AUTOMATED SYNTHESIS OF MICROPROGRAMMED
CONTROL UNITS IN DIADES

Lian Yang, Marek A. Perkowski, David Smith, Ali Shamsapour
Department of Electrical Engineering, Portland State University

P. 0. Box 751, Portland, OR 97207, tel. (503) 725-5411

ABSTRACT

This paper presents the automatic synthesis of micropro-
grammed control units in the DIADES design automation sys-
tem. The optimization of the microcode is not performed
separately in the control unit synthesis system, but is incor-
porated into the comprehensive process of data path scheduling
and allocation and control unit design. Therefore, the optimum
standard in this system is good performance of both data path
and control unit. A new microprogrammed controller model
that is suitable for design automation and formal description is
described as well. This new model permits to design and optim-
ize controllers ranging from a very basic microcontroller to a
very complex one. The micro-sequencer architecture is retarget-
able. A Symbolic Intermediate MicroCode (SIMC) is generated
as a "high level" intermediate microassembly language. In
SIMC, some high level control constructs from the behavioral
input language ADL of DIADES and GRAPHS8 are preserved
and they can be implemented either in hardware or converted
into lower level microinstructions. An Object-Oriented
HyperCard-based user interface has been designed to simplify
the user’s access to the system, It includes lessons, exams, helps,
animated visualizations, and glossaries.

1. INTRODUCTION

In [3,23,27,31] different approaches to digital systems synthesis are
discussed. These systems, however, emphasize the scheduling and resources
allocation of the data path, and the control units are generated only in the
sense of FSM or control memory contents generation. The micro-architecture
of the microprogrammed control units is not discussed in these papers, as
well as the various methods of mapping intermediate algorithm descriptions
to optimal microprogrammed realizations. The synthesis of the control unit’s
structure is basically non-existent. The mutual trade-offs between the control
unit and the data path are not addressed. The reason for this is probably the
fact that in those systems, the control unit structures are predefined.

Papers on the microprogrammed control unit design concentrate
mainly on the high-level microprogram compilation or on the process of syn-
thesis of control memory with a predefined micro-sequencer architecture
[7.8,23].

It can be then concluded, that in the traditional systems the data path
and the control unit synthesis are performed separately. The reason for this
is partly because there lacks a general and uniform intermediate form for
both data path and control unit in these systems. Usually, data path synthesis
takes place first and its description serves as one of the inputs to the control
unit synthesizer. The optimization is separated into the data path optimization
and the control unit optimization. This kind of a synthesis system could be
called a data path-oriented system. Such systems are found in [6,23]. In the
microprogram-based systems, the essential step of control unit synthesis is
the microcode compaction. As the data path part has been synthesized,
microcode compaction consists in extracting the parallelism in the data path
as much as possible. This is suitable for a high-level structural description in
which data path has been built up before the control unit, but is not suitable
for an automated synthesis system in which both the data path and the control
unit are synthesized concurrently, in an iterative process, that takes into
account evaluation of both data path and control unit quality. In this paper
we will present how the above issues are addressed in the comprehensive
design automation system DIADES.

2. THE DIADES DESIGN AUTOMATION SYSTEM.

The research presented here is a portion of the DIADES automated
design synthesis system developed at Portland State University. The

This research was supported in part by NSF Grant MIP-9110772.

