Chapter 8 Discrete time system Description

8.1 systems

$$
y(k)=\mathcal{O}\{x(k)\}
$$

Example: unit delay

$$
y(k)=O,\{x(k)\}=x(k-1)
$$

Name	Transfer characteristic	Symbol
Proportion	$y(n)=K x(n)$	$\stackrel{y(n)}{\circ} \longrightarrow K \xrightarrow[0]{y(n)}$
Shift	$y(n)=x(n-k)$	$\stackrel{x(n)}{\circ}+n-K \xrightarrow[0]{y(n)}$
Adder	$y(n)=x_{1}(n)+x_{2}(n)$	$\begin{aligned} & x_{2}(n) \\ & x_{1}(n) \quad y(n) \end{aligned}$
Multplier	$y(n)=x_{1}(n) x_{2}(n)$	
Nonlinear static element	$y(n)=N[x(n)]$	$\stackrel{x(n)}{\circ} y=N(x) \quad y(n)$

Figure 8-1 Elementary digital systems

8.2 Classifications of discrete systems

1. Linear system

*observes the principle of superposition, the system parameters are independent of the magnitudes of the inputs described by linear difference equations.
Superposition principle: the operation to a weighted sum of inputs is the weighted sum of operations to each input.

If

Then

or equivalently

$$
\mathcal{O}\left\{\sum_{i} a_{i} x_{i}(k)\right\}=\sum_{i} a_{i} \mathcal{Q}\left\{x_{i}(k)\right\}
$$

*Homogeneity

$$
\left.\subset a x_{i}(k)\right\}=a \subset\left\{x_{i}(k)\right\}
$$

*additivity

$$
\mathcal{O}\left\{\sum_{i} x_{i}(k)\right\}=\sum_{i} O\left\{x_{i}(k)\right\}
$$

* linearity $=$ homogeneity + additivity

2. Time-invariant systems

* observes principle of time-invariance, the system parameter are independent of time variables, described by constant-coefficient difference equations.
Principle of time-invariance: the time-shift in input causes the same time-shift in output.
If

for any \boldsymbol{k}_{0}

Examples: check the linearity

(1).	$y(k)=x(k)-x(k-1)$	
(2).	$y(k)=\sum_{n} x(n) h(k-n)$	yes
(3).	$y(k)=\sin [x(k)]$	yes
(4).	$y(k)=x^{2}(k)$	no
(5).	$y(k)=3 x(k)+4$	no
(6).	$y(k)=\|x(k)\|$ full - wave rectifier	no
		no

Examples: Check the time-invariance

$$
\begin{array}{lll}
\text { (1). } & y(k)=5 x(k) & \text { yes } \\
\text { (2). } & y(k)=x(k)-x(k-1) & \text { yes } \\
\text { (3). } & y(k)=x(-k) & \text { no } \\
\text { (4). } & y(k)=k x(k) &
\end{array}
$$

3. Instantaneous/non-instantaneous systems

* Instantaneous system - the output an any instant depends on the input at that instant only,
- memoryless

Example:

$$
y(k)=a x(k)
$$

* Non-instantaneous system - with memory

Example:

$$
y(k)=\sum_{n=-\infty}^{k} h(k-n) x(n)
$$

The output at k depends on the input for all it, in $\{-\infty, k\}$

* Can memoryless system operation be expressed as "convolution summation" ?

Example:

$$
\begin{gathered}
y(k)=a x(k) \\
=\sum_{n=-\infty}^{k} a \delta(k-n) x(n) \\
=h(k) * x(k) \\
\text { With } h(k)=a \delta(k)
\end{gathered}
$$

4. Causal/Non causal systems

* causal system - Non anticipative system.
- The current output of the system depends on current and/or past input of the systems, NOT the future input.

$$
\begin{array}{ll}
\text { If } & x(t)=0 \text { for } t \leq t_{0} \\
\text { then } & y(t)=0 \text { for } t \leq t_{0}
\end{array}
$$

* Non causal system/Anticipative system
- The current output of the system may depends on future input as well as current and/or past input.
* "Anti-causal" system - The current output depends on future and current input, NOT past input.
* "Off-line" system may be modeled as non-causal since "future" input is available.

Examples:

$$
\begin{array}{ll}
\text { (1). } & y(k)=\sum_{n=-\infty}^{k} h(k-n) x(n) \\
\text { (2). } & y(k)=\sum_{n=-\infty}^{k+1} h(k-n) x(n) \\
\text { (3). } & y(k)=x(-k) \\
\text { (4). } & y(k)=x(k-1)+x(k+1)
\end{array}
$$

Answers:

(1). Causal
(2). Non causal
(3). Non causal
(4). Non causal

Memoryless systems are causal, but not vice versa. Causal system can be (and usually are) with memory.

5. Stable/Unstable systems

* stability - many definations

BIBO - A system with a bounded input produces only bounded output

$$
\text { for }|x(k)|<\infty \text {, we have }|y(k)|<\infty .
$$

* Unstable system - Bounded input produces unbounded output.
* In a practical system, no signal can grow without limit, but variable can reach magnitudes that can overload the system and may cause physical damage.
* Examples:

Resistor (Stable)

$$
v=i \cdot R \text { if } i \text { is bounded then } v \text { is bounded }
$$

Capacitor (Unstable)

$$
v(t)=\frac{1}{C} \int_{-\infty}^{t} i(t) u(t) d t=\left(\frac{i(t)}{C}\right) r(t)
$$

(In this sense)

6. Invertible system

* Input signal $x(k)$ can be determined uniquely by observing output signal $y(k)$, i.e. if and only if distinct input produce distinct output!
* Examples:

$$
\begin{array}{ll}
\text { (1). } & y(k)=x^{3}(k) \\
\text { (2). } & y(k)=2 x(k+1)+3 \\
\text { (3). } & y(k)=x^{2}(k) \\
\text { (4). } & y(k)=\sin [x(k)]
\end{array}
$$

* Answers:

(1) and(2) are invertible
(3)and(4) are non-vertible

