CALCULATION OF THE RADEMACHER-WALSH SPECTRUM FROM
A REDUCED REPRESENTATION OF BOOLEAN FUNCTIONS

Bogdan J. Falkowski, Ingo Schiifer *, Marek A. Perkowski *
Nanyang Technological University, School of Electrical and Electronic Eng., Singapore 2263.
+Portland State University, Department of Electrical Eng., Portland, OR 97207-751

ABSTRACT

A theory has been developed to calculate the Rademacher-
Walsh iransform from a reduced representation (disjoint
cubes) of incompletely specified Boolean functions. The
transform algorithm makes use of the properties of an array of
disjoint cubes and allows the determination of the spectral
coefficients in an independent way. The program for the algo-
rithms uses advantages of C language to speed up the execu-
tion. The comparison of different versions of the algorithm has
been carried out. The presented algorithm and its implementa-
tion is the fastest and most comprehensive program (having
many options) for the calculation of Rademacher-Walsh
transform known to us. It successfully overcomes all draw-
backs in the calculation of the transform from the design auto-
mation system based on spectral methods - the SPECSYS sys-
tem from Drexel University that uses Fast Walsh Transform.

1. INTRODUCTION

In digital logic design, spectral techniques (Walsh
transforms) have been used for more than thirty years. They
have been applied to Boolean function classification, disjoint
decomposition, parallel and serial linear decomposition, spec-
tral translation synthesis (extraction of linear pre- and post-
filters), multiplexer synthesis, prime implicant extraction by
spectral summation, threshold logic synthesis, evaluation of
logic complexity, and state assignment [1, 2, 9]. Spectral
methods for testing of logical networks by verification of the
coefficients in the spectrum have been developed [9]. The
problem of constructing optimal data compression schemes by
spectral techniques has also been considered. The latter
approach is very useful for compressing test responses of logi-
cal networks and memories [9]. The renewed interest in appli-
cations of spectral methods in logic synthesis is caused by their
excellent design for testability properties and the possibility of
performing the decomposition with gates other than the ones
used in most classical approaches.

Two design automation systems have used spectral
methods as the tool for designing of digital circuits [12-16].
Computation of the spectrum is a complex operation that
requires, in the general case, n2" operations of
additions/subtractions when the Fast Walsh Transform [1] is
used and the Boolean function has n input variables. In order
to store the calculated spectrum 2" memory locations are
required [1, 9]. The SPECSYS (for SPECtral SYnthesis Sys-
tem) developed at Drexel University on VAX 11/780 uses the
Fast Walsh Transform [1] for the calculation of the spectrum
and can process Boolean functions having a maximum of 20
input variables [13]. The DIADES design automation system

0-8186-2780-8/92 $3.00 © 1992 IEEE

181

developed by us [12] does not have any limit on the number of
input variables of Boolean functions that can be processed and
uses the methods described in this article for the generation of
spectral coefficients of Boolean functions.

A high demand exists for the methods that produce cir-
cuit realizations with EXOR gates [4, 10]. "A four-input XOR
(in Xilinx 2000 Logic Cell Arrays) uses the same space and is
as fast as a four-input AND gate. ... Logic design for Xilinx
devices is therefore limited by fan-in - not by logic complexity
as in PLDs." - quoted from [4]. "Any system which flattens
functions into 2-level AND-OR form, or which factors based
on the "unate paradigm" (as do MIS-II, BOLD, and Synopsys),
is going to have problems with strongly non-unate functions
like parity, addition or multiplication. Since these sorts of func-
tions occur frequently in real designs, synthesis tools need rea-
sonable ways of handling them." - quoted from [10]. The
decomposition of Boolean functions with both pre- and post-
linear parts by spectral means allows for the realization of
highly testable circuits for Field-Programmable Gate Arrays.
Currently only spectral methods allow for this kind of decom-
position [9, 15].

