deterministic way
(which means a non-deterministic choice, or all choices
in the implementation). Another method to cre-
ate CRMPs starts from any CRMP (or practically a
GRM), which is next non-deterministically partitioned
to subtrees which are independently expanded. This
kind of ”partitioned”, non-deterministic methods cre-
ate a family similar to the one from Table 2. A Table
3 (not shown), analogous to Table 2, is created for
partitioned ESOPs, and particularly the partitioned
CRMPs, GRMs, and RMs. The difference is that
the first column is described by letter P, which stands
for ”partitioned”. So the letter-codes of all expansion
types from this table will have first letter P, instead of
E in Table 2. Table 3 includes all CRMPs and many
other expansions, some of them are forms, but their
counting and analysis is difficult. Finally, two tables,
the equivalents of Table 2 and Table 3, were created
for functions with multiple-valued inputs. These four
tables systematize all the expansions outlined in this
paper. The expansions are now under investigation.

Green 523] presents all forms of two binary vari-
ables. Additionally, we developed binary and ternary
forms for two and three variables. Those forms show
interesting structure and mutual relations. For in-
stance, sub-families of CRMPs for binary functions of
two variables are shown in Fig. 1. Arrows denoted by
N describe the relation of negation of variables. Ar-
rows denoted by C describe the relation of changing
the order of variables.

In our opinion, the CRMP class is a very interest-
ing one for practical considerations, since on one hand
it generates a variety of solutions (it is not included
even in the extremely large QKRM amily), and on the
other hand it is not that large as the QKRM (for in-
stance, for two-variable functions there are 16 CRMPs
and 45 QKRMs). This makes it good for symmetric
functions [10).

6 Conclusion.

In this paper the Generalized Orthonormal and Or-
thogonal Expansions have been introduced for the first
time. They generalize several extensions to Shannon
theorem including: (1) binary orthonormal expansions
of Loewenheim [5?, (22 binary ring expansions of Davio
{11}, (3) Sasao’s mu tiple-valuetf inclusive expansion

448

[46,44], (4) Perkowski’s/Johnson’s Orthogonal Expan-
sion [38].

Since the Shannon theorem and all above expan-
sions have several important applications in tautol-
ogy, complementation, implicants generation, decom-
position, Binary Decision Diagrams (BDDs), synthe-
sis with multiplexers, multi-level synthesis, EXOR cir-
cuits synthesis, study of canonical forms, and many
other fundamental problems of logic synthesis, we ex-
pect the Generalized Orthonormal Expansion Theo-
rem to play also a fundamental role in the multiple-
valued input logic.

Several well-known canonical forms have been also
generalized for the logic with multiple-valued inputs.
Several new expansions were formulated and gener-
alized. The reader must bear in mind that the ex-
pansions proposed here relate to trees and not ”flat”
forms. For instance, the GRM forms are independent
on the order of variables, but the respective GRM trees
do depend on this order. Since several expansions ob-
tained by changing the order of variables produce the
same "flat” form, counting of several forms can be dif-
ficult, as already observed for Quasi-Kronecker forms
by Green [23]. It is even more so for our forms, where
different orders of variables in subtrees are possible.

The methods shown here open a wide area of in-
teresting and new applications, especially to new FP-
GAs, in which high regularity of connections is more
important than the number of logic blocks, which re-
quirement favours trees and DAGs. Contrary to most
papers from the literature, our expansion algorithms
based on the above methods use cubes, not minterms
[37,39]. They can be easily modified for OMDD rep-
resentation which has been done for a particular case
of MIKRMs in [54). All those problems can be also
expressed in the language of matrix operations and
spectral theory [1,11,23] and the first results can be
found in [54].

Similarly as the Shannon expansion is a base of
the Binary Decision Diagrams (BDDs), which were
recently found to be a very efficient representation
for Boolean functions manipulation [56], the General-
ized Orthonormal Expansion is the base of the binary
and multiple-valued ”Orthonormal Decision Diagrams
(ODDs)” which exhibit similiar properties but have
usually less nodes. The ODDs are a starting point to
the multi-level synthesis and technology mapping for
CLi6000 and other FPGA devices [39).