DIADES system (DIgital Analog DESign automation) is intended to design
multi-processor, digital/analog, electrically programmable and dynamically
reconfigurable architectures. A simple example of this kind of architecture,
based on Xilinx FPGA devices and applied for digital circuits emulation, is
presented in [5]. DIADES has its own high level HDL called ADL (Algo-
rithmic ~ Design Language), which is a block-structured,
behavioral/functional/structural language. The DIADES system takes ADL
as its input and generates the circuit at the structural level as its output. The
purpose of the DIADES project is to provide a CAD tool to help the circuit
designer to fast prototype and explore various design options and styles
quickly and more precisely than in the traditional methodologies. Like
source languages of most existing high level synthesis systems which begin
with a behavioral description, ADL has a high level syntax, similar to C
[29,30]. The user does not have to be concerned with logic level implementa-
tion details of the system under design [24,25]. The generated output struc-
tural description is in the M language (TM Mentor), which serves as an input
to the silicon compiler designed around various logic synthesis and layout
tools interfaced to GDT and other Mentor tools. We can therefore call
DIADES a high-level preprocessor for a commercial silicon compiler.
Program in ADL is translated by an object-oriented expandable compiler
TAG91 into the Lisp-based language GRAPH88, being an universal internal
description form [29,30]. Descriptions in GRAPH88 are called Program
Graphs (p-graphs). The initial p-graph description is similiar to "register
transfer" control flow which permits for parallel operations as well as stan-
dard sequential operations, but which can include very complex assignment
statements. P-graph includes basically two components: the control flow
graph (cf-graph) and the data path description. This is different from a tradi-
tional data flow graph or a control flow graph because the p-graph combines
the control flow description and the data path description into one description
file, composed of several nested lists, each of which relates to a single high-
level aspect of the circuit (it is somehow similiar to EDIF with this respect).
During transformations, more information about structure and timing is
added to the p-graph’s lists. The parallel constructs of ADL and p-graph are:
FORK (forking to parallel branches), SIM (simultaneous assignment state-
ments execution), DAND (coincidential join of parallel branches), DEXOR
(exclusive join of parallel branches), DROP (termination of local parallel
branch), and STOPADL (global control termination in the parallel graph).
These constructs make p-graphs functionally equivalent to parallel program
schemata of Karp and Miller and more powerful than the safe Petri Nets.
The p-graph being the translation from ADL is then subject to optimizing and
other transformations. Therefore, the p-graph is a DIADES intermediate form
that represents an implementation level of the entire High-Level Synthesis
Subsystem.

In DIADES system, we employ powerful design tools in both data path
part and control part synthesis [11-21,24-26). The systematic optimization
takes place at the p-graph level, which takes advantage of inherent parallel-
ism of the algorithm itself and simultaneously performs the operation
scheduling and allocation at this level. There are two design styles for con-
trol unit synthesis that are chosen by the designer: the FSM synthesis and the
Microprogrammed Control Unit synthesis. They are implemented in the
FSM Synthesizer [17-21] and the Microprogrammed Control Unit Syn-
thesizer (MICUS), respectively. Some initial optimizations respective to both
Synthesizers are performed first at the p-graph level. With respect to the tar-
get architecture it is very important that several controller and data path
design styles are supported. While the controller design style provides vari-
ous partitionings to modules and devices, the logic synthesis algorithms pro-
vide various mappings to configurable logic blocks (CLBs). Therefore, addi-
tionally to the well-known "disjunctive logic” synthesis tools we use a variety
of EXOR-based and spectral-based tools optimized for our target programm-
able architectures [20].

3. COMPLEX MICROPROGRAMMED UNIT SCHEME IN DIADES

3.1. A General Microprogrammed Controller Model

1973

0-7803-0593-0/92 $3.00 1992 IEEE

In traditional microprogrammed control, microsequencing has been
implemented using a variety of implicit and explicit techniques. Due to
recent advances in VLSI technology, there is an increasing interest in more
complex control sequencing. Devices such as Am29500 series has provided
high sequencing capability such as microroutines, nested looping, and multi-
way branching. But as far as the high level synthesis is concerned, there has
been no literature indicating a mature method to synthesize such complex
control schemes. In our system we have developed an approach that makes
microprogrammed control unit synthesis process universal and formal, and
we propose a general microprogrammed controller scheme. Fig. 1 shows the
diagram of a general microprogrammed controller model, which is a new
concept of a microprogrammed controller. To understand the diagram from
Fig. 1, some concepts should be defined at first.

Definition 1. Internal control is the control of the internal behavior of the
controller, such as push, pop, or select address resources. The internal con-
trol is also referred to as the microcontrol.

Definition 2. Internal controller is the controller that performs internal con-
trol functions. Internal controller is also referred to as the microcontroller.

Definition 3. Internal function is a set of microcontrol operations determined
by the microinstruction format and internal states. The parameter of internal
function is like the argument of the conventional function. An internal func-
tion along with its parameters determines a sequencing behavior. Its formal
expression is: f{x*) -> y, in which f represents internal function, x represents
the function parameter set, and y the target address. In each microinstruc-
tion, f and x should be specified and two fields are needed to hold f and x
information.

The internal functions include conditional jumping, looping, forking,
calling subroutines, etc. Each internal function is a way of directing the
sequencing activity. The parameters of an internal function can be instan-
tiated as the branching addresses, loop counts, etc.