In this article, the main emphasis is laid on the efficient
computer calculation of the Rademacher-Walsh spectrum of
Boolean functions since this particular ordering of Walsh
transforms is frequently used for logic design [1, 9]. The ord-
ering of Walsh transforms describes the sequence in which
Walsh functions are placed in the transform matrix. There
exist two Rademacher-Waish spectra of Boolean functions
known in the literature under the names of R and § spectrum
[6, 7, 9]. In the following material, both spectra are referred to
by symbols R and S. The particular coefficients from these
spectra are referred to as r; and sy, where symbol [is called an
index and is used to denote any spectral coefficient from a
given spectrum. Both spectra are formed as the product of a
27 %2 Rademacher-Walsh transform matrix 7 and a 2" vector
representation of a Boolean function F (vector representation
of a truth table) [1, 9]. The truth vector for spectrum R is
coded by its original values: O for false minterms (minterms
that have logical values 0), 1 for true minterms (minterms that
have logical values 1) and 0.5 for don’t care minterms (min-
terms for which the Boolean function can have an arbitrary
logical values O or 1). In the case of § spectrum the true min-
terms are denoted by —1, false minterms by +1, and don’t care
minterms by O.

In this article a new method for the calculation of the
Rademacher-Walsh spectrum of incompletely specified
Boolean functions is shown. The method presented can calcu-
late a Walsh spectrum of any ordering since the algorithms are
independent of the ordering of the spectral coefficients. Since a
direct linear relationship exists between the R and § spectra

described in [7] this article uses mainly the § spectrum.

This article resolves many important issues concerning
the efficient application of spectral methods in computer-aided
design of digital circuits. The main obstacle in these applica-
tions was, up to now, memory requirements for computer sys-
tems. By using the algorithm presented in this article this obs-
tacle has been overcome.

2. AN ARRAY METHOD FOR THE CALCULATION
OF A SPECTRUM OF A BOOLEAN FUNCTION

An algorithm already exists for calculating spectral
coefficients for completely specified Boolean functions directly
from a sum-of-products Boolean expression [9, 11]. When the
implicants are not mutually disjoint this algorithm requires
additional correction to calculate the exact values of spectral
coefficients for minterms of Boolean function F that are
included more than once in some implicants. By using a
representation of a Boolean function in the form of an array of
disjoint cubes [2, 5, 8] one can apply the existing algorithm
without having to perform additional correction operations,
because, for an array of disjoint cubes as input data the exact
values of spectral coefficients can be calculated immediately.
Here the extension of the algorithm to incompletely specified
Boolean functions is proposed.

In what follows the properties of the existing algorithm
are rewritten in the notation corresponding to our representa-
tion of Boolean functions with n variables in the form of
arrays of disjoint cubes. This is the first time all the properties
describing incompletely specified Boolean functions are
presented.

Definition 2.1: The cube of degree m is a cube that has m
literals that can be either in affirmation or negation (i.e., m is
equal to the sum of the number of zeros and ones in the
description of a cube).

Let symbol p denote the number of X’s in the cube and let n
denote the number of variables of a Boolean function. Then,
n=m++p.

Example 2.1: Consider the cube 1X 00. It is a cube of degree 3
since three of the literals describing this cube are either in
affirmation (x) or negation (x3 and x4). The cube does not
depend on literal x5.

Definition 2.2: The partial spectral coefficient of an ON- or
DC- cube with degree m of a Boolean function F is equal to
the value of the spectral coefficient that corresponds to the con-
tribution of this cube to the full n-space spectrum of the
Boolean function F.

The number of partial spectral coefficients npsc describing the
Boolean function F is equal to the number of ON- and DC-
cubes describing this function.

Example 2.2: Consider Table 1 representing the array method
of calculating spectral coefficients. Each row in this Table
shows the partial spectral coefficients of either ON- or DC-
cubes of a Boolean function. The function in the example has
four partial spectra, which is equal to the number of disjoint
ON- and DC- cubes describing this function (npsc = 4).

