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Abstract

This is a review paper that presents work done at Portland State University and associated groups in years

1989 - 2001 in the area of functional decomposition of multi-valued functions and relations, as well as some

applications of these methods.

I. INTRODUCTION

The data collected in many research, business, medical, manufacturing and robotics domains contain valuable

information. Since the volume of the data is often large (the number of factors (features) it depends on may be

on the order of 102 or even 103 in some medical applications and the number of records on the order of 109) the

problem of automatic data analysis and information retrieval becomes more important than ever.

Knowledge Discovery in Databases (KDD) and Data Mining is the research area focused on problems of

automating data analysis and information retrieval from large data sets. While KDD usually refers to the overall

process of the data analysis and information retrieval, including selection, preprocessing and transformation of

data, data mining refers to the very process of application of speci�c algorithms for extracting useful information

from the data. The data mining algorithm is any algorithm that �ts hypotheses to data or enumerates patterns

from data [21].

Learning general concepts from limited number of instances of data is the domain of inductive inference. It

consists of generating hypotheses, �tting them to the data and selecting the one(s) which best describe the data.

To represent hypotheses, learning system can use a variety of models, such as linear discriminator, nearest neighbor

classi�er, decision tree, neural network, etc. Learning process consists on adjusting model parameters according

to certain performance criteria. There is no universally best model for all possible problems. For instance, Bayes'

classi�ers seem to provide good results in medical domains [34], neural networks are likely to perform well in parallel

domains, while decision diagrams are better when dealing with sequential domain problems [63]. The selection of

the model depends on the type of the problem and constitutes the learning bias.

Machine learning is a process of examination of classi�ed data cases in order to build a classi�er that would

correctly classify future data for which class assignments are not known. The quality of the classi�er is usually

scored based on it's predictive accuracy. In some domains however, predictive accuracy is not the only measure of

interest for the users. What is often more important is interpretability of rules encoded in the classi�er.

The interpretation of the results is especially important in medical applications where not only correct decision

is desired but also explanation why that particular decision has to be made. That is why systems which provide

human understandable results like decision diagrams are considered to be more acceptable than "black box"

classi�er models like neural networks. It is not because the former provide more accurate decisions than the later,

it is because the decision process can be easily followed and understood in one case and is hidden to the user in

the other.

The methods following these criteria can be used for any application requiring development of human under-

standable rules in technical, medical and other domains. Since 1989 our group has been working on a new method

based on decomposition as a way of simpli�cation of the description of data. It follows the general Occam Razor

principle, restating in the present context, that simpler description of data has better generalization properties.

The decomposition type is the well known (from the logic synthesis area) Ashenhurst-Curtis [14] simple serial

decomposition and its modi�cations [27] and generalizations [69, 70, 47] but its application to decomposition

of relations and constructive induction in Machine Learning and Data Mining is novel. Our decomposi-

tion programs implementing these ideas were the �rst decomposer being able to decompose large, incompletely



speci�ed, non-noisy and noisy functions and relations, common in machine learning applications (medical among

others)[50, 52, 56, 23, 29, 27]. In the framework of the decomposition process, methods for e�ective data re-

duction (removing vacuous variables) have been developed to further simplify data description and speed up the

decomposition process [29, 46].

Learning Bias

Learning process is always biased. Learning systems are biased too. We make assumptions and choices when

building learning systems, implementing them and adjusting their parameters. These are all biases. Learning

biases can be divided into two major categories: model selection bias and hypothesis selection bias [15].

Model Selection Bias

To build a classi�er, a model for it has to be selected. The choice depends on the problem the classi�er will

be used for, and includes, but is not limited to, factors like simplicity of implementation, speed, accuracy, and

personal preferences of the designer. The list of possible choices includes Linear Discriminators, Nearest Neighbor

Classi�ers, Decision Trees [61, 62, 63] and Diagrams, Neural Networks, Feature Vectors, First Order Logic and

many others.

Hypothesis Selection Bias

Within a framework of a given classi�er model many hypotheses or theories may be formulated. The choice of

the best one is often a diÆcult task. To facilitate this task, selection criteria have to be determined which are

simple and robust enough to make hypothesis selection an eÆcient process. The list of possible choices includes

for instance Principle of Multiple Explanations, Occam's razor principle, and PAC learning [71, 76].

In the last few years incompletely speci�ed, multiple-valued relations (functions in particular) are becoming in-

creasingly important in image processing, machine learning, knowledge discovery, data-base optimization, arti�cial

intelligence, image coding, automatic theorem proving and veri�cation [51]. The appropriate representation of such

relations is very important as it not only allows for storing larger functions, but also, to carry eÆciently appropriate

calculations. For instance, success of many binary decomposers depends on appropriate innovative representation

of Boolean functions: cube calculus [73], spectral transforms [68], decision diagrams [35], [66], or rough partitions

[42]. Good representations for large multiple-valued relations, both completely and incompletely speci�ed, which

would allow for representing uncertainties is essential for e�ective storing and processing of the type of data that

are taken from practical technical and medical domains.

II. Generalized MV values and Relations

A multiple-valued (MV) directed relation (or function), can be in general de�ned by a set of feature vectors

(Table 1). Each vector element is either a number or a set of numbers, or '{' symbol. The meaning of each is the

following:

� A number represents MV variable value.

� A set of numbers represents generalized MV value. Generalized MV value refers to the situation where a

variable can take any value from a subset of all possible values for that variable. For instance, 0,3 corresponds

to the situation where a variable can take either 0 or 3 value (but not both).

� '{' symbol is a special case of generalized MV value where the set of values the variable can take is equal to

the set of all possible values for that variable. The symbol comes from the binary logic where it represents

don't care f0; 1g value.

