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Abstract

A quasi-minimal algorithm for Canonical Re-
stricted Mized Polarity (CRMP) AND/XOR forms is
presented. These forms, which include the Consistent
and Inconsistent Generalized Reed-Muller forms, are
both very easily testable and, on average, have smaller
number of terms than SOP exzpressions. The sel of
test vectors to detect stuck-al and bridging faulls of a
function realized in CRMP forms, similar to that of
Consistent Generalized Reed-Muller (CGRM) forms,
is independent of the function. This lest sel can be
of order (n + 4)r, where n is the number of variables
in the function and r is the the number of component
CGRMs in the CRMP. The experimental resulls con-
firm the compactness of CRMPs as compared to SOP
expressions.

1 Introduction

With certain advantages of AND/XOR logic and
the new technologies which make their use more prac-
tical, there is a need for new XOR-based logic synthe-
sis methods. In this paper a quasi-minimal synthesis
program for mixed-polarity AND/XOR canonical net-
works is introduced. These networks on the average
have smaller number of product terms than the Sum
of Products realizations and the number of tests re-
quired for them is close to those for the fixed-polarity
AND/XOR canonical networks, which are the most
easily testable of all general purpose networks.

It has long been the experience of logic design-
ers that AND/XOR forms in certain cases are more
economical than the conventional realizations using
AND/OR/NAND/NOR forms. While this has been
theoretically shown for the case of AND/XOR PLAs
and AND/OR PLAs [14], it has also been confirmed
practically on many examples, especially in arithmetic
and telecommunication circuits [7, 8, 13]. In addition,
this logic is highly testable and the test vector for de-
tection of stuck-at-faults and bridging faults can be
made independent of the function itself 11, 12].

While the slow speed of the XOR gate has been
a major obstacle to the use of this logic, new tech-
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nologies provide the means for its increased use. The
AND/XOR PLAs have been extensively studied and
the layout generators for them have been presented
in [6]. Several families of new PLD devices have
been recently marketed: Table Look-up based (Xil-
inx) and multiplexor-based (Actel 1020) Field Pro-
grammable Gate Arrays, folded NAND devices (Sig-
netics LHS501), and XOR PLDs. Such devices either
directly include XOR gates (LHS501) or allow to real-
ize them in “universal modules”. Since the five input
XOR gate in Xilinx has the same speed and cost as,
for instance, a five input OR gate, XOR gates can be
used on equal terms with AND and OR gates.

Of particular interest are the CLi6006 FPGAs from
Concurrent Logic, Inc. [3]. For these devices, each
logic function must be constructed from two-input
gates: XORs, ANDs and NANDs, and inverters. The
multi-level XOR based logic is a prime candidate for
mapping to such devices.

There are two basic approaches to synthesis using
XOR gates: Exclusive Sums of Products (ESOPs),
and Consistent Generalized Reed-Muller (CGRM)
forms. The problem of finding the minimal ESOPs
of a Boolean function [1, 8, 15, 16, 17] is a classical
one in logic synthesis theory but exact solutions to
it have been proposed for only small functions. The
situation is better in the case of the CGRM canoni-
cal form of optimal polarity for which efficient exact
and approximate algorithms have been recently cre-
ated [13]. However, for some functions, the minimum
CGRM can be much worse than the ESOP.

In [4], a class of canonical forms, Canonical Re-
stricted Mixed-Polarity( CRMP), also known as Gener-
alized Reed-Muller(GRM) forms, was studied. It was
shown that in the worst case, the number of terms for
CRMPs is the same as ESOPs, which is 3/4 of that
for the SOPs.

In this paper, following a discussion of properties
and testability of CRMP forms, a quasi-minimization
scheme for these forms will be presented. The scheme
is next tested on a number of functions and the results
are provided.




2 Background

The CRMP forms are a class of AND/XOR canon-
ical forms [5]. The CRMPs are of the form:
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flzr,z2,.. ., 20) = @aiui (1)
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where a; € {0, 1} and the term wioo=
EErEN L E52ES = [T;=1 £’ where ¢; € {0, 1} such

that e e,_1...e0eq is a binary number which equals 1.
Moreover z{ = 1 and &} = #;, where #; = z; or Z;.
@ denotes summation over GF(2), the Galois field of
two elements.

If there is a restriction on each variable to have only
positive or negative polarity in all the terms, the form
will be a Consistent Generalized Reed-Muller( CGRM)
form. If the variables are restricted to take only pos-
itive polarities, the form will be that of Reed-Muller
Canonical(RMC) form. The CRMPs and all the above
forms are canonical [5]. A superset of all AND/XOR
forms is that of ESOP expressions, which are not
necessarily canonical and are the most economical of
AND/XOR representations.

