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Abstract
Evolutionary programs are capable of �nding good solutions to dif�cult optimization
problems. Previous analysis of their convergence properties has normally assumed
the strategy parameters are kept constant, although in practice these parameters are
dynamically altered. In this paper, we propose a modi�ed version of the 1/5-success
rule for self-adaptation in evolution strategies (ES). Formal proofs of the long-term
behavior produced by our self-adaptation method are included. Both elitist and non-
elitist ES variants are analyzed. Preliminary tests indicate an ES with our modi�ed self-
adaptation method compares favorably to both a non-adapted ES and a 1/5-success
rule adapted ES.
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1 Introduction

Evolutionary programs are probabilistic algorithms that use the principles of popula-
tion genetics to search for problem solutions. They are capable of �nding good so-
lutions to a wide variety of optimization problems, including NP-hard combinatorial
optimization problems (Bäck, 1996). The current implementations of evolutionary pro-
grams are closely related but independently developed approaches: evolution strategies
(ES) and evolutionary programming (EP). Although most of the work in this paper dis-
cusses ES, the concepts are equally applicable to EP.

It is easy to formulate an ES as a �nite state Markov chain. Under some rather mild
assumptions, Fogel (1994) proved that this Markov chain asymptotically converges to
an absorbing state (the globally optimal solution). In practice, however, most ES im-
plementations involve self-adaptations. These self-adaptations lead to non-stationary
Markov chains – thus limiting the signi�cance of previous convergence studies. In fact,
Rudolph (1999) recently constructed a non-convex function for which the ES with 1/5-
success rule does not converge to the global optimum with probability one.

In this paper, we propose a modi�cation to the 1/5-success rule. We prove our
new self-adapted (elitist) ES algorithm converges with probability one for a wide range
of (non-convex) functions. Our proof uses measure theory rather than Markov chain
theory. Measure theory possesses a number of powerful tools for characterizing sets
and spaces; it has been previously used to analyze evolutionary algorithms (Rudolph,
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1. Randomly create an initial population of individuals.

2. From the current population generate offspring by applying a reproduction
operator (described below).

3. Determine the �tness of each individual.

4. Select the �ttest individuals for survival. Discard the other individuals.

5. Proceed to step 2 unless generations have been processed.

Figure 1: The canonical form of the ( )-ES algorithm.

1997). We also prove a corresponding non-elitist ES algorithm with self-adaptation
locates the global minimum with probability one. Numerical results show that our
new ES algorithm with self-adaptation compares favorably with both the 1/5-success
rule and an ES algorithm without self-adaptation. We begin with an overview of ES.

2 Background

Each optimization problem solution can be considered as a distinct point in a �nite
space of all possible solutions. Associated with each point in this space is a �tness
value, which is a measure of goodness or quality. The ES begins with an initial popula-
tion of “parents” that are randomly chosen. Each parent encodes a set of param-
eters that completely describes a solution to the problem of interest. In the ( )-ES,
these parents (candidate solutions) produce offspring (new solutions) by mutating
one or more problem parameters. Parents and offspring compete equally for survival;
only the best (i.e., those with the highest �tness) will survive to reproduce in the
next generation. Done properly, the population will evolve towards increasingly better
regions of the search space by means of reproduction and survival of the �ttest. Its
canonical form is given in Figure 1. In the ( )-ES version, parents produce
offspring, but only the best offspring survive. Thus individuals live for only a single
generation regardless of their �tness level. This approach may result in short periods
of recession, but it does avoid long periods of stagnation. There are other variants of
the ES and the interested reader should see Bäck (1996) for further information. Both
the ( )-ES and ( )-ES versions are investigated in this paper.

The ES is readily formulated as a Markov chain. Denote by the transition
from state to state in a Markov chain operating in a �nite space . The Markov
chain is described by a sequence of transition matrices , where at the th step

is the probability of . In a stationary Markov chain, is independent
of .

Now consider a (1+1)-ES – a single parent produces a single offspring via stochastic
mutation, and the one with the highest �tness becomes the parent in the next genera-
tion. Let state and be the parent and offspring, respectively. The elitist property
permits only the �ttest to survive; in the Markov chain, means the the offspring
replaces the parent, and means the offspring is discarded.

To �x ideas, consider a simple (1+1)-ES used to �nd , which minimizes a
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highly multi-modal, objective function . The state space is �nite since any com-
puter implementation of real numbers is discrete. Offspring are produced by mutating
the parent with some term

(1)

Here is a normally distributed, random variable with zero mean and standard devi-
ation . If state is the parent and state is the offspring, then the interpretation of
becomes the probability that at generation , is of suf�cient magnitude to take the
ES from parent (state ) to offspring (state ).