Generalized MV values are used in the Table 1 to compress the data. For instance vector #2 (1 1 0 0 0 1,2) is

equivalent to two vectors (1 1 0 0 0 1) and (1 1 0 0 0 2). Some variables can be designated to be output variables

and the relation becomes a directed relation expressing relationship between independent (input) and dependent

(output) variables. If the output variable(s) can take only single values (generalized MV value cardinality is equal

to 1) then the directed relation becomes a function (for instance a in Table 1 selected to be the output variable).

vector # a b c d f g

0 0 0 0 0 0,1 -

1 0 1 1 0,1 1,2 0,1

2 1 1 0 0 0 1,2

3 0 0,2 0 1 0,3 0,2

4 1 1 2 1 0,3 0

5 1 0 - 1 0,4 1

Table 1: Four-variable relation



In a common classi�cation task a data sample needs to be assigned to one of the existing classes; data sample

needs to be classi�ed. Let us assume that there are three classes the input sample can be assigned to: 'a car',

'a tank', and 'an airplane', denoted as MV values f0g, f1g and f2g, respectively. Let us also assume that expert

decision is: 'I do not know, but not an airplane'. Now the question is: how to represent expert's uncertainty

without loosing any information? The answer is generalized MV value, fa car or a tankg, denoted by f0; 1g. The

concept of generalized MV values has various applications in Machine Learning and Knowledge Discovery from

Databases. For instance, several ML benchmarks from Machine Learning benchmarks repository at U.C. Irvine,

are relations: hayes, 
are1, 
are2. Relations have also been used in multiple-level logic design [75] and design of

non-deterministic state machines. An example of non-deterministic state machine is a three-state binary counter

realized with two 
ip-
ops. There are four possible combinations of 
ip-
op outputs: f00,01,10,11g. If the counting

order is 00 ! 01 ! 10 ! 11 and we want to have a transition from state 11 to any state of the counter but not

to 11, then the transition from state 11 is described by a generalized MV value f00; 01; 10g. The generalized MV

values can also be used for discretization of continuous variables that occur in many ML applications. For instance,

if we want to discretize a continuous value 3.5 we have a choice between selecting values 3 and 4. The best approach

seems to be keeping both values (f3; 4g generalized MV value) and postpone the selection of one of them until

more information is available (principle of indi�erence).

III. Decomposition approach to Constructive Induction

A. Problem formulation and previous research

The idea of decomposition of a complex system into an organized set of simpler subsystems to simplify the

system description is not new. In cognitive science it is known as Functional Analysis [13]. The basic idea is

that the system is viewed as computing a function. Functional analysis is a process of decomposing that function

into a structure of simpler subfunctions in a hope that the result will be easier to explain (Occam razor principle).

Each subfunction can be viewed as de�nition of certain concept1. Another important notion of cognitive science

is Functional Architecture and it can probably be best de�ned by the following sentence [60]: Specifying the

functional architecture of a system is like providing a manual that de�nes some programming language. Indeed,

de�ning a programming language is equivalent to specifying the functional architecture of a virtual machine. The

functional architecture contains a set of primitive operations or functions (concept de�nitions). This means that

these basic functions cannot be explained by being further decomposed into less complex subfunctions and constitute

the vocabulary of our programming language.

Using learning systems terminology specifying functional architecture (programming language) is equivalent to

specifying classi�er model while developing hypothesis corresponds to writing a program in this language.

There are two main approaches to the analysis of complex systems: probabilistic and deterministic. Proba-

bilistic approach requires the existence of global probability distribution over the variables of the system and the

decomposition consists on determination of a set of simplest possible marginal probabilities. Deterministic ap-

proach requires speci�cation of the global relation over the variables of the system and the decomposition consists

on determination of a set of simplest possible relations describing the system.

Probabilistic system can in general be represented by a contingency table, two- or multi-dimensional, each cell

of which contains the number of times a combination of variables corresponding to that cell has been observed.

These numbers, called frequencies, normalized to the total number of observations are called relative frequencies or

probabilities. In such table sum of probabilities always sums up to 1. Figure 1a shows an example of contingency

table with frequencies corresponding to every combination of the system variables.

Figure 1b was created from Figure 1a by setting up a threshold on the cell frequencies. All the cells with

frequencies greater or equal to 70 were assigned the value 1, those with frequencies smaller than 70 were assigned

the value 0. If we designate variables c and d to be the output variables then functions c = f1(a; b) and d = f2(a; b)

are binary functions AND and OR respectively. If the threshold on the cell frequencies is set up on 50 instead of

70, we obtain the contingency table in Figure 1c. The Figure 1c doesn't represent a function anymore. It can be

either interpreted as a function with noise or directed relation. Karnaugh maps for functions (relations) c and d

corresponding to the contingency tables in Figures 1b and c are shown in Figures 1d and e.

The construction presented above shows the relation between probabilistic and deterministic approaches to the

system analysis. Deterministic system can be viewed as a Y ES, NO simpli�cation of the probabilistic system and

often constitutes the only available information on the system. In many situations it may be impossible or unrea-

sonable to collect the global frequency (probability) information which is statistically reliable but it is relatively

easy to collect meaningful information on the relation between di�erent variables of the system. Deterministic

approach is also justi�ed if many cells of the contingency table contain 0, or the cells contain only two distinct

values (or values which are close to two distinct values) of frequency which may be replaced with 0s and 1s.

1Webster: Concept - an idea of what a thing in general should be
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Figure 1: Contingency tables

In the presented research, decomposition theory and algorithms for both deterministic and probabilistic

multiple-valued relations (systems) have been developed [29].

