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Abstract. A simple evolutionary approach to developing walking gaits
for a legged robot is presented. Each leg of the robot is given its own
controller in the form of a cellular automaton which serves to arbitrate
between a number of fixed basis behaviours. Local communication ex-
ists between neighbouring legs. Genetic algorithms search for cellular au-
tomata whose arbitration results in successful walking gaits. An example
simulation of the technique is presented as well as results of application
to Kafka, a hexapod robot.

1 Introduction

Insects and spiders are examples of relatively simple creatures from nature which
are able to successfully operate many legs at once in order to navigate a diver-
sity of terrains. Inspired by these biological marvels, robotics researchers have
attempted to mimic insect-like behaviour in legged robots [2][3]. Typically, how-
ever, the control algorithms for these types of robots are quite complicated (e.g.,
dynamic neural networks), requiring fairly heavy on-line computations to be per-
formed in real time. Here a simpler approach is presented which reduces the need
for such computations by using a coarsely coded control scheme. This simplicity
in the control code (and corresponding low computational requirements on the
controller itself) allows for algorithms of this type to be easily implemented us-
ing embedded microcontrollers and thus making applications of similar mobile
robots more easily realisable. This becomes more appealing if one is interested
in making extremely small walkers.

Work has been done to increase the feasibility of using simulation to de-
velop evolutionary control algorithms for mobile robots [11][12][18]. It has been
suggested that hardware simulation is often too time consuming, and software
simulation can accurately develop control strategies instead. It has been argued
that the primary drawback to software simulation is the difficulty in modeling
hardware interactions in software. While Jacobi has developed “minimal sim-
ulations” [12] in order to develop such controls, it has been found that while



2 E J P Earon, T D Barfoot, G M T D’Eleuterio

adequate behaviours can be evolved, there are still hardware concerns that are
difficult to predict using minimal simulations (e.g. damaging current spikes in
the leg drive motors) [10].

This work follows a similar vein to that of [8][9][10]. In [10], Gomi and Ide
use a genetic algorithm to develop walking controllers for a mobile robot, an
octopod robot. However, rather than reducing the search space through pres-
electing a reduced set of behaviours, they very precisely shaped [6] the fitness
function for reinforcement. One benefit of this is that such fitness function opti-
mization is much more easily scaled up to allow for more complicated behaviour
combinations.

What is important to note, though, is that while Gomi and Ide [10] used
measurements of the electric current supplied to the leg drive motors as one
feature of their fitness function, as opposed to using only the observable success
of the controller (i.e., the distance walked as measured with an odometer) as done
in the present work, the results have similar attributes. For example, behaviours
that could cause a high current flow in the leg motors such as having two or
more legs in direct opposition, are also behaviours that would exhibit low fitness
values when measuring the forward distance travelled. Thus when the controllers
are evolved on hardware such parameters are often taken into account by the
robot itself, and modeling is not necessarily required.

As with dynamic neural network approaches, each leg of a robot is given its
own controller rather than using a central pattern generator. Communication
between controllers is local (legs “talk” to their neighbours) resulting in a global
behaviour (walking gait) for the robot. There is some neurobiological evidence
that this notion of local control holds for some biological insects [4]. The con-
trollers used here are cellular automata [16] or simple lookup tables. Each leg is
given its own cellular automaton (CA) which can be in one of a finite number
of states. Based on its state and those of its neighbours, a new state is chosen
according to the lookup table. Each state corresponds to a fixed basis behaviour
but can roughly be thought of as a specific leg position. Thus, new leg posi-
tions are determined by the old leg positions. Typically, all legs are updated
synchronously such that the robot’s behaviour is represented by a set of locally
coupled difference equations which are much quicker to compute in real time
than differential equations.

Under this framework, design of a control algorithm is reduced to coming up
with the cellular automata which produce successful walking gaits. Our approach
has been to use genetic algorithms to this end [15].