Although may be kept constant, usually it is periodically modi�ed – a proce-
dure called self-adaptation – to improve the search ef�ciency. For example, Rechen-
berg (1973) proposed the 1/5-success rule to self-adapt (1+1)-ES algorithms. First, the
percentage of successful mutations ( ) is recorded over intervals of around trials,
where is the number of parameters undergoing evolution.1 Then, with , is
modi�ed as follows:

if
if
if

(2)

Asymptotic convergence in evolutionary programs with a �xed has previously
been proven by Fogel (1994). A �xed naturally makes the corresponding Markov
chain model stationary. Unfortunately, most ES implementations allow self-adaptation
of – making most ES Markov chain models non-stationary. To see this, let be a
�nite space, and suppose at step the Markov chain is at state . For each po-
tential offspring state , there is a . Assume the produced offspring has
a lower �tness so that it is discarded. Then , and at step the Markov
chain will again be in state . If is a constant, and the Markov chain is
stationary. But if is some integer multiple of , Equation (2) says it is entirely possible
that , which makes the Markov chain non-stationary. Since in practice, ES
implementations operate in this manner, Fogel’s proof cannot be used to describe their
behavior in the limit.

Self-adaptation can improve a search algorithm’s performance, but its use does not
always guarantee convergence to the global optimum. For example, Rudolph (1999)
constructed a function with one local minimum and one global minimum for which
the 1/5-success rule did not lead to convergence of an ES. Intuitively, the 1/5-success
rule may cause an ES to become stuck at a local minimum point as follows. When the
algorithm happens to search near a local minimum, a percentage of successful muta-
tions will drop below 1/5. Now, the 1/5-success rule calls for a reduction in , which
restricts the search to an even smaller neighborhood of the local minimum. Such the
search will eventually become stuck on a local minimum and miss the global minimum.

3 Modi�ed 1/5-Success Rule and Its Convergence

In this section, we propose a modi�cation to the 1/5-success rule for adapting the ES
strategy parameter . The elitist version (a (1+1)-ES) is discussed �rst, followed by a
non-elitist version (a (1, )-ES). In both cases, a theorem on the long term behavior is
provided.

1A mutation is “successful” if the offspring has a higher �tness level than its parent.
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3.1 The Elitist (1+1)-ES

We consider the following general optimization problem:

Find the global minimum of a function f over a bounded space E

subject to the conditions:

(i) the search space is Lebesgue measurable

(ii) is a measurable function2

(iii) a global minimum for exists in

(iv) if denotes the Lebesgue measure of a set , then for any positive number
,

Several remarks below explain these conditions:

1. We �rst observe that in general, stochastic search methods cannot �nd isolated
discontinuous minima. This is illustrated by the following pathological example.
Let with if and . Obviously, is
the global minimum of . However, starting from any , the probability of

hitting is zero. Therefore, we cannot expect an ES to converge to this
global optimum.

2. Conditions ( ) and ( ) are both mild and reasonable. Intuitively, a stochastic search
algorithm works only if, for any positive number , the probability of the search in-
tersecting the set is greater than zero. This establishes
the need for some concept of size or measure with respect to a subset. A very con-
venient framework is the Lebesgue measure, which provides a natural extension
to the familiar notions of area or volume (Reddy, 1998). It is also worth mention-
ing that a Lebesgue measurable space includes both open and closed sets as well
as their unions and intersections – it may even be disjoint. Measurable functions,
therefore, encompass a broad family of objective functions. It is for these reasons
we decided to work on the class of Lebesgue measurable functions on Lebesgue
measurable sets.

3. Conditions ( )–( ) are satis�ed as long as is a bounded region and is con-
tinuous, although the pair that satis�es these conditions is much broader.
Speci�cally, if is a bounded region and is a piecewise continuous function in
the general sense, i.e., there exists a �nite partition of where
each is a subregion and is continuous when restricted to , then also
satis�es conditions ( )–( ).

4. Condition ( ) is the key. It precludes from having an isolated discontinuous
optimum point. This condition cannot be dispensed with as illustrated by the ex-
ample in item 1 above. The main focus in this section is to show that this condition
is suf�cient to ensure our modi�ed 1/5-success rule for ES converges to the global
minimum with probability one.

2A measurable function is the limit a.e. of a sequence of step functions.
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We modify the 1/5-success rule as follows. Let denote the percentage of suc-
cessful mutations over ( ) trials. Then, with , is modi�ed every steps
as follows:

if
if
if
if

(3)

where is the diameter of the search region . Notice that the search is conducted
over a bounded space. Therefore, needs never exceed . It is therefore reasonable
to choose as an upper bound of , i.e., whenever reaches we stop increasing it.
The main modi�cation we made here is when , we increase , which helps
to escape any local minima. We can now investigate the convergence property our
modi�ed 1/5-success rule imparts to a (1+1)-ES.