Constructive Induction (concept proposed �rst by Michalski [45]) is a two level learning method which consists

of searching for new concepts in data �rst (search for an adequate representation space), and then searching for

the best hypothesis within the space of new concepts. The process of discovering new concepts is equivalent to

specifying a vocabulary (variables) to be used while writing a program (hypothesis) using certain programming

language (functional architecture).

Constructive induction is based on a number of ideas and assumptions [4]:

� It is based on the idea the quality of the knowledge representation space is the most important factor in

concept learning. If the representation space is of high quality (i.e. chosen attributes or descriptive terms

are of high relevance to the problem at hand), learning process will be relatively easy and will likely produce

hypotheses with high predictive accuracy. If the quality of the representation space is low (i.e. attributes are

of little relevance to the problem), a learning process will be complex and no method may be able to produce

good hypotheses.

� It searches for patterns in data and/or learned hypotheses, and uses them for proposing knowledge space

transformations (that may expand or/and contract the space).

� It creates new descriptors (attributes or terms) that may be very complex, multilevel functions or transfor-

mations of the original descriptors).

� It postulates that produced concept descriptions should be comprehensible to human experts, so that they

are relatively easy to interpret and express in terms and forms used by experts.

Many constructive induction methods have been developed and they are usually classi�ed based on the strategy

employed for generating new representation spaces. They may be classi�ed into the following categories:

� Data Driven Constructive Induction

The input data are analyzed and, based on the relationships between the input variables, changes are made

in the representation space. [64], [6].

� Hypothesis Driven Constructive Induction

Hypotheses generated in the second step are used for selection of the representation space. The whole process

(both steps) is iterated until the satisfying solution is found [19], [48].

� Knowledge Driven Constructive Induction

The new representation space is generated based on expert-provided domain knowledge [36], [37].

� Multistrategy Constructive Induction is a combination of any of the above types [36], [45].



The idea of using decomposition in order to construct a network of functional blocks (concepts) matching given

data was presented �rst by Lendaris and Stanley [40], [39], [38]. They use the theory of decomposition of binary

functions developed in [5], [14], and [33] as a tool for the development of self-organizing systems, networks of

adaptive logic elements in particular. The structure of the network (hypothesis) is modi�ed according to the

constraints in the environment pertinent to the task (function to be learned known by the teacher). Structure of

the network analyzed in [40] and [39] is a disjunctive cascade of universal logic elements similar to Maitra cascades

[43]. Subfunctions relevant to the task are discovered in the process of adjusting parameters of universal logic

elements until they match the learning data. The approach was applied to completely and incompletely speci�ed

binary functions.

The standard machine learning approach is focused on learning a single concept from data. In our approach

various decompositions based on fundamental Ashenhurst-Curtis type decomposition are used to decompose data

into an organized multilevel structure of primitive (nondecomposable) relations (concepts). All the relations may

be both completely and incompletely speci�ed, and variables can be shared between di�erent relations.

The method can be classi�ed as multistrategy constructive induction method. An example of application of the

method is shown in Fig. 2.

car4

4

4

4

3

3

3

buying

maint

doors

persons

lug_boot

safety

MVFC=125MVFC=3456

cost
4

4

4

3
4

3
comfort 3

3 tech

4

4
4 car

buying

maint

doors

lug_boot
persons safety

Figure 2: Discovering new concepts

The benchmark car described in [7] was developed for evaluating cars based on their price and technical char-

acteristics. Three new concepts (variables) have been discovered in the decomposition process: cost, comfort, and

tech. Concept cost depends on input variables buying (buying price), and maint (maintenance cost). Concept

comfort depends on input variables doors (number of doors), lug boot (luggage boot), and persons (number of

persons). Variables safety and comfort de�ne concept tech (technical characteristics), and the original concept car

can be now expressed in terms of the concepts tech and cost. The complexity of the new structure is much smaller

than the original one and according to the Occam Razor principle should have better generalization properties.

In our approach, data driven constructive induction is performed in the attribute reduction (vacuous variables

removing) and variable partitioning steps while the hypothesis driven constructive induction is performed in the au-

tomatic hypothesis selection step. Possible extensions include knowledge-driven constructive induction by allowing

the user to participate in the hypothesis selection process.

B. Decomposition of Multiple Valued functions and relations

Decomposition of Multiple-Valued functions emerged as an extension of approaches known from the binary

functions domain. The theory of decomposition of binary functions [5], [14] was extended to multiple-valued,

completely and incompletely speci�ed functions by Karp [33]. The approach presented by Walliuzzaman [72]

resembles Curtis approach for binary functions [14] but when Curtis investigates all possible decompositions to

select the best one, Walliuzzaman develops a set of conditions for easy selection of decomposition that leads to

simple implementation. Abugharrbieh and Lee [2] and [3] extend Shen's algorithm for binary functions [68] on

the multiple-valued functions. Their method operates on functions that may be given either by truth tables or

algebraic expressions. Luba [42] uses partition based method to decompose multiple-valued functions. All the

above algorithms start from the initial function and decompose it step by step by extracting smaller subfunctions.

Another, compositional approach to decomposition of multiple-valued functions is presented by Fang and Wojcik

[20]. In their approach original function is expressed by a composition of subfunctions taken from a library of

already prede�ned functions. Another approach presented in [18] is based on representation of multiple-valued

functions in terms of MTMDD (multi-terminal, multiple-valued decision diagrams). MTMDD approaches however

were used previously only for disjoint decomposition of completely speci�ed functions. None of the above

algorithms present decomposition results for functions with more then 10 input variables and they assume that

functions are homogeneous (all the variables are of equal multiplicity). In addition, the MTMDD based methods

were used for disjoint decomposition only.