2 Cellular Automata

According to neurobiological evidence described by Cruse [4], the behaviour of
legs in stick insects is locally coupled as in Figure 1. This pattern of ipsilateral
and contralateral connections will be adopted for the purposes of discussion
although any pattern could be used in general (however, only some of them
would be capable of producing viable walking gaits).
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Fig. 1. (left) Behavioural coupling between legs in stick insects [4]. (right) Kafka, a
hexapod robot, and treadmill setup designed to evolve walking gaits

We assume that the output of each leg controller may be discrete. This may
be done by way of a set of basis behaviours [1][13]. Rather than specify the
actuator positions (or velocities) for all times, we assume that we may select
a simple behaviour from a finite predefined palette. This may be considered a
postprocessing step which takes a discretized output and converts it to the ac-
tuator control. This postprocessing step will not be allowed to change once set.
The actual construction of the postprocessing requires careful consideration but
is also somewhat arbitrary. Here the basis behaviours will be modules which
move the leg from its current zone (in output space) to one of a finite number of
other zones. Figure 2 shows two possible discretizations of a 2-degree-of-freedom
output space (corresponding to a simple leg) into 4 or 3 zones. It is important
to distinguish between a basis behaviour and a leg’s current zone. If legs always
arrive where they are asked to go, there is little difference. However, in a dy-
namic robot moving on rough terrain, the requested leg action may not always
be successful. The key difference is that the output state of a leg will correspond
to the current basis behaviour being activated, rather than the leg’s current zone
in output space. The input state of a leg could be either the basis behaviour or
leg zone, depending on whether one wanted to try and account for unsuccessful
requests. By using basis behaviours, the leg controllers may be entirely discrete.
Once all the postprocessing has been set up, the challenge remains to find an ap-
propriate arbitration scheme which takes in a discrete input state, z, (current leg
positions or basis behaviours of self and neighbours) and outputs the appropriate
discrete output, a, (one of M basis behaviours) for each leg. There are several
candidates for this role but the one affording the most general decision surfaces
between input and output is a straightforward lookup table similar to cellular
automata (CA) In fact, this work follows on that of the Evolving Cellular Au-
tomata (EvCA) group at the Santa Fe Institute, New Mexico. In various papers
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Fig. 2. Example discretizations of output space for 2 degree of freedom legs into (left)
4 zones and (right) 3 zones

(e.g., [5]) this group showed that genetic algorithms were able to evolve cellular
automata which performed prescribed tasks requiring global coordination. This
is essentially what we wish to achieve but we have the added difficulty of dealing
with the physical environment of our robots. This type of lookup table control
in autonomous robots is often called reactive. For every possible input sequence
the CA scheme stores a discrete output value. In other words, for every possible
input sequence there is an output corresponding to one of the basis behaviours.
At each time-step, the leg controller looks up the action which corresponds to
its current input sequence and carries it out. The size of the lookup table for a
leg which communicates with K — 1 other legs will then be M¥. The approach
is therefore usually rendered feasible for only modest numbers for K and M.
The number of all possible lookup tables is MM . Again, modest numbers of
basis behaviours keep the size of the search space reasonable. For example, with
a hexapod robot with coupling as in Figure 1 and output discretization as in
Figure 2 (left) the forward and rear legs will require lookup tables of size 4° and
the central legs 4*. If we assume left-right pairs of legs have identical controllers
the combined size of the lookup tables for forward, center, and rear legs will be
43 4+ 43 + 4* = 384 and the number of possible table combinations for the entire
robot will be 4384, From this point on, the term CA lookup table will refer to the
combined set of tables for all legs in the robot (concatenation of individual leg
lookup tables).

3 Genetic Algorithms

The crucial step in this approach is the discovery of particular CA lookup tables
which cause the connected legs to produce successful walking gaits. We must dis-
cover the local rules which produce the desired global behaviour, if they indeed
exist, and then find out why those rules stand out. The obvious first method to
attempt is to design the local rules by hand. John Horton Conway picked his
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Game of Life rules seemingly out of a hat with much success. How hard can it be?
Well, it turns out to be very difficult to do this for all but the most trivial exam-
ples. We are typically faced with a combinatorial explosion. In the spirit of the
EvCA group, an evolutionary global optimization technique will be employed,
namely a genetic algorithm (GA), to search for good cellular automata.

GAs are based on biological evolution. For a good review see [7]. A random
initial population of P CA lookup tables is evolved over G generations. Each
CA lookup table, ¢, has a chromosome which consists of a sequence of all the
discrete values taken from the table. At each generation, a fitness is assigned to
each CA lookup table (based on how well the robot performs on some walking
task when equipped with that CA lookup table). A CA lookup table’s fitness
determines its representation in the next generation. Genetic crossovers and
mutations introduce new CA lookup tables into the population. The best K <
P CA lookup tables are copied exactly from one generation to the next. The
remaining (P — K) CA lookup tables are made up by single site crossovers
where both parents are taken from the best K individuals. Furthermore, they are
subjected to random site mutations with probability, p,,, per site. The variable
used to determine mutation is selected from a uniform random distribution.