References

[1] Ph.V. Besslich, Proc. IEE, Vol. 130, Part E, CDT,
No. 6., pp. 203-206, 1983. [2] Ph.V. Besslich, Proc.
Euro ASIC’91, Paris, 1991. [3] D. Brand, and
T. Sasao, Proc. of 23rd FTC, pp. 1 - 9, 1990.

[4] R.K. Brayton, et al, Logic Minimization Algo-
rithms for VLSI Synthesis, Kluwer, 1984. [5] F.M.
Brown, ”Boolean Reasoning. The Logic of Boolean
Equations”, Kluwer, 1990. [6]) A. Chan, IEEE
Trans. Comp., Vol. C-36, No. 2., Febr. 1987, pp. 212-
214. [7]M. Cohn, Switching Function Canonical
Forms over Integer Fields”, Ph.D. Dissertation, Har-
vard University, Cambridge, MA, Dec. 1960. [8]

M. Cohn, IRE Trans. Electron. Comput., Vol. EC-
11, p. 284, April 1962. [9] Concurrent Logic Inc.,
”CLI6000 Series Field Programmable Gate Arrays”
Preliminary Information, Dec. 1 1991, Rev. 1.3. ﬁ()]
L. Csanky, M. Perkowski, and I. Schaefer, ”Canon-
ical restricted mixed-polarity exclusive sum of prod-
ucts and the efficient algorithm for their minimiza-
tion”, Proc. of ISCAS’92. [11] P. Davio, et al, Dis-
crete and Switching Functions. George and McGraw-
Hill, New York, 1978. [12] E. Detjens, ”FPGA De-
vices Require FPGA-specific Synthesis Tools”, Com-
puter Design, p. 124, Nov 1990. [13] G. Dueck, and
D. Miller, Proc. of 14th ISMVL, pp. 232-240, 1986.

[14] B.J. Falkowski, and M.A. Perkowski, Int. J. o
Electr., Vol.70, No. 3, pp. 533-538, March 1991. [15
B.J. Falkowski, and M.A. Perkowski, Int. J. of Electr.,
Vol. 71, No. 3, pp. 383-396, Sept. 1991. [16] B.J.
Falkowski, and M.A. Perkowski, Proc: of ISCAS’90,
pp. 2913-2916. [17] B.J. Falkowski, I. Schaefer,
and M.A. Perkowski, ”Effective Computer Methods
for the Calculation of Hadamard-Walsh Spectrum for
Completely and Incompletely Specified Boolean Func-
tions,” Accepted to IEEE Trans. on CAD., 1991. [18]
B.J. Falkowski, and M.A. Perkowski, Proc. of 20th IS-
MVL, pp.75-82, May 1990. [19} H. Fujiwara, Logic
Testing and Design for Testability, Computer System
Series, The MIT Press, 1986. (2] [20] P. Gilliam,
” A Practical Parallel Algorithm for the Minimization
of Kronecker Reed-Muller Expansions”, M.S. Thesis,
Portland State Univ., August 1991. [21] GOTHIC
CRELLON, ”The Beginners Guide to Programmable
ASICs”, 1990. [22] D. Green, Modern Logic Design,
Electronic Systems Engineering Series, 1986. 23} D.
Green, Int. J. Electr., Vol. 70, No. 2, pp. 259-280, Jan.
91. [24] M. Helliwell, and M.A. Perkowski, Proc. of
25th DAC 1988, pp. 427 - 432. [25] Z. Hu, Int. J.
Electr. Vol. 63, No. 6, pp. 851-856, June 1987. [26]
S.L. Hurst, The Logical Processing of Digital Signals,
Crane-Russak, New York and Edward Arnold, Lon-
don, 1978. [27] K.L. Kodandapani, IEEE Trans.
Comp., Vol. C-23, pp. 332-333, 1974. [28] K.L.
Kodandapani, R.V. Setlur, IEEE Trans. on Comput.,
pp. 628-636, June 1975. [29] K.L. Kodandapani,
and R.V. Setlur, IEEE Trans. Comp., Vol. C-26, pp.
310-313, 1977. 30] H. Landmann, ”Logic Synthe-
sis at Sun”, IEEE conference paper, CH 2686 - 4 /
89 / 0000 / 0469, 1989. [31] MONOLITIC MEM-
ORIES, INC., ”XOR PLDs Simplify Design of Coun-
ters and Other Devices”, EDN, May 28, 1987. [32]
A. Mukhophadhyay, and G. Schmitz, IEEE Trans.
Comp., Vol. C-19, No. 2., pp. 132-140, February 1970.
[33] D.E. Muller, IRE Trans. Electron. Comp., Vol