In terms of constructive induction terminology, Ashenhurst-Curtis type decomposition corresponds to discovering

new concepts from data while the approach presented by Fang, to describing data in terms of prede�ned, existing

concepts.

Another interesting approach to decomposition of directed systems 2 based on reconstructability analysis was

presented by Zwick [81]. He uses a structural model obtained from reconstructability analysis (neutral systems3)

and uses the maximumuncertainty condition to the subsystems of the model as constraints to obtain the relationship

between input and output variables. The network consists of two levels: level 1 containing new concepts discovered

in reconctructability analysis and level 2 containing the hypothesis formulated in terms of the concepts at level 1.

All the blocks of the structure can be relations, sets of inputs to di�erent blocks can overlap, and the structure is

always a two level structure.

Comprehensive review of existing methods, and presentation of new ideas for functional decomposition for binary,

multiple-valued and continuous functions is presented in [49, 54, 52]. Based on that work new algorithms for

functional decomposition of incompletely speci�ed, multiple-valued functions were developed and implemented in

program GUD [53]. GUD, part of Multis system, was the �rst program able to perform multi-level decomposition of

large multiple-valued functions. Some of the ideas presented in [54], [52], and [53] were also implemented in programs

HINT [77, 78, 79, 80] and Fred [23]. Theory and implementation of the �rst multi-level decomposer (MVGUD)

for large multiple-valued directed relations were presented in [56]. Several new approaches to decompositions

and partial problems on functions and relations were next developed using both labeled rough partitions [29],

multi-valued decision diagrams [27] and implicit algorithms and representations [46, 47].

In the course of our work, driven by practical test cases, we strived for high processing speed and large size of data -

thus we developed several logic function and relation manipulation packages for decomposition. They used various

data representations: cube calculus [74, 73], partition calculus [42, 54], Binary Decision Diagrams [54], Cube

Diagram Bundles [50], Multivalued Decision Diagrams [23], Binary-Coded Multi-valued Decision Diagrams [27],

Labeled Rough Partitions [56, 28], and BDD-based implicit representation [46, 47]. As mentioned before, the

choice of good representation is absolutely crucial to the overall success of the decomposer and is the single most

important factor leading to eventual success.

We developed a general method of decomposition of neutral relations (systems), both deterministic and proba-

bilistic [29, 30]. In this paper, however, we will present the decomposition process of deterministic directed relations

only.

The method of decomposition of deterministic directed relations follows the main ideas from [56] but uses a

di�erent data structure to represent relations with noise. It transforms a multiple-valued incompletely speci�ed

function or relation into a multi-level structure and doesn't depend on particular assumptions about the nature of

the blocks of which the structure is to be composed. The transformation process is based on Ashenhurst-Curtis

type serial decomposition.

One step of Ashenhurst-Curtis type decomposition consists of forming a description of the initial relation y(X)

in terms of other, less complex relation g(X1) and input variables X2:

y(X) = f(g(X1); X2)

where X1, X2 are sets of input variables and X = X1 [X2, sets X1 and X2 may overlap. If X1 and X2 overlap

decomposition is called nondisjoint, otherwise it is called disjoint.

X2

X1X y g
f

Figure 3: One level serial decomposition: y(X) = f(g(X1); X2)

Original relation y(X) is now being represented in terms of variables of the new representation space fg;X2g,

more suitable for the problem description. The initial representation space X = X1 [X2 has been divided into

two subspaces (not necessarily disjoint) and one of them used to de�ne a new concept g(X1) (see Figure 3). The

selection of X1, X2, and g is carried out as to minimize the overall complexity measure of the result. According to

the general Occam razor principle this should result in better generalization properties of the selected hypothesis.

2directed system - system with speci�ed inputs and outputs
3neutral system - system with no distinction between inputs and outputs



The decomposition process is repeated iteratively until terminating criteria is met. At each decomposition level

the local optimization is performed and the resulting blocks are relations. Once the decomposition is terminated

these relations provide extra choices for the �nal, global optimization.

The idea of Ashenhurst-Curtis type decomposition for multiple-valued relation is presented in Example B. For

the purpose of this example Karnaugh map representation is used to make the presentation of the idea more clear.

In the programs, however, decision diagrams, lr-partition or other abovementioned representations were used to

reduce the data size and increase the decomposition speed.
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Figure 4: Decomposition of multiple-valued relation

Example A.

Given is a relation with 4 binary input variables and a 5-valued output variable represented by the Karnaugh

map in Figure 4a. The bound set X1 = fc; dg, free set X2 = fa; bg, and output set Y = ffg. Each column of the

Karnaugh map corresponds to a di�erent combination of the bound set variables. In order to minimize complexity

of the decomposition result for given X1 and X2 we want to minimize the number of compatibility classes the

columns of the table are to be assigned to. A set of columns can be assigned to the same compatibility class

(is a set of compatible columns) if, for every row of the table, there exists at least one value which is common

for all the columns in the set. We can reduce the problem of compatibility classes determination to the graph

covering problem. Column compatibility graph consists of vertices corresponding to the Karnaugh map columns,

and edges, edge joins two vertices i� the corresponding columns are compatible. Column compatibility graph for

the Karnaugh map in Figure 4a is shown in Figure 4b. The minimum number of cliques to cover the graph is 2.

Let us select maximum cliques C0 = fB100; B101; B111g and C1 = fB101; B110; B111g to cover the graph. Each

clique corresponds to a separate values of the output of block G (variable g in Figure 4e). Karnaugh maps for

relations g and h are shown in Figures 4c and d respectively assuming clique C0 corresponds to value 0 and clique

C1 corresponds to value 1 of the new variable g. Each compatibility class of columns is in Figure 4d reduced to the

column of values all the columns of the class have in common. Since the cliques selected to cover the graph were

nondisjoint, g = G(X1) is a relation. If cliques were disjoint (cliques fB100; B101; B111g and fB10g for instance)

G(X1) would be a function.

