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Abstract

Since the multiple valued circuits based upon the Reed-Muller
expansion have the advantages in testability and diagnosist-,
much attention has been paid to the investigation on the multi-
ple valued expansion in recent yearst--1°%l. Many authors have
presented various algorithms of calculating the coefficients of RM
expansions under fixed polarities. A polarity maxtrix transform
method has been presented in Ref.[4,5], but its computational cost
is very high. A fast flow graph algorithm was developed in Ref.[g],
which reduces the computational cost in comparison with the po-
larity matrix transform method but does not improve much. A
step by step flow graph algorithm with the polarities in Gray code
order is proposed in Ref.[7,8), whose computational cost is the Jow-
est of all existing algorithms, but it can not be implemented in
fast paralle] computation due to the step by step serial computa-
tion. The RM coefficients mapping simplification in Ref.[9,10] is
direct and easy but is not suitable to RM functions with multiple
variables.

In this paper, we derive out the direct algorithm of caculating RM
coefficients under each fixed polarity. This zlgorithm has not only
a simple procedure but also much lower computational cost than
the step-by-step flow graph algorithm with the polarities in Gray
code order in Ref[7]. Therefore, it can be implemented in fast
parallel computation.

1. Direct Algorithm for Polarity Matrix

The canonical RM expansion for an any n-variable ternary func-
tion may be written as
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J(21, 7200 00020) = bo2}2d .. B @bizlad ..ok @
@bz} 2 ... 250 e...eb;--lzfg...z{
)
Wbel’e, 3 = Lz} = 3-“23 =i % (" = 112""ln)‘ eidy € {0.1,2},
(5 = 0,1,2,...,3* — 1), and the j is the decimal expression of the
ternary number ejes,..., e, that is, < (j} >j0=< (1¢2...22) >s. B =
{bo,b1,...,ba) is called the cofficient vector under the zero-polarity
for the function f.

Let g(é1,82,...,2) = {21,200, 2a )80 = % © @y, o; € {0,1,2} and
let & be the decimal expression of the ternary number a,0;... a4,
that is, < k >10=< maz...an >3,k = 0,1,2, ...,3* - 1. Obviously,
o(#1,...,2x ) has 3* different forms while & takes the different value.

Definition 1. The polarity matrix M(f) of f(z,,23,...,2.) i5 2 3* x3"
matrix, whose (k + 1)-th row represents the coefficient vector B®
of the RM expansion for f with the polarity &, where B} is the
vector under the zero-polarity. Obviously, B} = B and M(f) =
(B(°),. . ,'8(3'-1))7',

Definition 2. The optimum polarity of f(z;,2,,...,2.) denotes that
under the optimum polarity & the coefficient vector B(*) has the
minimum non-zero elements.

Let the RM expansion for an (n +1)-variable ternary function f{z,
21, ..., 7a) DEC
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Let the zero-polarity coefficient vectors corresponding to /', ", /*
are B',B",B", and thus we have:

B= B(o) = (BI’EII. Bm)

Where, B = (bo,..,,bs-..l), B" = (b;-, vy bg.,n_[), and B" = (bg.;n,, .oy

bymes_y.

Definition 3. Define 3+! -3+ recurrence matrix N(B)

N(B) N(B")  N(B"

N(B) = N(BI ®2B"e Bm) N(B" ® B'") N(B™

N(B’ & B"¢ Bm) N(B" ) 23"1) N(B™
Where, N(b5) = b; {s)
Theorem 1. N(B) = M(/). 4)

Proof: By using the inductive method, when i =1, We have

j(:)=g[é)=b§ebfieb§i’ =bobzobs?
=) o s5 0407 = i) 0 6PF 0 4T
)

where % = zo1,% = z1. Then, substitute $&2,Z@2 for z in Equ.(5).
By comparing their coefficients, we obtain

(052,68 ,357) = (3 @ 28 © 82,51 © b2, ba),
and
(647,82, 857) = (b0 @ by @3, b, @ 282, B2),
and thus we have
bo by b,
M(fy={be2bob bhob b |=N(B)
hehob bhob b
Suppose that the Equ.(4) is right when i = n. Thus, wheni=n+1
we can derive out
oo T1reees2a) = 08 27) = SO 0" g 0 107
=o'z 0 /"= e [V 0 /T
= [ o "%, g JOE

(6)
from the Equ.(2).