EC-3, pp. 6-12, September 1954. [34] G. Papakon-
stantinou, [EEE Trans. on Compulers, Vol. C-28, pp.
163-167, February 1979. [35] M.A. Perkowski, and
M. Chrzanowska-Jeske, Proc. of ISCAS, pp. 1652-
1655, May 1990. [36] M.A. Perkowski, M. Helli-
well, and P. Wu, Proc. 19 ISMVL, Guangzhou, PRC,
May 1989, pp. 256-263. [37] M.A. Perkowski, P.
Dysko, and B.J. Falkowski, Proc. IEEE Int. Phoeniz
Conf. on Comp. and Comm., Scottsdale, Arizona, pp.
606-613, March 1990. [38] M.A. Perkowski, and
P. Johnson, Proc. 3-rd NASA Symposium on VLSI
Design, pp. 11.3.1-11.3.13. Moscow, Idaho, October
30-31, 1991. [39] M.A. Perkowski, and L-F. Wu,
” A Program to Find Quasi-minimum Canonical Reed-
Muller Trees”, PSU EE Report, Portland, OR, Febru-
ary 1992. [40] D.K. Pradhan, Fault-Tolerant Com-
puting. Theory and Technigues. Vol. I., Prentice-Hall,
1987. [41] I.S. Reed, IRE Trans. Inf.Th., Vol. PGIT-
4, pp. 38-49, 1954. [42] S.M. Reddy, /EEE Trans.
Comput., Vol. C-21, pp.- 1183 - 1188, 1972. [43]
B.R.K. Reddy, and A.L. Pai, Comp. Vision, Graph.,
and Image Proc., Vol. 42, pp. 48 - 61, 1988.
}44] R. Rudell, ”Multiple-Valued Logic Minimization
or PLA Synthesis”, M.S, Universily of California,
Berkeley, June 1986. £45] A. Sarabi, and M.A.
Perkowski, ” Fast Exact and Quasi-Minimal Minimiza-
tion of Highly Testable Fixed-Polarity AND/EXOR
Canonical Networks”, Proc. DAC’92, June 1992.
[46] T. Sasao, and H. Terada, Proc. of 9th ISMVL,
Bath, England, pp. 27 - 37, 1979. [47]} T. Sasao,
and P. Besslich, Inst. of Electr. and Comm. Eng. of
Japan, FTS86-17, pp. 1-8, Nov. 17, 1986. [48] T.
Sasao, Proc. of 20th ISMVL, pp. 128-135, May 1990.
49]IT. Sasao, FTS 91-35, pp. 29-36,1991. [50] J.M.
aul, Proc. ICCD’90, pp. 372-375, Sept. 1990. = [51
L. Schaefer, ”An Effective Cube Comparison Metho
for Discrete Spectral Transformations of Logic Func-
tions”, M. Sc., Thesis, May 1990. [52] I. Schaefer,
and M.A. Perkowski, Proc. of the ISMVL-91, Victoria,
B.C., Canada, May 1991. [53] I. Schaefer, and M.A.
Perkowski, ” Multiple-Valued Input Generalized Reed-
Muller Forms”, submitted to IEE Journal, May 1991.
[54] L. Schaefer, and M.A. Perkowski, ” An Algorithm
to Find the Minimal Multiple-Valued Input Kronecker
Reed-Muller Form”, PSU report, submitled io IEEE
Tr. on Computers. [55] SIGNETICS, PLD Data
Manual, Signetics’ Approach to Logic Flexibility for
the ’80’s”, 1986. [56] A. Srinivasan, T. Kam, S. Ma-
lik, and R.K. Brayton, IEEE Proc. of ICCAD’90, pp.
92-95,1990. [57] XILINX, Inc., ”The Programmable
Gate Array Data Book”, 1989.