A point is a solution to the minimization problem if

where and is the error bound, which re�ects the accuracy needed in the
application at hand. When we say a search algorithm converges with probability
one, we mean that, for any error bound , the algorithm converges to a solution
corresponding to this error bound with probability one. The convergence of a (1+1)-ES
with our modi�ed 1/5-success rule is expressed in the following theorem:

THEOREM 1: Let be an objective function de�ned over a search space . If the pair ( )
satisfy conditions (i)–(iv) above, then a (1+1)-ES with self-adaptation as given in Equation
will converge to the globally minimum value of with probability one.

PROOF: Let us assume that the error bound is . In other words, is a solution if

During each iteration of the ES, a parent with value will produce an offspring with
value , where is a normally distributed random variable. The parent and
its offspring will compete equally for survival; we update (replace) the parent with its
offspring if

Each update improves the �tness (decreases ) by more than . Hence, the globally op-
timal solution can always be reached from any initial point after a �nite number
of updates. To complete the proof, we need only show that if is not a solution, i.e.,

then with probability one, is updated within a �nite number of steps. We de�ne

Notice that

(4)

Evolutionary Computation Volume 9, Number 2 151



G. Greenwood and Q. Zhu

This allows us to de�ne the following set

By condition (iv), .
We proceed by way of contradiction. Suppose that is not updated in a �nite

number of steps. Then in any steps, , and the self-adaptation mechanism will
continually double until it reaches an upper bound of in a �nite number of
steps, which promotes ergodicity. With normally distributed and , we
have

Prob (5)

The probability that no update occurs at the th step is

Prob
Prob (6)

where the latter inequality results from Equation (4). It then follows that

Prob
Prob

Since we assume that is not updated, remains unchanged in the whole process.
Since each iteration is independent, the probability of no update occurring in consec-
utive iterations equals . Thus,

(7)

Hence, if is not a solution, then within a �nite number of steps an update is guaran-
teed to occur.

It is important to emphasize several key points. First, if is a global minimum,
then the probability that no update to occurs is because
of the elitist strategy in the ES. Thus, the algorithm will not discard the globally optimal
solution. Second, the proof does not depend on a normally distributed . The only
requirement is we must have , which means .
Any distribution of with a density function that is nowhere zero over satis�es this
requirement. The normal distribution has this property, but so do many others. This
has strong implications. Some researchers suggest Cauchy distributed mutations with
strategy parameter can sometimes enhance the search (Yao et al., 1997). The above
proof also holds for these versions of ES.

We don’t differentiate between two function values that differ less than the positive
error bound . In fact, the validity of the above proof requires that an update occurs
if and only if the �tness has increased by more than the error bound . To see why
this is necessary, suppose the current state is not the global solution and assume no
improves �tness (decreases ) by more than . That is,
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Then by Equation (6), . This means the limit in Equation (7) no longer holds,
the parent is never replaced, and convergence becomes impossible. Conversely,
makes , and the zero product limit is attained.

Restricting the updates only to instances where a �tness improvement of more
than occurs should not be considered a limitation. In practice, is either the machine
epsilon (i.e., machine precision) or the desired accuracy – no practical bene�t is there-
fore gained from �tness improvements less than the error bound . In fact, Theorem
1 is invalid for because the probability of a stochastic search algorithm exactly
hitting the global optimum is zero.

While Theorem 1 asserts an ES converges with probability one, it does not provide
information on the rate of the convergence. It is possible to compute convergence rates
for very speci�c objective functions (Bäck, 1996), but our assumptions about are quite
general. The signi�cance of this convergence theorem is as follows. Arguably the best
known evolutionary search algorithm is the genetic algorithm. Fogel (1994) showed
genetic algorithms can converge to local optima if they don’t use some mutation in
producing offspring. Our results here show that with the modi�ed 1/5-success rule,
we can avoid stagnation on local minimum points. This means, in principle, one can
always run an evolutionary program longer if the current solution is unsatisfactory –
something that may prove to be futile with genetic algorithms. Some numerical results
comparing our modi�ed self-adaptation ES with other methods are given in Section 4.

3.2 The Non-Elitist (1, )-ES

We now investigate long term behavior in the non-elitist ES algorithm with self-
adaptation and . Because individuals live for only a single generation, it will
be necessary to track the best �t solution off-line. More precisely, let be
a sequence of length , where each is the single parent in generation . Additionally,
de�ne the off-line tracking sequence , where and

Note that for any integer ,

We say that a sequence locates the global minimum, provided that
converges to the global minimum of .