There are several partial problems that can be either solved eÆciently, or totally avoided in some special de-

composition variant. Column compatibility problem can be also reduced to graph coloring for which we found

several eÆcient algorithms. We showed that although the problem is NP-hard, for decomposition data of realistic

sizes exact coloring is not needed and our algorithm gives practically the same quality decompositions as one using

exact coloring, which however cannot be used for larger functions [44, 58]. Another problem important in binary

decomposition is encoding of columns. We developed algorithms for encoding [55, 10, 27], as well as non-traditional



way of using them in multi-valued decomposition for binary applications [27]. Paper [9] demonstrates how essential

savings in time can be obtained when a new method of "table creation" is applied to large bound sets.

Table 2 shows the result of comparison of MVGUD decomposer [29] to leading binary decomposers in terms of

cost of the �nal results. All the functions in the table are binary and are taken from the set of MCNC benchmarks.

TRADE is a decomposer developed at Portland State University, MISII at University of California, Berkeley, and

DSGN174 is a decomposer developed under supervision of Prof. Steinbach in Germany. The �nal cost value is

computed as a sum of the costs of single blocks of the result of the decomposition. The cost of a single block is

computed using equations 2. For our program (mvgud) there is also execution time given (DECstation 5000/240,

64 MB of memory, user time in seconds) to show that the decomposition task can be performed in a reasonable

amount of time.

cost

File i/o TRADE MISII DSGN174 mvgud [time]

5xp1 7/10 496 384 292 236 [11.0]

9sym 9/1 640 984 400 104 [26.4]

con1 7/2 80 68 60 70 [2.3]

duke2 22/29 6516 2428 2200 2896 [11289.0]

ex5p 8/63 - 3720 1560 2104 [208.0]

f51m 8/8 372 392 240 177 [10.1]

misex1 8/7 472 208 224 229 [8.6]

misex2 25/18 548 464 436 392 [1086.0]

misex3 14/14 9816 4204 3028 1744 [1316.0]

rd53 5/3 120 96 84 60 [1.8]

rd73 7/3 320 352 256 113 [13.1]

rd84 8/4 508 672 320 171 [32.6]

sao2 10/4 1848 516 468 441 [47.2]

Table 2: Decomposition of binary (MCNC) benchmarks

The underlined results are the best for a given benchmark. In 70% of cases MVGUD decomposer yielded the

best results. Comparisons of our other decomposers results to themselves and to decomposers from literature can

be found in [29, 26, 27].

IV. An Example.

Our approach allows to decompose not only binary but also multiple-valued functions. An example of such a

function is the well known in machine learning community benchmark trains. The problem was proposed more

than 20 years ago by Ryszard Michalski [36]. There are 10 trains (Figure 5), �ve going East, �ve going West, and

the problem is to �nd the simplest rule which, for a given train, would determine whether it is East or Westbound.

The best rules discovered at that time were:

1. If a train has a short closed car, then it Eastbound and otherwise Westbound.

2. If a train has two cars, or has a car with a jagged roof then it is Westbound and otherwise Eastbound.

Our programs use data representations derived from well known from logic synthesis domain Espresso format. For

instance, the original problem description was transformed to MVGUD format, which resulted in the following

data �le:

.type mv

.i 32

.o 1

.ilb size load w0 l0 s0 n0 ls0 w1 l1 s1 n1 ls1 w2 l2 s2 n2 ls2 w3 l3 s3 n3 ls3

a b c d e f g h i j

.ob direction

.imv 3 4 2 2 10 4 4 2 2 10 3 4 2 2 7 3 4 2 2 8 2 3 2 2 2 2 2 2 2 2 2 2

.omv 2

2 3 0 1 6 3 2 0 0 8 1 3 1 1 6 1 1 0 0 6 1 0 0 1 0 0 0 1 0 0 1 0 0

1 2 0 0 9 1 3 0 0 7 1 2 0 0 0 2 0 - - - - - 0 1 0 1 0 0 0 0 0 0 0

1 1 0 0 6 1 0 0 0 4 1 3 1 1 0 1 3 - - - - - 0 0 0 0 1 0 1 0 0 0 0



1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure 5: Trains problem

2 1 0 0 7 1 3 0 0 1 1 3 0 0 2 1 2 0 0 6 1 2 1 1 0 0 1 0 0 0 0 0 0

1 2 0 0 1 1 3 1 1 0 1 2 0 0 0 1 0 - - - - - 0 1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 3 0 0 0 6 1 3 - - - - - - - - - - 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 1 1 0 0 0 9 1 3 0 1 5 0 - - - - - - 0 0 0 0 0 0 1 0 0 0 1

0 1 1 1 0 1 2 0 0 9 1 0 - - - - - - - - - - 0 0 0 1 0 0 0 0 0 0 1

2 1 0 0 7 1 0 0 1 5 1 2 0 0 6 1 2 0 0 7 1 0 1 0 0 1 0 0 0 0 0 0 1

0 0 0 0 9 1 2 0 1 6 2 2 - - - - - - - - - - 1 0 0 0 0 0 0 0 0 0 1

.end

where:

.i number of input variables (attributes)

.o number of output variables (attributes)

.ilb input variable names

.ob output variable names

.imv cardinalities of input variables

.omv cardinalities of output variables
Variables 1-2: general attributes

size number of cars (integer in [3-5])

load number of di�erent loads (integer in [1-4])