Example 1 1 @ z; ® Z, @ 2122 is a CRMP form,
because there ezists only one term for each subsel
of variables. It is not a CGRM form because zy
appears both in a negative and a positive polarity.
Z1Z2DT1Z2 D2 DT 122 is an ESOP which is not in a
CRMP form because the term T1x2 occurs more than
once (in different polarities). To & F,&9 is a CGRM
form, since both variables occur in constant polarities
in the entire form. This is not a RMC form because
variables are not positive. It is called a negative Reed-
Muller form.

For a function of n variables, there are 2" possi-
ble CGRM representations of the function and 272"~"
possible CRMP representations. As there are more

CRMP forms for a given function, a minimal solution
close to ESOPs is more likely than for CGRMs.

Definition 1 The Boolean difference of function f

with respect to variable z; is denoted by fr, and 1is
defined as[5]:

fr, = f(xl,...,z,‘,..‘,z,,)@f(xl,...,:irl,‘..,rn).
(2)

Definition 2 The Boolean difference of function f

with respect to term t = #;Z; ... &, 1s denoled by f,

and is defined as:
fo=((fe)s, - )z, (3)

Definition 3 Let ¢ be a term. The term set S(t) of ¢
ts S(t) = {z; | &; appears in t}.

Definition 4 Termt is a

function f if f, =
equalily.

prime term with respect to
1, where = stands for identical
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Theorem 1 Term t is a prime term with respect to
function f iff in any CRMP form of f there exists
ezactly one term t' such that S(t) = S(t') and there
exists no lerm t" such that S(t) C S(t").

The implication of the above theorem is that ev-
ery function in a CRMP form, including the minimal
CRMP form, has at least one prime term. In addition,
for all existing terms t of a CRMP form of f, there is
a prime term ¢ such that S(t) C 5(1).

Definition 5 Term ¢ is a nonexisting term with re-
spect to function f if f, = 0.

Theorem 2 Termt isa nonezisting term with respect
lo function f iff in any CRMP form of f there is no
term t' such that S(t) C S(t').

3 Testability of CRMP Forms

Several “design for testability” and test generation
methods for RMC form have been introduced [2, 10,
11, 12]. Those tests are universal and the number
of test vectors are the smallest possible for all known
types of universal circuit structures.

It can easily be shown that any universal test set
generated for detection” of single stuck-at-faults of an
RMC form can be modified for any CGRM form by
Just inverting the test bits for those variables which
are of negative polarity in the CGRM. Similar results
hold true for multiple stuck-at and bridging faults [2,
10, 11]. A CGRM of arbitrary polarity is then as easily
testable as the RMC form of a function.

Since, in general, a CRMP is an exclusive sum of
its component CGRMs of various polarities, the test
set for the CRMP can be created as a composition of
the test sets of its component CGRMs[10]. With sepa-
rately observable CGRM components, tests are gener-
ated using any of the known methods for each compo-
nent CGRM separately. The universal test-generator
circuit can just use a modification for the CRMP net-
work. As for a function with n variables, n+4 tests can
detect the stuck-at and bridging faults of each com-
ponent CGRM, r(n + 4) tests can then detect all the
faults in CRMP network independent of the function,
where r is the number of the component CGRMs.

4 Quasi-Minimal CRMP Form

In this section, a quasi-minimal method for gener-
ation of a CRMP form of a function with the least
number of terms will be presented. The method is
based on the notion of prime terms and relies on a
fast CGRM minimizer [13]. In the following, certain
results about prime terms will be given without proofs
(for details see [4]). A quasi-minimal algorithm based
on these results is then given at the end of the section.

Definition 6 Termt; is a proper subcombination of
lerm to, off S(t1) C S(t2).



As an example, in function f = zizyx3%, G Z,23,
the term Z;z3 is a proper subcombination of the term
T129X3%4.

Theorem 3 All terms of a Boolean function, f, of n
variables given in a CRMP form which are not sub-
combinations of other terms in the same CRMP form
will ezist in any CRMP form of f (possibly with a
different polarity of variables).

From Theorem 3, it results that the prime terms
will exist in the minimal CRMP form too. Also, all
existing terms in any CRMP form of a Boolean func-
tion, f, of n variables are subcombinations of prime
terms. In addition, for a given Boolean function, f, of
n variables, the prime terms are entirely determined
by f and they do not depend on the CRMP form from
which they are determined.

Theorem 4 If term ¢ of a Boolean function, f, of n
variables given in a CRMP form does not erist and is
nol a subcombination of the prime terms of f, then in
no other CRMP form of f can there be a term t' such
that S(t) = S(¢').

Example 2 Based on above properties, in the follow-
ing, some functions are given with their prime terms
underlined and their nonezisting terms listed.

1. 1Dz, ® x2® x129x3. Nonezisting terms: none.

2. 1®z1®z129D 123D Tox3. Nonezristing terms:
T1T2%3.

3.1®z_l®zg®x2r3.
XiZ2,2173,T122Z3.

Nonexisting lerms:

4. 21 P 2D z3DrgdT129%4. Nonezisting lerms:
T1T3, T2X3,Z3%4,T122%3,2123%4,22%3T4, T1T2%3T4.