182

Suppose arrays of disjoint ON- and DC- cubes that fully
define Boolean function F are given. Then each cube of degree
m can be treated as a minterm within its particular reduced m -
space of function F. The spectrum of each true minterm is
given by so=2" — 2, and all remaining 2" — 1 coefficients are
equal to £2 [7]). Similarly the spectrum of each don’t care
minterm is given by spco=2" —1, and all the remaining
27 -1 —1 coefficients are equal to 1 [7]. The symbols spc s
denote spectral coefficients corresponding to DC- cubes (when
I =0, the symbol spco denotes a direct current spectral
coefficient corresponding to a DC- cube).

Cubes of degree m have the following properties.
Property 2.1: The contribution of an ON- cube of degree m to
the full n-space spectrum of function F (where n is the
number of variables in the function F) is related as follows:
soin full n—space =2" —2x2p (1)
81 in full n—space = s; in m—space x 27 2)
where] #0.

Property 2.2: The contribution of a DC- cube of degree m to
the full n -space spectrum of function F is related as follows:

spc oin full n—space =2"-1-2 3)
spc in full n—space = spc; in m—space x 2P @)
where I #0.

Equations (2) and (4) determine the absolute values of those
partial spectral coefficient s; that are not equal to zero for a
given cube. Properties 2.3 - 2.5 determine the signs of the par-
tial spectral coefficients, and if some of them are equal to zero.

Example 2.3: Consider again Table 1. The value of partial
spectral coefficient so corresponding to the ON- cube 10X0
(n =4,p =1)is equal to 2* — 2 x 2! = 12 according to (1). The
absolute values of those partial spectral coefficients s; that are
not equal to zero are calculated according to (2) and are equal
to2x2'=4.

The value of partial spectral coefficient so corresponding to the
DC- cube 0000 (n =4, p = 0) is equal to 23 — 20 =7 according
to (3). The absolute values of those partial spectral coefficients
sy that are not equal to zero are calculated according to (4) and
areequalto 1 x 20=1.

The following properties determine which partial spec-
tral coefficients have values zero for an ON- or DC- cube of
the degree m .

Property 2.3: 1f in a given cube the x; variable of a Boolean
function is denoted by the symbol "X", then all of the partial
spectral coefficients s; whose indexes I contain the subindex i
are equal to 0.

Property 2.4: If in a given cube each of the variables of a
Boolean function x;, x;, x;, etc. from the complete set of all
variables of the function is denoted by symbol "X", then every
partial spectral coefficient s; whose index I contains the subin-
dices i, j, k, etc. i1s equal to 0.

Property 2.5: For an ON- or DC- cube of the degree m the
number of nonzero partial spectral coefficients is equal to

27 -7, except for p =n — 1 when there is only one nonzero
partial spectral coefficient.

Example 24: Consider again Table 1. The variable x3 is
denoted by symbol X in the cube 10X 0. Then, by Property 2.3
the values of all partial spectral coefficients with subindex 3
are equal to zero. Therefore,
$3=8S13=83=8Su=8S13=814 =523 =512 =0. For this
cube, by Property 2.5, the number of partial spectral
coefficients different from zero is equal to 24-1=8.

The cube X 1XX has three variables denoted by the X symbols:
x1, x3, and x4. Therefore, by Property 2.4 and Property 2.5,
only the partial spectral coefficient s is different from zero.

The following properties describe the signs of each par-
tial spectral coefficient s;, where I # 0, and are valid for ON-
and DC- cubes of any degree:

Property 2.6: If in a given cube the x; variable of a Boolean
function is in affirmation, then the sign of the corresponding
first order coefficient is positive; otherwise for a variable that is
in negation, the sign of the corresponding first order coefficient
is negative. If in a given cube the x; variable of a Boolean
function is in affirmation, then the sign of the corresponding
first order coefficient is positive; otherwise for a variable that is
in negation, the sign of the corresponding first order coefficient
is negative.

Property 2.7: The signs of all even order coefficients are given
by multiplying the signs of the related first order coefficients
by — 1.

Property 2.8: The signs of all odd order coefficients are given
by multiplying the signs of the related first order coefficients.