Variables 3-22: 5 attributes for each of cars 2 through 5: (20 attributes total)

w number of wheels (integer in [2-3])

l length (short or long)

s shape (closedrect,dblopnrect,ellipse,engine,hexagon, jaggedtop, openrect, opentrap,

slopetop, ushaped)

n number of loads (integer in [0-3])

ls load shape (circlelod, hexagonlod, rectanglod, trianglod)
Variables 23-32: 10 Boolean attributes describing whether 2 types of loads are on adjacent cars of the train

a rectangle next to rectangle (0 if false, 1 if true)

b rectangle next to triangle (0 if false, 1 if true)

c rectangle next to hexagon (0 if false, 1 if true)

d rectangle next to circle (0 if false, 1 if true)

e triangle next to triangle (0 if false, 1 if true)

f triangle next to hexagon (0 if false, 1 if true)

g triangle next to circle (0 if false, 1 if true)

h hexagon next to hexagon (0 if false, 1 if true)

i hexagon next to circle (0 if false, 1 if true)

j circle next to circle (0 if false, 1 if true)



Attribute 33: Class attribute (east or west)

direction (east = 0, west = 1)

The number of cars vary between 3 and 5. Therefore, attributes referring to properties of cars that do not exist

(such as the 5 attriubutes for the \5th" car when the train has fewer than 5 cars) are assigned a value of \-".

Applied to the trains problem our program discovered the following rules:

1. If a train has triangle next to triangle or rectangle next to triangle on adjacent cars then it is Eastbound and

otherwise Westbound.

2. If the shape of car 1 (s1) is jagged top or open rectangle or u-shaped then it is Westbound and otherwise

Eastbound.

As we can see the rules discovered using decomposition approach implemented in our program yielded solutions

of complexity comparable to the best known solutions to this problem.

The results of decomposition of selected benchmarks from University of California Irvine machine learning

repository are shown in Figures 6, 7, 8, 9. It is interesting to see how the new concepts have been created

automatically by the program. The total costs of the resulting functions are greatly reduced comparing to the

original ones. Also, in many cases, some input variables were found to be vacuous which additionally contributed

to the �nal cost reduction. We developed several strategies and algorithms to deal with vacuous and similar types

of variables that can be removed [29, 23, 27, 46].
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V. Variable partitioning for decomposition

Variable partitioning for decomposition is a process of splitting up the set of relation's variablesX into subsets X1

and X2 in such a way that the decomposed relation is less complex than the initial one. Even then the problem of

variable partitioning is very important not much has been done in this domain in the past. All eÆcient algorithms

for this task have been created after 1994 [49, 50, 23, 47]. This is mainly because most of the earlier published

decomposition algorithms were tested on small functions only and exhaustive search for partitions was possible

in reasonable amount of time. In general the problem of optimal variable partitioning is NP-complete and fast

heuristic procedures are needed to perform this task e�ectively. Two of such procedures were developed in [74]

for binary functions, and were extended for multiple-valued relations and tested [29]. Another method, based on

entropy measure, was developed in [29] to generate a limited set of pairs fX1; X2g and select the one which would

minimize the cost of the decomposed relation (concept). The method uses entropy [67] and variety [12] measures

to order input variables according to their relevancy for the output variable determination (see Figure 10).

� Uncertainty (Shannon):

u(a) = �

X
i

p(a = ai) log2 p(a = ai)

� Conditional Uncertainty (Shannon):

u(ajb) = u(ab)� u(b)

a b c da

a dc

a c

c

u(y | b)

u(y)

u(y | bd)

u(y | bda)

u(y | bdac)

Figure 10: Variable ordering

Ordered set of input variables will be then partitioned into bound (X1) and free (X2) sets for decomposition.

The optimal partitioning criteria will be determined based on the cost function used in the decomposition process.

For the cost measures discussed in section A the selection of sets X1 and X2 is based on the following criteria:

The partition of a set of input variables X minimizing MVFC consists of a free set X2 containing the most

informative variables of the relation, and a bound set X1 containing the remaining input variables where X2

satis�es the following equation:

0:5 log
2

Y
xi2X

jxij = log
2

Y
xj2X2

jxjj



where: jxij is cardinality of variable xi 2 X,

xj are the most informative variables of the relation
We observed that especially eÆcient partitioning methods can be developed when the number of variables in the

bound set is a small [27] or large [9] percentage of all variables.

A. Complexity measure for multiple-valued relations

An appropriate complexity measure together with variable partitioning algorithms are of crucial importance for

the quality of hypothesis selection process. Hypotheses are generated by di�erent partitions X1; X2 of the input

variables, the best is selected based on the cost function used. Complexity measure used as a starting point in

this paper was the normalized circuit complexity proposed by Abu-Mostafa [1] for binary functions. He de�ned

complexity Cx of a binary function Y = f(X) as follows:

Cx(f) = log
2
minfcost of � : � simulates fg (1)

where � is a combinational circuit realizing function f and cost is equal to 2n for n-inputs universal block and

the cost of a collection of blocks is the sum of the costs of the blocks.

Following his de�nition the cost of a single jXj-inputs jY j-outputs universal block is equal to:

cost(f) = 2jXj
jY j (2)

where: jXj; jY j are cardinalities of sets of input and output variables respectively.

According to his de�nition the cost of a binary function realized by a single block is equal to the number of cells

of the Karnaugh map representing the function which is equal to the total number of tuples de�ning the function.

The larger that number is, the more variety the function can store, more details describe, and more diÆcult will

be the physical realization of that function.