5. 1 ® T3 ® x123x324. Nonezisting terms: none.
6. 1 @ zar3 @ raz4 D T3T4. Nonerisling lerms:

T1T2, T1%Z3, T1T4,T1Z2T3,T1T2%4, Z1Z3T4, T2T3Z4,
Z1X2x3Z4.

If there exist only prime terms in the expression,
then this expression is a both term-wise and literal-
wise minimal CRMP form. If one can merge other
terms into the prime terms so that the resultant form
has the same number of terms as the prime terms, the
resultant form is also an exact minimal one.

Based on the above theorems and the properties
indicated, a depth-first search algorithm has been de-
vised. This algorithm, called CANNES (CANonic Nor
Exor Synthesizer), is based on the fact that all prime
terms are entirely determined from the Boolean func-
tion, f, and they do not depend on any CRMP form
and that all existing terms in a CRMP form of f
are subcombinations of prime terms. In this sense,
CANNES is an algorithm which generates the mini-
mal CGRM form for the prime terms and their sub-
combinations.

The simplified recursive minimization procedure of
CANNES is as follows:
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CANNES

for ( each prime term of the List ) {
// find the subset for the prime term
subset = subset_of(prime term);
// find the minimal CGRM form of the subset
minsubset = minimal_ CGRM(subset);
// compare number of terms
if (| minsubset | < | subset | )

NewList = List;
replace subset in NewList by minsubset;
minimize( NewList );

b1}
List - complete list of terms in the function,
NewList - starting List of next recursion,
prime term - prime term of the List,
subsel - subset of terms for a prime lerm,
minsubse! - minimal CGRM form of the subset.

CANNES-2 uses a heuristic CGRM minimizer [13]
to find minimal CGRM forms for subsets of variables.
For the exact CGRM minimizer, while our method re-
quires searching all polarities of a CGRM, and even
several times during the CRMP minimization, it is
usually done on a subfunction of the initial function.
Only in the worst case of a single prime term, the po-
larities of all input variables are searched. Concluding,
with an amount of search that is comparable to that
of a CGRM, we are able to find a form that is not
worse than the CGRM.

5 Experimental Results

CANNES-2 was tested on 100 single output func-
tions generated from the MCNC benchmarks. Table 1
shows the number of terms for ESPRESSO, CANNES-
2, and EXORCISM [17], an ESOP minimizer, for some
of these functions. In this table, n stands for the num-
ber of variables in the functions.

For the functions tested, the compactness of
AND/XOR forms is confirmed. While for the 100
functions overall, ESPRESSO resulted in 1001 terms,
CANNES-2 gave 845 and EXORCISM 652. For
40 percent of the functions, CANNES-2 gave bet-
ter results than ESPRESSO while for 30 percent,
ESPRESSO gave fewer terms. For the rest, they both
gave the same number of terms. Some of the exam-
ples of these cases are shown in Table 1. Moreover,
for all small functions that can be verified (such as all
single output functions of three and many functions
of four variables), the algorithm produced the exact
CRMP solutions. Whether the algorithm always gives
the exact solution needs to be studied further.

6 Conclusions

A quasi-minimal CRMP form has been introduced.
We have shown that testability of CRMPs is close to




Name n | ESPRESSO | CANNES-2 | EXORCISM
5xpll 7 7 9 6
9sym 9 85 131 51
majority | 5 5 6 5
bw7 5 6 5 5
conl2 7 5 4 4
duke8 22 5 4 5
f51m4 8 10 6 5
rd532 5 16 5 5
rd732 5 64 7 7
rd842 8 128 8 8
mis70 5 6 7 5
vg28 25 5 9 7
242 7 28 9 9

Table 1: Two Level AND/OR Compared to Two Level
CRMP and ESOP

RMCs and their costs close to ESOPs. Such forms
should be then studied in more detail, especially with
respect to the “design for testability”.

The concept of prime terms allows to decompose a
function to disjoint subsets of input variables for which
minimization can be done separately. This allows for
a parallel approach to the minimization problem.

Moreover, these results are important with respect
to the logic design methods for FPGAs and other
programmable devices and technologies. Our results
show that a CRMP form can not only be much more
easily testable, but also smaller than the two-level
inclusive form. Since the cost and speed of XOR
gate and OR gate in these technologies are the same,
there is no reason to always use PLA minimizers
such as ESPRESSO for them. The AND/OR. forms
can be used for certain functions which do not have
a compact AND/XOR realization. The best design
should be selected from the factored AND/OR and
AND/XOR solutions. Particularly, the same approach
to factorization of AND/OR circuits can be applied to
the factorization of AND/XOR circuits [10], leading
to the same kinds of advantages. Moreover, Multi-
level AND/OR/XOR realizations of functions can be
formlilated and respective synthesis methods created
9, 10].
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