4 Example Controller

In this section, the results of constructing an example controller in simulation
will be presented. The purpose of the simulation is not to model an insect robot,
but rather to demonstrate that a network of cellular automata controllers could
produce patterns which resemble known walking gaits. Furthermore, we would
like to show that a genetic algorithm is indeed capable of finding particular CA
lookup tables which perform well on a user defined task.

One well established gait for hexapod robots is the “tripod” gait. The legs
are divided into two sets

{Forward Left, Center Right, Rear Left}
{Forward Right, Center Left, Rear Right}

While one set is on the ground, the other is lifted, swung forward, and then
lowered.

For the discretization of figure 2 (left), there are I = 45 = 4096 possible
initial states for a hexapod robot. The fitness of a particular CA lookup table
will be defined as

Zf:1 fz
Zim /! M

ftotal =

if tripod gait emerges within T" time-steps
fi= starting from initial condition, ¢ (2)
0 otherwise

This fitness function was used to evolve a particular CA lookup table named
Gtripod, Which has a fitness of 0.984. That is, from 98.4% of all possible initial
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conditions, a tripod gait is reached. In our experiments, we have used a GA
population size of P = 50, number of generations G = 150, keepsize K = 15,
and mutation probability p,, = 0.005. The number of initial conditions per
fitness evaluation was I = 4096 (all possible initial conditions) and the number
of time-steps before testing for a tripod pattern was T = 50. Figure 3 depicts

/\ Attractor Basin
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Fig. 3. (left) Gait diagram (time history) of ¢iripod On a particular initial condition.
Each 6-state column represents an entire leg configuration of the robot; the left-most
column is the initial condition. (right) Attractor basin portrait of ¢iripoq. Each node
represents an entire 6-state leg configuration of the robot. Lines represent transitions
from one leg configuration to another. The inner hexagon represents the ABDDCC . ..
tripod gait.

two aspects of @iripoq. The left side shows a typical gait diagram or time history
of ¢4ripoq O a particular initial condition. Each column shows the states of the 6
legs at a given time-step (different shades of grey represent different leg states).
The left-most column is the initial condition. The right side is an attractor basin
portrait of ¢iripog as described by [17]. Each node in this plot represents an
entire 6-state leg configuration of the robot (i.e., one column of the left plot).
The inner hexagon represents the tripod gait which is unidirectional (indicated
by a clockwise arrow). The purpose of the right plot is to draw a picture of ¢4 ipod
as a whole and to make a connection with the concept of stability. Beginning from
any node on the attractor basin portrait, and following the transitions inward
(one per time-step), one will always wind up on the inner hexagon (tripod gait).

The conclusion we may draw from this simple exercise is that this type of
controller certainly is able to produce patterns resembling known walking gaits
and that genetic algorithms are capable of finding them.
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5 Hardware and Results

This section briefly describes Kafka [14], a 12-degree-of-freedom, hexapod robot.
Figure 1 shows Kafka in action on a treadmill. Kafka’s legs are powered by
twelve JR Servo NES 4721 hobby servomotors controlled by a 386 66MHz PC.
The control signals to the servos are absolute positions to which servos then move
as fast as possible. In order to control the speed of the leg motions, then, the
path of the leg is broken down into many segments and the legs are sent through
each of those. The fewer the intervening points, the faster the legs moved. The
robot has been mounted on an unmotorized treadmill in order to automatically
measure controller performance (for walking in a straight line only). As Kafka
walks, the belt on the treadmill causes the rollers to rotate. An odometer reading
from the rear roller is fed to Kafka’s computer such that distance versus time-step
plots may be used to determine the performance of the controller. The odometer
measures net distance travelled. For this experiment, the states for Kafka’s legs
were constrained to move only in a clockwise, forward motion which is based on
the three state model as shown in figure 2 (right) (i.e., rather than having each
leg move from one state to an arbitrary next state, it is constrained to either
increment through the sequence of states in the clockwise motion, or to not
change states). Each entry in the lookup table determines whether to increment
the position of the leg or keep it stationary (binary output). This reduces the
number of possible lookup tables from 335 (2.58 x 10%4) for the full three-state
model to 2135 (or 4.36 x 10%°). The GA parameters were

P=5 K=15  p, =005 (3)

Each individual in the population was given the same initial condition, or stance,
at the start of the evaluation ({C, B,C, B,C, B}).