The cost of a single block is closely related to its Kolmogorov complexity. Every relation (function in particular)

can be represented by a binary vector of length n, n equal to the total number of tuples representing the function

or relation, and can be considered to be a program describing that relation. The length of the vector n can be

interpreted as the length of the program and it bounds from above the value of Kolmogorov complexity K(�) for

that relation.

The �rst de�nition of cost (normalized) used is based on Abu-Mostafa's de�nition but applies to multiple-valued

variables as well.

Cx = log
2

0
@ Y
xi2X

jxij log2

Y
yj2Y

jyjj

1
A (3)

where: jxij is cardinality of variable xi 2 X,

jyjj is cardinality of variable yj 2 Y .

Justi�cation for this formula is the following: let's de�ne relation cost (denormalized) as the maximum number

of tuples, xi be an input variable, and y be jyj-valued output variable. Hence the maximumnumber of tuples (cost)

is equal to the product
Q
xi2X

jxij. If we add more outputs yj , each will correspond to a separate function. If all

of them are of equal cardinality m then the maximum number of tuples (cost) will be equal to
Q
xi2X

jxij times

the number of outputs. If we allow yj to have di�erent cardinalities jyjj then the number of equivalent m-valued

outputs will be equal to logm
Q

yj2Y
jyjj and cost equal to

Q
xi2X

jxij logm
Q
yj2Y

jyjj. If we choose m = 2 as

our base variable cardinality then the logarithm will be base 2 and cost computed in respect to the number of

equivalent binary outputs.

The above cost measure signi�cantly reduced complexity of the �nal hypothesis. It is not the only possible cost

measure however and analysis and testing of other solutions was used for performance evaluation.

Another de�nition was provided by Lendaris and Stanley [40] and it de�nes the cost as being equal to the total

number of functions that can be realized by a given structure. For a single output binary function y = F (X) the

cost (denormalized) will be equal to:

Cx = 22
jXj

(4)

The normalization yields:

Cx = log
2
22

jXj

= 2jXj (5)



Their formulae can be extended for multiple-valued, multi-output functions and directed relations as follows:

Cx = log
2

0
@ Y
yj2Y

jyjj

1
A
Q

xi2X
jxij

=
Y
xi2X

jxij log2

Y
yj2Y

jyjj (6)

The above cost measure was also tested and compared to the previous one. Some other cost measures have been

analyzed, tested, and compared by us to provide a broader picture of the problem of cost measures for various

decomposition types, [23, 24, 25, 26, 27, 31, 29, 30].

B. Data and dimensionality reduction

Real life data are often redundant, containing many vacuous variables (having no signi�cant impact, if at all,

on the classi�cation result), which may obscure, otherwise obvious, relations and dependencies. Vacuous variables

(attributes) and data samples may also signi�cantly increase time complexity of the learning algorithms and lead to

more complex solutions. The data and dimensionality reduction becomes though an important step of the learning

algorithm and may signi�cantly decrease not only the time complexity but also leads to simpler solutions, with

better predictive accuracy.

In our approach several di�erent methods of reduction of vacuous variables are proposed, one incorporated into

the variable partitioning process and the other, based on di�erent principles, are included in the decomposition

algorithm. The reduction of redundant data is performed at each level of multi-level decomposition process.

For instance, one of the methods, based on the conditional uncertainty, was incorporated into variable partitioning

procedure (see Section V). The procedure of variable ordering computes conditional uncertainties of input variables

in respect to the output variables. If, after investigating a successive variable, uncertainty reduces to zero it implies

that all the remaining variables are irrelevant for the output variables determination and can be eliminated from

further investigation (Figure 11).

a b c da

a dc

a c

u(y | b)

u(y)

u(y | bd) = 0.0

� Variables b and d reduce uncertainty of y to 0 which

means they provide all the information necessary

for determination of the output y

� Variables a and c are vacuous

Figure 11: Vacuous variables removing

The second method can be applied at each step of decomposition procedure. If in a given decomposition step

(Figure 3) function g(X1) is a constant function then the function h(g(X1); X2) doesn't depend of variables xi 2 X1.

Hence, all the variables xi 2 X1 are vacuous and can be removed from further analysis.

VI. Dealing with noise

Real life data sets used for building classi�ers are hardly ever perfect and have often incorrect or uncertain values

of variables (attributes). The way to deal with the problem usually depends on whether it is an input or output

variable.

The most common types of errors are:

� Missing value.

The most common technique to handle missing value is to either neglect the whole data sample or substitute

the value with a value selected according to certain criteria, for instance select the value the variable takes

most often in the same class. If the value of the output variable is unknown the whole data sample is

neglected.



� Incorrect value.

The incorrect values result from inaccurate measurements or reading errors. The di�erence between correct

and actual value is commonly referred to as noise. Di�erent techniques can be used to handle the problem

and quality often depends on the data availability. The more data we have available the better the result is.

Incorrect values can be adjusted in the preprocessing stage (noise removal) or the learning system alone takes

them into account and generates classi�er which maintains a high level of accuracy in the presence of noise.

� Uncertain value.

In some situations it is more appropriate, or even necessary, to state that a variable can take few out of a

set of possible values instead of limiting it to a single value. For instance, 'if the color of the street light is

green or yellow you can pass', or 'only small or medium size packages are accepted'. The same applies to

the output variables. Their values, in the case of supervised learning, have to be determined by a teacher,

expert in the area (class assignment). However, since experts not always agree on what class a given vector

of input values has to be assigned to, it is desirable to postpone the decision until additional circumstances

allow us to make a justi�ed decision. The decision can be postponed until the learning process is �nished and

then the right value can be selected to minimize overall complexity of the classi�er. This however, requires

representing a problem in terms of a relation instead of function, and learning method handling more general

notion of relation as well.