Let the polarity matrixes corresponding to / , f* and j* are
M(s), M(s") and M(/™), respectively. Consider 3"*! polarities
of f(20,21,...,72)y < k >10=< a0, a1y..ci0n >3, & =L Gayt =
0,1,...,n. a € :io,l,e-;, and we find:

(1) When 0 < k < 3 - 1, = 5o, whose corresponding polarity
matrix is (M(f"), M(J7), M(s™)), that is, (N(B"),N(B"), N(B")).

(2) When 3* <k £2-3* - 1,3 = % ®1, from Equ.(6) we can obtain
JO = fro2me i, JW = @ [, f = %, whose corresponding
matrix is (M(r e2/" 0 /) M(f'® ) M{ ).
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Since M,N are both the linear transform, the polarity matrix can
be rewritten as (N(B' ©2B" @ B"), N(B" ® B"'),N(B")).

(3) When 2-3" <k < 3"+ - 1,3 = % @1, from Equ.{6) we can obtain
[ = frg e o, 7 = re20™, [ = [, whose corresponding
polarity matrix is (M{/'® /" & /") M{/" ©2/"), M(/")) = (N(B'®
B" @ B"™),N(B" & 2B™),N(B™)).

Thus, we prove that Equ.(4) is right when i = » + 1. From the in-
ductive method we conclude that Equ.(4) is right for any arbitrary
positive integer .

Example. Let/(z1,22) = 22 @ 23 6 7 © 22132 © 7123 € 17 @ 2222 © 732,

Evaluate the polarity matrix of /{21, z) solution. The zero polarity
RM coefficient vector is B = B = (011121121). From theorem 1
we have its polarity matrix
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Green presented a fast step-by-step flow graph algorithm with the
polarities in Gray code order fo evaluate the coefficients of the RM
expansion over GF(3), whose computation complexity is the most
advantageous of all exsiting algorithms. Let 4. be the number of
additions, and M, the number of multiplications. From Ref.|7] we
bhave

A =3"x(3"-1) Ma=Adf3

Compare the algorithm in this paper with the algorithm in Ref.[7}.
If our algorithm is realized in the computation order as follows,

Bnei’" B'"e Bm@i“’ B" @ 2B"
B"@ B e_f’Br eB"® Bme)_B;”Br @2B" @ B"

obviously, only four additions are required, and no multiplication
is included.

Consider the computation of N(B) from B. From Equ.(3) at the
first level (i = 1),4 x 3*~? additions are required, and at the second
level (i =2}, only 7 different sub-matrixes are needed to compute,
50 Tx 4 x 3*~! additions are required. Oz the analogy of this, at



the i-th level 77-! x4 x 3*= additions are required. Thus, we obtain
the total number of additions: Ay =75, 7~ -4-3*~=7"-3*, and
the total number of multiplications M, = 0. Compare with the
computation complexity for the above two algorithms by listing
Table 1.

Table 1. Comparison of two algorithmic complexities

Green Fast Algorithm Our Algorithm
n An M, An M,
1 6 2 4 0
2 72 24 40 0
3 702 234 316 0
4 6,480 2,160 2,320 0
5 58 806 19,602 16,564 0
6 530,712 176,904 116,920 0
7 | 4780782 1,594 504 821,356 0
8 | 43040160 | 14346720 | 5758240 | ©

Obviously from Table 1, our results are much more advantageous
to Green’s.

IV. Conclusion

In conclusion, our proposed algorithm of evaluating ternary RM
expansion coefficients under fixed polarities has the following ma-
jor advantages:

1. Its computation is much less than that of Green’s flow graph
with polarities in Gray code order, especially when the number of
variables is large.

2. When the number of variables increases, the computation pro-
cedure of our algorithm is a recurrence one, which can be easily
implemented with computer program in parallel computation.i*!l

Finally, it should be pointed out that although only ternary RM
function are disscussed in this paper, its thoughts are easily ex-
tended to the multiple-valued RM functions with higher radix.
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