binary nput,
binary output

maulliple-valued inpul,
binary oulput

mulliple-valued input,
multiple-valued output

RGRM [41, 33, 23]

MIRKRM [51, 52]

MIORKRM

GRM [23] MIKRM [51, 53] MIOKRM [25, 28]
Kronecker (KRM) [11, 23]

Pseudo-Kronecker (PKRM) [11, 23] | MIPKRM (this paper) | MIOPKRM
Quasi-Kronecker (QKRM) 11, 23] | MIQKRM (this paper) | MIOQKRM
CRMP [7, 8, 10] MICRMP (this paper) | MIOCRMP

ESOP [24, 50]

MIESOP [36, 43]

MIOESOP [13]

Table 1.

449

TRy

tgoery
n(.wq

tez‘gen

' gzu
zn gzl 0 2

gz'eruy) o

(g
o
gegen

n [CX A2 40]
" g v.h_N:\f//

5[

Zh..ﬂn:M\
n h lgoiqon]
Y,
(ge‘qzn)
w{)
(O£ 41]

W 19yi0

go'gry
Zn b}
[EFRF4)]

m gegrn'D 2
"N ooy K

oo

WAAd
\ 19410

WiD

T1dSH pauayey

WAENd

WIO 1y10

TIDAT paudney

WO |

€+T+
LTITSe €Z1EAd | grpgH 4
AisnoBoreue ‘I+-S€ aEad | ezt
LT-1Tse €Z10a3 e+THL EM—
AisnoSofeue ‘+¢-87 o 1oad ‘EHTEFT ssanqns ut
‘TH'ETT o WALIJLP SISPIO
ULIO} MU °LT €214AT g+TH
ULIo} M3U *97 AT -6+ 1
uLIo} m3U ST €14AT g+l sanqus
uLioy MU ¥g (A£7:S T+ yoed ur 2dfa
€ 5B JUIES "€7 €JAd € uorsuedxa
T S8 oures gz FAT:¢ z J0 30101
1 58 Jures ’Iz 14AT 1 aqrey
sayosuony-send 07 | EZ1DAT T
uLIoy m3u 61 €COAT ‘€+T
w0y M3U g1 £19Ad -g+1 5 A
L0y mau L] TIDAT T+
€ Se dures ‘91 £DAT € ssanqns ut SO[qRLIBA
7 seaurs ‘¢l 7OoA3 Z suosuedx? 3O I3pI0
1 se Jures ‘p1 19A3 1 qoi3 IqeLreA
soyosuory-opassd €1 | €Z145T “EHTH P
uL10] MU 7Y €153 “e+1
WLI0] MaU ° zidsa 7+l sanqns
£ S8 Sums ‘01 €453 € yowd vt 2dAa |
7 se duuws 6 zds3 ‘z uorsuedxs Jo s
1 5% Jures °g 1483 1 2010y XY
Jo%53uony “L £2108d EHTHL SIqeLeA
ULIO MU "9 £2OSd €+T JO 19pIO PIXY
3]
ULIO} M3U °C £10s9 g+ pauruuepad
A0 Aerod paxy p z19s3 7+l
JOST uUIURY ‘UOURD ¢ €083 ¢ ssanqgns
JOQNA-PaY JAmESIN T 7983 Z ur suoisuedxd
1I[MIN-P3IY 1 1osd” ‘1 1eqoi3
uoisuedxa uorsuedxa soanqns coqeiren 1o 3950 | edamuo
ULIO PAUSHEY JO WRY | aan 30 9p0d joodks | J0.19p10 3o owear L L

291dvL

450