Example 2.5: Consider again Table 1. In the ON- cube 10X 0
the variable x, is in affirmation, while the variables x> and x4
are in negation. Therefore, by Property 2.4 the sign of the par-
tial spectral coefficient s, is positive and the signs of partial
spectral coefficients 5, and s4 are negative.

The signs of second order coefficients are determined by Pro-
perty 2.7. The sign of the even order partial spectral
coefficient 5,5 of cube 10X 0 is positive, since this sign is deter-
mined by the product of the related first order coefficients, s,
and s,, times— 1, ie., (-1)xIx(-1)=1.

The signs of the third order coefficients are determined by Pro-
perty 2.8. The signs of the partial spectral coefficient sy of
the same cube is positive since it is determined according to
Property 2.8 as the product of the related first order
coefficients, s1, s2 and s4 and the result is
Ix(-1)xEhH=1.

The algorithm is as follows:

Algorithm: Calculation of spectral coefficients for com-
pletely and incompletely specified Boolean functions.

1. For each ON- and DC- cube of degree m, calculate the
value and the sign of the contribution of this cube to the
full n -space spectrum according to the properties described
previously.

2. The values of all spectral coefficients sy, except so, are
equal to the sum of all of the contributions to the spectral
coefficients from all ON- and DC- disjoint cubes from an

183

array of cubes.

3. For a completely specified Boolean function the value of
the dc spectral coefficient sg is equal to the sum of all of
the partial spectral coefficients corresponding to all of the
disjoint ON- cubes describing the function, plus the correc-
tion factor — (k — 1) x 2", where k is the number of disjoint
cubes in the array of ON- cubes.

4. For an incompletely specified Boolean function the value
of the dc spectral coefficient sq is equal to the sum of all of
the partial spectral coefficients corresponding to all of the
disjoint DC- cubes describing the function, plus the correc-
tion factor — (w — 1) x 2", where w is the number of dis-
joint cubes in the array of DC- cubes.

5. For an incompletely specified Boolean function the value
of the dc spectral coefficient so is equal to the sum of all of
the partial spectral coefficients corresponding to all of the
disjoint ON- and DC- disjoint cubes describing the func-
tion, plus the correction factor — (k — 1) X 2" —w x 2 -1,
where k is the number of disjoint ON- cubes, and w is the
number of disjoint DC- cubes.

The algorithm can calculate each coefficient separately or in
parallel. If some of the 27 spectral coefficients are not needed
for a particular application, then a reduced number of opera-
tions can be performed.

Example 2.6: An example of the calculation of the S spectrum
for the four variable incompletely specified Boolean function is
shown in Table 1. The values and signs of all the partial spec-
tral coefficients for this function are determined by Properties
2.1-28.

In order to obtain the values of all of the spectral coefficients
of the whole function, except s, the columns of partial spectral
coefficients corresponding to all cubes describing the function
are added (step 2 of the algorithm). The value of s¢ is obtained
by the addition of all partial spectral coefficients with the
correction factor (step 5 of the algorithm). Since the con-
sidered function is incompletely specified and not all the min-
terms are don’t cares then the steps 3 and 4 are not performed.
The resulting spectrum is shown at the bottom row of Table 1.

3. IMPLEMENTATION OF THE ALGORITHM FOR
THE CALCULATION OF THE WALSH TRANSFORM

The main problem of the implementation of the algo-
rithm for the Walsh transform is the memory requirement for
storing the whole spectrum. For an n-variable Boolean func-
tion the spectrum S has 2" coefficients. Up to now, all other
algorithms known to authors have to keep the complete 2n
values of the spectral coefficients in the main computer
memory. Thus, only Boolean functions with up to 18-20
literals could be processed [17]. Therefore, several algorithms
for the generation of the spectral coefficients have been
designed by us that do not keep all the coefficients at the same
time in the computer memory. Since the trade-off exists
between the execution speed and the area of the required
memory, the concept of the transfer of control among the algo-
rithms has been introduced. The user’s options and the
cooperation among the algorithms are shown in Fig. 1. The

dashed arrows denote the options that can be selected by the
user, while the continuous arrows denote the transfer of the
control among the algorithms.