In Fig. 1, the idea of the new scheme is to partitionate the internal func-
tion and its parameters into two combinational logic units. Traditionally,
these two parts were incorporated in the control memory. This kind of
schemes are found in the most current microprogrammed controller synthesis
systems [23]. In these schemes, the control storage takes the entire internal
and external control tasks, influencing the efficiency of the controler and the
cost of the control memory. While in the scheme shown in Fig. 1, the control
task of the controller is divided into three parts, each of the three parts has its
particular control task, thus they all can be made the most of. This scheme is
particularly suitable for complex microprogrammed control units synthesis
that have very heavy internal control tasks. The tasks of the three parts are
described in detail below:

(1) The Internal Function Unit (IFU) generates the control signal for internal
control such as push-stack, loop detect or forks invocation, it selects also the
address. The input of this unit is the addressing type field of the microinstruc-
tion which resides in the control memory.

(2) The Internal Function Parameter Unit (IFPU) generates the parameters
needed by internal functions such as loop count, branching adresses, and
external mapping. As for each micoinstruction, there is one or more internal
function parameters associated to it, which would seem as if the input of this
unit were the address of the current microinstruction. But actually, not all
internal functions have real parameters. Sequential addressing has no param-
eter, for example. Thus the inputs of the parameter unit are the encoded
parameter numbers of the internal functions. This will be further discussed in
section 4.2.

(3) The central part of the controller is the Control Memory (CM). 1t gen-
erates the control signals to the data path and directs the internal control.
Because the control memory only selects the internal control tasks but does
not generate them, its burden is dramatically reduced. At the implementation
level, the control memory includes three fields: external control field, internal
function number field, and internal function parameter number field. These
three fields can be further conmonly or separately encoded to reduce the CM
size.

A particular feature of this scheme is that all the three internal control
units do not necessarily exist for a particular problem. The diagram from Fig.
1 is more a conceptual scheme that corresponds to the SIMC internal
language than a physical realization. The IFU and IFPU could be set to null
for some applications. The key to this conceptual model is to provide a for-
mal description of a microprogrammed control unit that is suitable for dif-
ferent goals.

DIADES provides the program to perform transformations between

several induced schemes, which is automatically induced by the SIMC
assembler program while evaluating the efficiency and the costs of the possi-

ble induced schemes. Basically there are three sorts of induced schemes:
"scheme 1." Fully Distributed Scheme, in which the internal controls are
very complex and there exist many concurrent conditional jumps. The
diagram of this scheme is shown in Fig. 1.

"scheme 2." Semi-Distributed Scheme, in which the internal controls are
simple but there still exist many concurrent conditional jumps. The IFU
would be set to null by the assembler, but the IFPU would be employed to
store multi-way branching addresses. The diagram of this scheme is shown in
Fig. 5.

"scheme 3." Classical Scheme, can be also called a CM-based scheme, in
which the internal controls are simple and few multiway jumps exist. The
diagram of this scheme is shown in Fig. 7. It stores all internal and external
control information in the Control Memory.

In the controller scheme from Fig. 1, the microinstruction in the Con-
trol Memory employs a semi-implicit addressing scheme because the
microinstruction residing in CM selects the formation of the next address
only, but does not include this address in its fields.

This scheme is new to microprogrammed controller synthesis. In
[9,10] a highly distributed addressing scheme was proposed, in which the
control memory (ROM) stores the external control signals only, and the next
address is generated by a sequencing PLA. In the sense of intemal control
distribution, our scheme is similar to it. But in the scheme from [9], the flexi-
bility is almost lost as the internal control and the external control are totally
separated and fixed in hardware.

3.2. Symbolic Intermediate MicroCode (SIMC) Formatting

In a simple microprogrammed scheme, the internal control function is
very primitive and there is no need for the microcontroller. One or two
MUXs would be enough for such a sequencing scheme. As far as complex
control structures are concerned, the microcontrol functionality is much more
complicated and a lot of parallelism exists. In this case, the task of the
microinstruction (MI) is divided into two parts: microsequence control and
data path control. The former is referred to as the internal control and the
latter the external control. These internal functions and their microcontrol
operations are listed in Fig. 2.