The presence of noise in the data adds a new dimension to the problem of selection of hypothesis. First of all, the

procedure of construction of compatibility graph (Example B) has to be modi�ed to address over�tting problem

(hypothesis which perfectly �ts the data with noise has usually poor generalization properties).
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Figure 12: Compatibility graph construction for data with noise

The graph in Figure 12b is constructed for data represented by the Karnaugh map in Figure 12a. It is a full graph

with weight assigned to every edge. Each weight takes values between 0.0 and 1.0 and is equal to the minimum

number of mismatches between the columns connected by that edge, normalized to the maximumpossible number

of mismatches (number of rows). YES or NO selection criterion removes all the edges from the graph which weights

are greater or equal to certain value d. Figure 12c shows the graph obtained for d = 0:5. A procedure which would

directly use the full information contained in the graph in Figure 12b can also be developed.

Second, in the presence of noise complexity measures discussed earlier are not suÆcient anymore. In order to

select the best hypothesis both the complexity and error (losses) have to be taken into account (di�erent d result

in di�erent complexities and errors).

To address this problem a minimum description length principle combining complexity measure and error eval-

uation procedure has been developed and incorporated into hypothesis selection process.

The algorithms developed in the previous sections learn in nominal data spaces. It means that the values of

variables are mere symbols and the data space is not metric (no distance measure can be de�ned on it). This is

the most general approach for discrete data spaces. The data in the ovulation databases however, are continuous,

they have to be discretized before being used by our procedures, and the resulting data space is metric. Hence, two

issues need to be analyzed here. First of all, the use of appropriate discretization method may increase not only the

accuracy but also signi�cantly increase the learning speed [17], [11]. The most often used discretization method,

uniform binning, divides the space of each variable values into a number of equally sized bins. Another type of

methods are based on the entropy measure [11], [22] and use minimum entropy criterion to assign the values to

di�erent bins. These methods result in better performance of learning systems than the uniform binning methods

[17].

The second, the algorithms developed for the nominal data spaces can be modi�ed to take into account metricity

of the data space. This may again signi�cantly decrease a complexity of the results. Example is given below.

Figure 13 shows the process of constructing compatibility graph in two cases: nominal data and metric data.

For nominal data no distance measure can be de�ned which implies for instance that we can not say that 1 is
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Figure 13: Compatibility graph for metric data

closer to 2 than to 5. These are all mere symbols, not numbers. For metric data however, number 1 is closer

to 2 than to 5 and that fact can be used to consider some columns to be compatible even though the values in

corresponding rows are not equal. Graph in Figure 13b results from interpreting data in the table in Figure 13a as

being nominal. Two columns are compatible only if they have a common value in every row of the table. Graph

in Figure 13c was created when interpreting the data as being metric. In this case columns are considered to be

compatible if the di�erence (distance) between values of the corresponding row cells are not greater than 1. The

graph constructed according to this assumption can be covered by fewer cliques (2 vs. 3) and results in simpler

blocks G and H. Other distance measures can be used as well. This method works also well with noisy data and

prevents development of over�tted hypotheses.

VII. Research results evaluation

Classi�ers developed in the learning processes are evaluated based on the classi�cation error rate:

error =
# of incorrectly classified samples

total # of samples

The most common learning/evaluation procedure is to partition the set of available samples into two subsets:

learning set and testing set. Learning is performed using data contained in the learning set and error rate computed

by classifying data in the testing set. The calculated error rate is of course an estimation of the true error rate

over the full sample space. The accuracy of estimation depends on the number of test cases available. For the test

samples of 1000 or more the estimate is very close to the true error rate [76] and the method provides an accurate

way for evaluating classi�ers.

When the number of available samples is small other methods provide better true error rate estimation. The best

results can be obtained using resampling techniques such as cross-validation (leave one out, k-fold cross-validation)

and bootstrapping [76].

Evaluations of the learning processes and discussion can be found in [29, 27].

VIII. Conclusion

Stimulated by practical hard problems in logic synthesis using the technology of Field Programmable Gate

Arrays (FPGA), logic design of Application Speci�c Integrated Circuits (ASIC) and high performance custom

Very Large Scale of Integration (VLSI) processors, robotics, Machine Learning and Data Mining, we developed

over the years a set of tools for decomposition of binary and multivalued functions and relations. The methods

have been also extended to fuzzy logic [8], reconstructability analysis [29, 30] and real-valued functions [65, 16].

Our recent software allows also for bi-decomposition [69, 70, 47], removal of vacuous variables [46] and other

preprocessing/postprocessing operations [11, 17]. Variants of our software are used in several commercial companies

where they found various types of applications. Current applications include: epidemiology, hexapod robot gait

control [41], FPGA synthesis [73, 35, 66] data mining medical databases [29, 30], and VLSI layout driven logic

synthesis [27], but in theory the applications of the method are unlimited and it can be used whenever decision

trees or arti�cial neural nets are used now. The quality of learning was better than in the top decision tree creating

program C4.5 and various neural nets [27, 29]. The only problem that remains is speed in some applications.

On our WWW page, http : ==www:ee:pdx:edu=~cfiles=papers:html the reader can �nd many benchmarks from

various disciplines that can be used for comparison of machine learning and logic synthesis programs. We plan

to continue work on decomposition and its various practical applications such as epidemiology or robotics which

generate large real-life benchmarks.



All in all, despite success of our approach, we consider the problem of functional decomposition as far from being

solved from the practical standpoint. We believe that new decomposition types, new deep theoretical results, use

of implicit methods, new relation/function representations, and use of special-purpose processors [57, 59, 32] and

parallel processors will ultimately lead to even better decomposers in future.
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