First, the user can choose one of three generation’s
options: of the Whole Spectrum, of Certain Orders of
Coefficients, or of Some Spectral Coefficient. When the option
of Some Spectral Coefficient is chosen the coefficients are gen-
erated directly from the cubes. In the other cases, the user has
to choose whether the orders of coefficients should be gen-
erated according to algorithm Al or A2. Then the program
tries to allocate the necessary memory space for the required
number of spectral coefficients nc according to the chosen
algorithm. The value of nc is calculated by the formulas shown
in Fig. 1, where n denotes the number of input variables of a
Boolean function, and o the current order of coefficients.
When the memory allocation fails then the successive algo-
rithm having smaller memory requirements is automatically
chosen (transition from Al through A2 till A3 or from A2 to
A3). When the coefficients of the next order are going to be
generated then the transition from A3 to A2 is always possible
and tried by the program. The transition from A2 to Al is tried
only if the Previous Order option has been chosen.

3.1. Algorithm Al to generate the indices from previous
order

The algorithm Al is optimized for the case when there
are many cubes having many dc literals. This algorithm has to
store in the memory two adjacent orders of spectral coefficients
and the corresponding indices due to the generation of the
current order from the previous order.

The main part of the algorithm Al is the generation of
the indices for the next order of spectral coefficients since
coefficients are generated in the Rademacher ordering. This
part of the algorithm takes only such indices of the previous
orders for which the MSB (Most Significant Bit) is equal to 0,
shifts them to the left, and adds one. Now, the Jjust generated
part of the new order is shifted again to the left with the above
restriction still valid. Thus, the next block is created. The pro-
cedure continues till the generation of the last index. In the
next part of the algorithm Al, the values of the spectral
coefficients are generated by comparing the indices to the
cubes.

3.2. Algorithm A2 to generate the indices from the first
order

The algorithm A2 is faster for the case when the cubes
in the array have a small number of dc literals. It is a recursive
algorithm to generate the indices and values of the spectral
coefficients of one order. The number of levels of recursions
of the procedure is equal to the number of the current order.

3.3. Algorithm A3 to generate order step by step

The algorithm A3 is called when the memory allocation
for the algorithm A2 fails. It has the feature, that it needs only
memory space for one single spectral coefficient to generate
one complete order of spectral coefficients. This algorithm is
similar to algorithm A2. One difference is, that no memory is

184

allocated before calling the procedure to generate the index and
the value for each spectral coefficient. This procedure is almost
the same as the procedure for the algorithm A2. The second
difference is, that if one index is obtained, then the value of the
spectral coefficient for the whole array of cubes is immediately
generated. This spectral coefficient is stored immediately on
the hard disk and the next spectral coefficients are calculated.

3.4. Algorithm A4 to generate certain spectral coefficients

In order to generate only certain spectral coefficients out
of the whole spectrum it is not necessary to create the indices.
Therefore the algorithm does not use the long variables that are
used in previously described algorithms to store the indices.
Since the implementation of the disjoint algorithm has also not
been limited to a particular size of cubes then it is possible to
generate separately spectral coefficients for cubes with an arbi-
trary number of literals. The needed literals according to the
given index are directly taken to calculate the spectral
coefficient in order to determine the sign of the value of this
coefficient. The value itself is calculated according to the
number of Xs in the cube (denoted by the symbol p in Section
2). For an array of cubes it is simply done for each cube in
turn, and the values are added to get the final value of the spec-
tral coefficient.

4. MEMORY AND TIME REQUIREMENTS FOR
WALSH TRANSFORM PROGRAM

In Table 2 only the generation of the whole spectrum
for up to 20 literals in each cube is shown. It could be possible
to do this for up to the program maximum i.e., 32 literals. But
even with only 20 literals one needs 3Mbyte to store the com-
plete spectrum on a hard disk. This problem can be partially
overcome by using compression algorithms to store the spec-
trum, but it is inherent to the spectral methods that the number
of coefficients grows exponentially.