The purpose of SIMC is to symbolically represent all the internal func-
tions from Fig. 2 in a clear, and easy to be translated, way. SIMC format is
as follows:

(fname fparameter op)

In above, "fname" specifies the microfunction name for a MI. "fparameter”
specifies the parameter that the specified microfunction takes. For example, (
Loop 3 opl) specifies a Loop MI and the Loop count is 3, which designates
to execute the following loop body 3 times. opl is symbolic operation
number of the data path control signals this MI holds.

As we should notice, there is no explicit branch and condition informa-
tion specified in SIMC. In fact, the fparameter field of SIMC includes a lot of
information related to condition numbers, jump addresses and branching
addresses. Fig. 3 lists all kinds of SIMC formats together with their seman-
tics. As we see in Fig. 3, SIMC has only explicitly declared the sequencing
behavior of an MI. The data path operations are represented abstractly by op
numbers. This is a reasonable solution since the semantics of op is defined
detailly in the p-graph. When assemblying SIMC into the object microcode,
everything the assembler needs to do is to simply map the semantics of each
op to the respective encoded binary number.

3.3, Translating GRAPH into SIMC

SIMC can be used as an assembly programming language for some
applications. A program that translates p-graphs into SIMC has been build.
Theoretically, each p-graph node corresponds to a single
microinstruction,which can be executed in a single cycle. The difference is,
that in p-graph, the explicit addressing is employed. In SIMC, semi-implicit
addressing scheme is employed. "semi” means, that when a branching is
encountered, explicit branching addresses should be still declared. To
translate p-graph into SIMC, the program simply locates each p-graph node
in the virtual CM space and converts the p-graph node into the SIMC word,
one by one. A depth-first searching algorithm was designed to perform this
task. Employing this algorithm, the redundant join MIs are minimized, some
other techniques to remove redundant jump Mls are additionally used.

4. SYNTHESIS OF THE COMPLEX MICROPROGRAMMED CON-
TROL UNIT (CMC)

In a control unit, two basic tasks are performed: generating control sig-
nals to data path and generating the next control state (for microprogrammed

1974

control unit the next MI address). The task of generating next address in
microprogrammed control unit is referred to as microsequencing. Because of
the increasing requirements of high level microprogramming and the
development of VLSI technology, more and more powerful microsequencers
have been proposed. In [1], some multi-functional microsequencer chips are
described.

In automated synthesis systems, microprogrammed controllers are
widely employed. Most of them are, however, very simple and predefined
microsequencer schemes are used. In [4] concurrent modular controller syn-
thesis is addressed, but not quite compatible with our approach. Most high
level control constructs are translated into simple two-way branching
schemes or to the constructs corresponding to its fixed microsequencer
schemes. In DIADES system, the following reasons ecourage us to imple-
ment complex microprogrammed control units.

1. ADL has powerful control statements such as loop, case, subroutine
and forking. A fixed microsequencer scheme cannot take advantage of
high level control capabilities of ADL.

2. DIADES is a performance oriented system, which means that the best
performance of the algorithm is pursued. Therefore, the control unit
scheme should be very flexible in order to match the particular algo-
rithm,

3. A new, flexible, formal microprogrammed control unit model is pro-
posed, which is suitable for efficient synthesis of complex micropro-
grammed controllers.

4.1. CMC Sequencer Scheme

In Fig. 1, the conceptual model of the CMC controller is displayed. Its
microsequencer scheme varies from a very complex one including stacks,
loop-counters, incrementers, and buses, shown in Fig. 4. It can be also very
simple, like that shown in Fig. 5. Since FORK control construct exists in
some applications supporting distributed systems, the Figure’s 1 model can
be expanded to a distributed controller model, in which several parallel sub-
controllers (nano-controllers) are controlled by a main controller (microcon-
troller - [2]) The diagram is shown in Fig. 7. In high level language, the dis-
tributed control flow is derived by using forking. As we see this micropro-
grammed control scheme employs distributed internal controllers.

4.2. Microassemblying STIMC into the Object Microcode
SIMC includes all information on both internal and external control. At

the implementation level, three units are employed to accomplish the control

tasks. Therefore, an instruction in SIMC will be actually partitioned into three
parts. Microassembly SIMC means to generate the contents of the control
memory, the internal function unit, and the internal function parameter unit

(CM, IFU, IFPU, respectively). Remember that both IFU and IFPU could be

set to null, i.e. classic microsequencer scheme might be included.

