Chapter 8 Discrete time system Description

8.1 systems

$$y(k) = \mathscr{O}_{k}\{x(k)\}$$

Example: unit delay

$$y(k) = \mathcal{O}_{\mathcal{A}}\{x(k)\} = x(k-1)$$

Name	Transfer characteristic	Symbol
Proportion	y(n) = Kx(n)	x(n) $y(n)$ K
Shift	y(n) = x(n-k)	x(n) $n-K$ $y(n)$
Adder	$y(n) = x_1(n) + x_2(n)$	$x_2(n)$ $x_1(n)$ $y(n)$
Multplier	$y(n) = x_1(n)x_2(n)$	$x_2(n)$ $x_1(n)$ $y(n)$
Nonlinear static element	y(n) = N[x(n)]	$x(n) \qquad y = N(x) \qquad y(n)$

Figure 8-1 Elementary digital systems

8.2 Classifications of discrete systems 1. Linear system

*observes <u>the principle of superposition</u>, the system parameters are independent of the magnitudes of the inputs described by linear difference equations.

Superposition principle: the operation to a weighted sum of inputs is the weighted sum of operations to each input.

$$\mathscr{O}\left\{\sum_{i}a_{i}x_{i}(k)\right\} = \sum_{i}a_{i}\mathscr{O}\left\{x_{i}(k)\right\}$$

*Homogeneity

$$\mathcal{O}\{ax_i(k)\} = a \mathcal{O}\{x_i(k)\}$$

*additivity

$$\mathscr{O}\left\{\sum_{i} x_{i}(k)\right\} = \sum_{i} \mathscr{O}\left\{x_{i}(k)\right\}$$

2. Time-invariant systems

 * observes <u>principle of time-invariance</u>, the system parameter are independent of time variables, described by constant-coefficient difference equations.

Principle of time-invariance: the time-shift in input causes the same time-shift in output.

If

for any k_0

Examples: check the linearity

(1).
$$y(k) = x(k) - x(k-1)$$
 yes

(2).
$$y(k) = \sum_{n} x(n)h(k-n)$$
 yes

(3).
$$y(k) = \sin[x(k)]$$
 no

(4).
$$y(k) = x^2(k)$$
 no

(5).
$$y(k) = 3x(k) + 4$$
 no

(6).
$$y(k) = |x(k)|$$
 full – wave rectifier **no**

Examples: Check the time-invariance

(1).
$$y(k) = 5x(k)$$
 yes

(2).
$$y(k) = x(k) - x(k-1)$$
 yes

(3).
$$y(k) = x(-k)$$
 no

(4).
$$y(k) = kx(k)$$
 no

3. Instantaneous/non-instantaneous systems

Instantaneous system – the output an any instant depends on the input at that instant only,
 memoryless

<u>Example:</u>

$$y(k) = ax(k)$$

* Non-instantaneous system – with memory *Example:*

$$y(k) = \sum_{n=-\infty}^{k} h(k-n)x(n)$$

The output at k depends on the input for all it, in $\{-\infty, k\}$

* Can memoryless system operation be expressed as "convolution summation" ?
 <u>Example:</u>

$$y(k) = ax(k)$$

$$=\sum_{n=-\infty}^{k}a\delta(k-n)x(n)$$

$$=h(k)*x(k)$$

With
$$h(k) = a\delta(k)$$

4. Causal/Non causal systems

* causal system – Non anticipative system.

- The current output of the system depends on current and/or past input of the systems, <u>NOT</u> the future input.

If
$$x(t) = 0$$
 for $t \le t_0$
then $y(t) = 0$ for $t \le t_0$

* Non causal system/Anticipative system

- The current output of the system may depends on future input as well as current and/or past input.

- * "Anti-causal" system The current output depends on future and current input, **<u>NOT</u>** past input.
- * "Off-line" system may be modeled as non-causal since "future" input is available.

<u>Examples:</u>

(1).
$$y(k) = \sum_{n=-\infty}^{k} h(k-n)x(n)$$

(2) $y(k) = \sum_{n=-\infty}^{k+1} h(k-n)x(n)$

(2) $y(\kappa) = \sum_{n=-\infty}^{\infty} h(\kappa - n) x(n)$

(3).
$$y(k) = x(-k)$$

(4). y(k) = x(k-1) + x(k+1)

Answers:

- (1). Causal(2). Non causal
- (3). Non causal
- (4). Non causal

Memoryless systems are causal, but not vice versa. Causal system can be (and usually are) with memory.

5. Stable/Unstable systems

stability – many definations
 BIBO – A system with a bounded input produces only bounded output

for $|x(k)| < \infty$, we have $|y(k)| < \infty$.

- * Unstable system Bounded input produces unbounded output.
- * In a practical system, no signal can grow without limit, but variable can reach magnitudes that can overload the system and may cause physical damage.
- * Examples:
 - Resistor (Stable)

 $v = i \cdot R$ if i is bounded then v is bounded

Capacitor (Unstable)

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(t)u(t)dt = \left(\frac{i(t)}{C}\right)r(t)$$

(In this sense)

6. Invertible system

- * Input signal x(k) can be determined uniquely by observing output signal y(k), i.e. if and only if distinct input produce distinct output!
- * <u>Examples:</u>

(1).
$$y(k) = x^{3}(k)$$

(2). $y(k) = 2x(k+1) + 3$
(3). $y(k) = x^{2}(k)$
(4). $y(k) = \sin[x(k)]$

* <u>Answers:</u>

(1)and(2) are invertible(3)and(4) are non-vertible