To compare the processing time dependent on different
arrays of cubes for the Sequent SYMMETRY 27 computer,
Table 2 is shown below.

Meaning of the abbreviations in the Table 2 is as follows (all
values are in seconds):

- first indices are generated from the first order (algo-
rithm A2),

- previous indices are generated from the previous order
(algorithm Al),

-u elapsed user time,

-8 elapsed system time.

In the first column of the table the number of literals per
cube is shown. Each array consists of ten cubes of the same
type, where the type is determined in the second column of the
table (XX - cube contains many dc literals, 1X - cube contains
some dc-literals, 11 - cube contains no de-literal). In order to
obtain time data a set of such examples has been tested. The
time values are sorted according to their length.

The above table shows one reason why different algo-
rithms have been implemented for the generation of the whole
spectrum. It has been illustrated that any particular algorithm,
other then the one generating single coefficients, cannot give a
solution for all cases while the combination of algorithms gave
the solution always (the usage of the "worst-case” single
coefficient algorithm for every data would be inefficient).

The following conclusions can be derived from the
obtained data.

. One can observe that the calculation of cubes with a lot
of Xs is much faster than with small number of Xs.

. The algorithm which generates the spectral coefficients
out of the previous order is up to 3 times faster for
cubes having many Xs . Where the algorithm to generate
the spectral coefficients out of the first order is up to 2
times faster for generating cubes that have few Xs.

. By comparing the obtained results with the ones given
in [13] (where the calculation of the spectrum for the
function represented in the form of the truth table and of
18 literals took 382 seconds on VAX 11/780) one can
observe that for the given cases our program is several
times faster. A timing/synthesis comparison with
SPECSYS is not possible since the detailed SPECSYS
data have not been published. The SPECSYS program
has not been made available to the authors.

° Our preprocessing algorithm to generate disjoint cubes
[8] takes only insignificant time (less than 1 second) for
all tested cases. Therefore, the time presented in Table
2 is the total processing time which includes the time
for the preprocessing. In contrary, the preprocessor for
the algorithm of [13, 15] to create truth tables of
Boolean functions takes a lot of computer memory and
no time data has been published on it.

4.1. Memory Analysis

The memory requirement to calculate spectra is the
most important factor. Because of that requirement, the exist-
ing algorithms according to Fast Transforms could compute
only the spectrum for functions with up to 20 literals.

The basic memory for the introduced algorithms Al,
A2, and A3 for the calculation of Walsh spectrum is the same
and has to store the array of cubes, keep the program itself, and
store the necessary number of coefficients. The maximal
memory requirement to store the array of cubes in the memory
is given by the number of ON- or ON/DC minterms which
specify the function. Usually, the function is represented by
cubes that are larger than minterms. Hence, cu < 2/, where
cu is the number of cubes and ! denotes the number of literals.
In the implementation eight literals are stored in one integer
variable. Hence, the following memory is necessary to hold
the array of cubes.

2bytes 1<8

4 bytes 8<1<16
cu XY 6bytes 16<1<24

8 bytes 24<1<32

185

If there is not enough memory left to store the complete
spectrum during an execution of the program, the algorithm A3
is used. This means that only the memory for one single spec-
tral coefficient is necessary. Thus, the program is only limited
by the necessary memory to store the array of cubes and the
program itself. The memory requirements m(l) for the algo-
rithm A3 are given by:

m(l)=0((2! -1)x8 bytes) ®
m()=0((2!~1)x8bytes + || 7| +| ," || x4bytes) (6)
7l |77
m(l)=0((2! -1)x8 bytes + nil + n+’1' x4 bytes)
7| |7z !
M

where (2/ —1) means that the function is represented by all but
one minterm. Formula (6) applies for even n, formula (7) for
oddn.