The steps of the microassembly process are:

a. Architecture Selection: at this stage, the internal function and their
parameters are accounted and different sequencer schemes are
evaluated and compared. Then a microsequencer architecture is
selected.

b. SIMC Translation: SIMC is translated into the object microcode within
the selected architecture. At this stage, the truth tables of the three
functional units, i.e. the IFU, IFPU and CM are formed.

Fig. 8 shows the relation between the SIMC ficlds and the contents of
the three units. In Fig. 8, f1, f2, f3 are the eventual fields in CM. Fields f1
and f2 are the microfunction number and the microfunction parameter
number, respectively. The numbers are encoded as the inputs of the IFU and
the IFPU PLAs, respectively (for simplification, we refer to here and below
to PLAs, however the reader has to bear in mind that any multi-level or
ESOP (Exclusive Sum of Products) synthesizer [20] from DIADES or
Mentor‘s Autologic can be used to realize these logic blocks). The IFU and
the IFPU are generated dynamically by scanning the STIMC words. Basically,
the rules of microassembly are:

1. The content of IFU is dependent on what microcontrol functions the
current SIMC has. A full MFU PLA is defined as the MFU PLA in
which occur all possible internal functions listed in Fig. 1. The current
IFU PLA is generated by cutting the rows and columns that
correspond to the not occuring internal functions.

2. The content of the IFPU is the list of all fparameter values specified in
SIMC. Its input is the encoded fparameter number that was generated
by the assembler at the assemblying time.

3. The content of CM is divided into three fields f1, f2, f3. Field f1
represents the internal function type and serves as the invoking input of
[FU. Field 2 represents the microfunction parameter number and
serves as the invoking input of the IFPU PLA. For example, a MI (2 9
2) has the following meaning:

(1) Its IF number is 2, assume it represents the conditional jump
addressing type.

(2) Its IFP number is 9, it is an index to the associative target
address that is stored in the IFPU. In this case, the target address
is determined by the index number and the machine status that is
also the input of the IFPU.

(3) Its external operation number is 2, which is an index to the
activities of this microinstruction. As we mentioned earlier, the
semantics of the operation is represented in the six-tuples of the
p-graph.

5. THE HYPERCARD ENVIRONMENT

It is difficult for the new users of complex CAD systems to start using
the system since they are overwhelmed by both the complexity of the new
architectural and design concepts, as well as the amount and complexity of
documentation - “How to teach CAD tools to 40 students, having a single
copy of a 20 volume tools documentation?” Hopefully, new software pro-
ducts, such as the HyperCard from Apple, provide excellent tools for writing
all kind of graphics database and learning environments, that can be created
to help the novice or occasional CAD system users. Our current HyperCard
Environment [22,28] of DIADES covers DIADES, ADL, and microprogram-
ming, but we plan to expand it.

The goal of the Environment is to help students to prototype, integrate,
and test their systems faster. They will be able to consider numerous vari-
ants, while under the present conditions, they have enough time to investigate
a single possibility only. Moreover, the Environment will help in preparation
of the design documentation and group communication, which are weak
aspects of students’ work. When finished, the modules linked in the Hyper-
Card Environment will be of various kinds: (1) Descriptions of electronic
hardware modules on many levels of specification (like counters, pipelined
digital signal processors, microprogrammed controllers) and with a complete
explanation (including graphics and animation). For instance, while reading
a text on microprogramming the user can click the button to see a schematic
of the controller, which can be next animated to show moving patterns of
data flow from various logic blocks to the control register. (2) Simulation
and test generation information for them. (3) Software design tools, format-
ting and interfacing programs. (4) Man-pages of user manuals with graphics.
(5) Libraries of VLSI cells ready to be used in designs, with complete
electrical, simulation, and testing information. (6) "Problem-solving"
scenarios of standard approaches to solve problems. (7) “Brainstorming
guides” to help investigate design problem spaces in order to find new
designs. (8) Midterm Exams and a Final Exam. (9) Glossaries.

We believe that our Environment generates students’ curiosity and excite-
ment, It provides a learning environment in which the material can be learned
quicker, in depth, and be more retainable. Our goal of designing the environ-
ment is much more than the simulation or the classical Computer Aided
Instruction. We want to create an environment in which the students will be
guided to learn by solving problems and by designing.