Offspring in the (1, )-ES are produced as before (see Equation (1)), but the
self-adaptation of parameter is determined as follows: We track the percentage rate

of updates of in steps and adapt every steps according to Equation (3).
Note that here we use the percentage update rate of instead of because the
non-elitist nature of the algorithm makes no longer an indicator of how much
progress has been made. Our objective is now to prove the following theorem:

THEOREM 2: Let be an objective function de�ned over a search space . If the pair ( )
satis�es conditions (i)–(iv), then a (1, )-ES, with self-adaptation de�ned by Equation (3), will
locate the global minimum of with probability one.

PROOF: Let us assume that the error bound is . Observe that each update of im-
proves the tracking value by at least . Therefore, a global minimum will be reached by

after a �nite number of updates. Thus we need only show that for any , if has
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not yet reached the global minimum, i.e.,

then with probability one, is updated within a �nite number of steps. De�ne

and

Then
(8)

Now, by condition (iv), . If is not updated in a �nite number of steps, i.e.,
, for any , then the self-adaptation mechanism

will continually increase until it reaches an upper bound of , which promotes
ergodicity. With normally distributed and , we can �nd a positive constant

such that for any ,

Prob (9)

With a normally distributed , a value for is easily computed. For any ,

Prob

Since for any pair , we have

This means that

Therefore,

Prob

Now, in each iteration , since , the probability that no update occurs
is

Prob

Prob

where for each , has distribution . It then follows that

Prob

Prob
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Since each iteration is independent, the probability of no update for after consecu-
tive iterations equals . Now

and

which implies that

Hence if has not reached the global minimum, then within a �nite number of
steps, an update of is guaranteed to occur.

Two points are worth observing. First, modi�cations to the self-adaptation param-
eter are tied to tracking sequence updates rather than to the number of successful
mutations directly. This may appear counterintuitive vis-a-vis the original 1/5-success
rule because the tracking sequence plays no direct role in reproduction. However, the
number of updates to the tracking sequence are proportional to the number of success-
ful mutations, so a philosophical consistency actually is maintained. Secondly, observe
that Theorem 2 says locate – it does not say converge. This is a non-elitist algorithm and
so the globally optimum individual would be discarded in the next generation. Nev-
ertheless, the tracking sequence would converge to the globally optimum
value.

4 Numerical Results

In this section, we compare our modi�ed 1/5-success rule with the original 1/5-success
rule and an ES with no self-adaptation. Both elitist and non-elitist versions are inves-
tigated. A number of objective functions are used as test cases (Yao et al., 1997). The
global optimum is in all cases.

1. Six-Hump Camel-Back Function

with a search region .

2. Sphere Model

with a search region .

3. Generalized Rastrigin’s Function

with a search region .
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4. Generalized Griewank Function

with a search region .

All three adaptation rules were tried with the elitist ES version, but the original
1/5-success rule was not tried with the non-elitist ES version because it was never in-
tended to work with it. All trials were run for 2500 generations with the single strategy
parameter initialized to – a value that appears to provide reasonable performance
in the no adaptation method over all test functions. The percentage of successful
mutations were recorded over intervals of 50 trials. In the non-elitist version, the single
parent produced seven offspring. The means ( ) and standard deviations ( ) are
averaged over 50 runs. An initial population was randomly generated and stored for
use in all subsequent runs. The results are summarized in the following tables.

Elitist Version:

Without Adaptation 1/5-Success Rule Modi�ed 1/5-Success Rule
Functions

9.14
2.20 3.35 3.05
5.85 2.36

Non-Elitist Version:

Without Adaptation Modi�ed 1/5-Success Rule
Functions

1.55 2.46 2.17 4.68
4.13 1.35 6.07 2.38

8.45 1.17 8.55 1.02
4.96 8.66

In functions , , and , the elitist version of the modi�ed 1/5-success rule com-
pares favorably with both the original 1/5-success rule and stochastic search without
adaptation. All these functions have multiple local optimal points. On the other hand,
as expected, the stochastic search method with variable does not do as well for con-
vex functions with only a single minimum. This is re�ected in the test results for .
Conversely, the more rugged the �tness landscape, the better the modi�ed 1/5-success
rule performs compared to others. In particular, both the elitist and non-elitist ver-
sions with the modi�ed 1/5-success rule outperformed the other search algorithms in
function , which is multi-modal with many local optima.

5 Conclusion

We have proposed an ES algorithm with self-adaptation that uses a modi�ed 1/5-
success rule. Formal proofs have been included to show that our adaptation method
permits an ES to converge to the optimum in the elitist case with probability one; it
locates the globally optimum solution with probability one in the non-elitist case. For a
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number of benchmark functions, numerical results show that our modi�ed 1/5-success
rule compares favorably with both a non-adapted ES and an ES adapted by the original
1/5-success rule.
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