S. CONCLUSION

A new, efficient algorithm and its implementation for
the generation of spectral coefficients have been described.
The computer method for performing this algorithm has been
implemented in the DIADES automation system. The
SPECSYS (for SPECtral SYnthesis System) developed at
Drexel University on VAX 11/780 uses the Fast Walsh
Transform for the calculation of the spectrum and can only
process Boolean functions having up to 20 input variables [13,
15]. The DIADES program has no limit on the number of input
variables of Boolean functions and it applies the methods
described in this article for the generation of spectral
coefficients of Boolean functions.

The DIADES system overcomes the following disad-
vantages found in the SPECSYS program [15]. First, in
DIADES the spectrum is generated directly from the reduced
representation of Boolean functions (arrays of disjoint cubes)
[2, 5, 8] rather than from the truth table (minterms). Second,
the entire spectrum - if required - can be computed incremen-
tally for groups of coefficients. Therefore our computer
method is very efficient for the calculation of only the few
selected spectral coefficients what is needed in many synthesis
methods [1, 9, 11].

Third, DIADES operates on systems of both completely
and incompletely specified Boolean functions. The other
advantages of the algorithms implemented in DIADES have
been described in the article. The only drawback of the
DIADES’s approach is the exponential growth of hard disk
storage requirements with the increase of the number of
coefficients. This is inherent to the nature of the problem. In
SPECSYS the storage requirements are even worse since inter-
nal memory is all that is used. The implementation of the
described algorithm allows the calculation of the spectrum for
completely and incompletely specified Boolean functions hav-
ing up to 32 variables. Since our system can calculate
coefficients either by groups or separately, in the worst case it
requires only memory to hold the first order spectral

coefficients. The n < 32 constraint refers to the generation of
either a complete order or the whole spectrum. It should, how-
ever, be noticed that even for the cases when n is limited, it
can be increased when a list structure that describes the indices
is created. The results presented in the article show that our
system is currently the fastest and most flexible spectral syn-
thesis system designed.

The goal of future research is to develop new decompo-
sition methods for systems of incompletely specified Boolean
functions based on the representation of Rademacher - Walsh
spectrum presented. The properties of such decompositions
make them very suitable for the design with FPGAs [15]. A
major advantage of the presented approach to Walsh spectrum
calculation is its convenience for computer implementation and
its ability to yield solutions to problems of very high dimen-
sions.

6. REFERENCES

[1] K. G. Beauchamp, Applications of Walsh and Related Functions.
New York, NY: Academic Press, 1984.

[2] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
"Multilevel Logic Synthesis,” Proc. of IEEE, vol. 78, no. 2, pp. 264-
300, Feb. 1990.

{3] M. J. Ciesielski, S. Yang, and M. A. Perkowski, "Minimization of
multiple-valued logic based on graph coloring,” Technical Report, TR-
CSE-90-13, Department of Electrical and Computer Engineering,
University of M: h , Amherst, 1990. September 1990. Earlier
version of this paper appeared as: "Multiple-valued minimization based
on graph coloring,” Proc. of IEEE Int. Conf. on Computer Design:
VLSI in Computers & Processors, pp. 262-265, 1989.

[4] E. Detjens, "FPGA devices require FPGA - specific synthesis
tools,” Computer Design, p. 124, Nov. 1990.

[5] D. L. Dietmayer, Logic Design of Digital Systems. Boston, MA:
Allyn and Bacon, 1978.

[6] B. J. Falkowski, and M. A. Perkowski, "Algorithms for the calcula-
tion of Hadamard-Walsh spectrum for completely and incompletely
specified Boolean functions,” Proc. of 9th IEEE Int. Phoenix Conf. on
Computers & C ications, Scottsdale, AR, pp. 868-869, March
1990.

[7] B. J. Falkowski, and M. A. Perkowski, "Essential relations between
classical and spectral approaches to analysis, synthesis, and testing of
completely and incompletely specified Boolean functions,” Proc of
23rd IEEE Int. Symp. on Circuits & Systems, New Orleans, LA, pp.
1656-1659, May 1990.