Due to the necessary time duration required to evolve the controllers on
Kafka, the number of generations that the GA was run was 23 (the evolution
of the controllers on Kafka took approximately eight hours to complete). The
convergence history for one evolution (population best fitness and population
average fitness vs. generation) is shown in Figure 4. Figure 5 shows the gait
diagrams for four of the best individuals from various generations (¢one, Prwos
Othrees Prour, from generations 3, 5, 13, and 22 respectively, with ¢z, being
the best gait generated during the GA run). All four of the gaits performed
fairly well, walking in a consistently forward direction during their evaluations.
@one corresponds to the first sharp increase in fitness from previous generations.
The improvement between ¢, and ¢y, is due to the shorter period for the
step cycle and the gait pattern itself is simpler. This trend continues in ¢gpree
and @foyr with a much reduced step cycle period and a more consistent and
simplified gait pattern. The fitness improvements corresponding to these gaits is
indeed quite high compared to the earlier two individuals.

Figure 4 shows the fitness generated by each individual throughout the entire
GA run. The rather high fitness value reported in generation 3 (Figure 4) is a
result of an anomalous sensor output. This was confirmed when, in the next
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Fig. 4. Convergence History of a GA Run. (left) Best and average fitness plots over the
evolution. (right) Fitness of entire population over the evolution (individuals ordered
by fitness). Note there was one data point discounted as an odometer sensor anomaly.
In the best individual convergence history it was replaced by the next best individual
(as indicated on left graph).

Gen: 3, Ind: 24, Fit: 95 Gen: 5, Ind: 13, Fit: 118

TimeStep " Time Step Time Step
Fig. 5. Gait diagrams (time histories) for the four solutions, ¢one,Ptwo,Pthree,P four,

respectively.

generation, that individual achieved an extremely low fitness (—17). The rest of
the plot shows quite clearly the trend of increasing fitness for the kept segment of
the population as well as the variance in fitness reported for different individuals.
Due to the difficulty in running large populations on a hardware apparatus
such as Kafka, the population size is somewhat low. However, as can be seen in
Figure 4 by this fitness variance, the genetic diversity is maintained.

As mentioned earlier, the number of generations over which the GA was
allowed to evolve was rather limited. This can been seen in Figure 4 by the
fact that there is still a rather high deviation for the best individuals during
the latter generations. The average fitness would not necessarily converge to
the values reported for the best individuals, even if those gaits had saturated
the population. This is due to the fact that the mutation rate of p,, = 0.05 is
sufficiently high to keep many of the child individuals in each generation from
being simply copies of the parents.

It should be pointed out that fitness does not monotonically increase with
generation. There is a fluctuation in the fitness of the individuals after conver-
gence. This is due to the hardware aspect of the experiment. Even the best K
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individuals were re-evaluated each generation. As the experiment progressed,
the rubber foot pads used by Kafka simply wore out. This loss of footing corre-
sponded to a variable loss in traction and fitness for each gait.

The use of a state table with binary output greatly reduced the search space
for this experiment. The next stage for this type of work involves using a full
state lookup table (3 or more output possibilities). The expected result of this
is the same as for the reduced version, however, the time to develop successful
gaits would be increased, and the convergence history would likely be much more
gradual (likely making it impractical). For example, if there were 9 output zones
for each leg, the chromosome would have length 8019 and the search space would
be of size 98°1°. Thus, our approach may not scale very well to increases in model
complexity (due to the long training times required).

6 Conclusion

Many researchers believe that highly parallel and decentralized methods are the
key to endowing artificial systems with intelligence. Decentralized controllers
for insect robots offer a great deal of redundancy in that if one controller fails,
the robot may still limp along under the power of the remaining functional
legs [3]. The cellular automata controller approach outlined here was able to
successfully control Kafka, a hexapod robot, and should extend to robots with
more degrees of freedom (keeping in mind scaling issues). One advantage of
using such a coarse controller is that it requires very few real-time computations
to be made (compared to dynamic neural network approaches) as each leg is
simply looking up its behaviour in a table. The approach easily lends itself to
automatic generation of controllers through genetic algorithms (or any global
optimization technique) as was shown for the simple examples presented here.
Although it would be costly to evolve walking gaits on real robots (inverse design
by optimization is always computational expensive), this may be done off-line
(ahead of time). This work was motivated by evidence that biological insects
generate walking patterns by means of decentralized control [4]. We hope that
studying such types of control for artificial walkers may also in turn tell us
something about the natural systems by which they were ingpired.
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