[8] B. J. Falkowski, 1. Schifer, and M. A. Perkowski, "A fast computer
algorithm for the generation of disjoint cubes for completely and
incompletely specified Boolean functions,” Proc. of 33rd Midwest
Symp. on Circuits & Systems, Calgary, Alberta, pp. 1119-1122, August
1990.

[91S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic. London: Academic Press, 1985.

[10] H. Landman, "Logic synthesis at Sun,” IEEE Conference Paper,
CH 2686-4/89/0000/0469, 1989.

[11] J C. Muzio, and S. L. Hurst, "The computation of complete and
reduced sets of orthogonal spectral coefficients for logic design and
paltem recognition purposes,” Comput. & Elect. Engng., vol. 5, pp.
231-249, 1978.

[12] M. A. Perkowski, M. Driscoll, J. Liu, D. Smith, J. Brown, L.
Yang, A. Shamsapour, M. Helliwell, B. Falkowski, and A. Sarabi,
"Integration of logic synthesis and high-level synthesis into the Diades
design automation system,” Proc. of 22nd IEEE Int. Symp. on Circuits
& Systems, pp. 748-751, 1989.

[13] E. A. Trachtenberg, and D. Varma, "A design automation system
for spectral logic synthesis,” Proc. of Int. Workshop on Logic Syn-
thesis, Research Triangle Park, NC, May 12-15, 1987.

{14] E. A. Trachtenberg, "Designing standard computer components
using spectral techniques,” Proc. of IEEE Int. Conf. on Computer
Design: VLSI in Computers & Processors, pp. 630-633, 1987.

[15] D. Varma, and E. A. Trachtenberg, "Design automation tools for
efficient implementation of logic functions by decomposition,” /EEE
Trans. Computer-Aided Design, vol. CAD-8, pp. 901-916, Aug. 1989.

[16] D. Varma, and E. A. Trachtenberg, "On the estimation of logic
complexity for design automation applications,” Proc. of IEEE Int.
Conf. on Computer Design: VLSI in Computers & Processors, pp.
368-371, Cambridge, MA, September 17-19, 1990.

creation:
- Wholc Spectrum
- Cenain Order

from: from:

- Previous Order Cubes

- First Order

Al A2 A3 Ad
Previous Order First Onder Single Cocf!. Some Coeff.
10. of coefT, no. of coefl. | o] no.of coefl. no. of cocf,
[nc= (n) + (» (n) 1
o ol nc= ° ncs nc=|

only if peevious order is chosen

Fig. 1. Mutual relati among the al memory
d;fmmupﬁm. e the possivle nd required
xex3X3%4 | So § S1 | Sa | S3 [SafISsa | S [Sie | Sn] Soa| Sse Siza | Siae | Sise { S § Stiam
XIXXON i 0 0f{ts]| o0 0 0 0 0 [0 0 0 [0 0 [
X011 ON 12 0 -4 4 4 [] 0 0 4 4 -4 0 0 [} I 0
10X0ON 12 {1 4 410 | 4 4 0 4 0 -4 0 0 4 0 0 0
0000DC || 7 -1 |1)4 | 1§ 1 | a4] 0] 4] 11§ af a7 1
93 7 3 (-1 3 -1 3 3 -1 -5 -1 3 -1 -5 -1
Table 1.
SYMMETRY 27
literals | type previous first
16 XX 6.3u 0.7s 99u 1.8s
16 1X 89u 09s 277u 3.8s
18 XX 27.1u 3.1s 374u 2.8s
16 11 79.1u 6.0s 46.5u 7.8s
18 1X 35.1u 3.8s 106.1u 4.5s
20 XX 11150 21.3s 148.2u 324s
20 1X 137.8u 26.0s | 435.2u 110.2s
18 11 339.5u 33.9s 182.7u 124s
20 11 1458.1u 69.9s | 732.2u 144.0s

186

Table 2. Execution times.