What do we mean by learning by designing? An experienced designer
initially has some very vague ideas about his design when he starts to work
on a new project. However, he knows a bunch of tricks, helpful rules, he has
experience, he knows many existing designs, blocks and how they can
interact, he disposes catalogs and schematics. He can modify existing
designs, he can combine or simplify them. When the design is ready he can
simulate it with simulators on many levels of accuracy or verify them algo-
rithmically. He can use many design programs such as those for Boolean
minimization of various microcontroller logic blocks in the design process.
The goal of the Environment is to guide the inexperienced user through the
“scenarios” helping him to find new ideas. Student is able to investigate vari-
ous variants of microprogrammed architectures with an ease of playing video
games. The main principle is that of objects and operations on them - every-
thing is done on the "showing and selecting" principle.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented the automated synthesis process of a com-
plex microprogrammed controller. The program for microprogrammed con-
trol unit synthesis has been written in Common Lisp and was successfully
tested on several ADL examples. The work on expansion of this scheme and

1975

high level transformations is in progress, and work on better integration of
the Environment is also necessary.

7. LITERATURE

[1} Andrews, M., "Principles of Firmware Engineering in Microprogram Control"
Computer Science Press, 1980. [2] Baba, T., "Microprogrammable Paralle] Computer
MUNAP and Its Applications ", The MIT Press 1987. [3] Brewer, F.D. and D. D.
Gajski, "Knowledge Based Control in Micro-Architecture Design", Proc. 24th DAC,
ACM and IEEE, Tune 1987, pp. 203-209. [4] Bruck, R., Kleinjohann, B., Kachofer,
T., and F.J. Ramming. "Synthesis of C Modular Controllers form Algo-
rithmic Descriptions", Proc. 23th DAC, ACM and IEEE, June 1986. [5] Butts M.R.,
and J.A. Batcheller, "Method of Using Electronically Reconfigurable Logic Circuits",
US. Patent 5,036,473, July 30, 1991. {6] Director, S.W., Parker, A. C., Siewiorek, D.
P., and D. E. Thomas, "A Design Methodology and Computer Aids for Digital VLSI
Systems", IEEE Trans. on Circuits and Systems, Vol. 28, No. 7, 1981. [7] Hopkins,
W. C., Horton, M. J., and C. S. Arnold, "Target- Independent High-Level Micropro-
gramming", Proc. 18th Ann. Workshop on Microprogr., ACM SIGMICRO
Newsletter, 1985, Vol. 16, pp. 137-143. Design and Test of Computers, Vol. 2, No. 4,
1985, pp. 33 - 43. [8] Nixon, J. F.,, and Schacchi,, S. R., and R. I. Winner, "A
Microarchitecture Description Language For Retargeting Firmware Tools", Proc. 19th
Ann. Workshop on Micropr., ACM SIGMICRO Newsletter, 1985, 16, pp. 34-43. [9]
Papachristou, Ch. A., "Hardware Microcontrol Schemes Using PLAs", Proc. 14th
Ann. Workshop on Microprogr., ACM SIGMICRO, 1981, Vol. 16, pp. 3-16. [10]
Papachristou, Ch. A., "A Microsequencer Architecture With Firmware Support for
Modular Microprogramming” Proc. 15th Ann. Workshop on Microprogr., ACM SIG-

machi

Datapath Control

MICRO, 1982, Vol. 16, pp.105,113. [11] Perkowski, M., "A system for ic
design of digital systems". Proc. of the FCIP Symp. INFORMATICA 74, Bled,
Yugoslavia, 7-12 Oct. 1974, paper 4.4. [12] Perkowski, M, "ADL - Source Language
of the System for Automatic Design", in R. Marczynski (ed.) Organization of digital
computers and microprogramming, Polish Scientific Publishers (PWN), 1/ddZ 1976.
Vol. 1, pp. 167-180. [13] Perkowski, M., and K. Jankowski, "Validation and Optimi-
zation of Control Automaton Programs in the System for Automatic Design", Proc. of
Int. Symp. - Fault Diagnosis of Digital Networks and Fault - Tolerant Computing,
Wisla, Poland, 1976, pp. 104-112. [14] Perkowski, M, "A Method of Validation of
Parallel Programs in the System for Automatic Design of Black-Oriented Digital Sys-
tems", Proc. 2nd IFAC Symposium on Discrete Systems, Dresden, Germany, 14-19
March, 1977, Vol.2, pp.71-88. [15] Perkowski, M, "Automatischer Entwurf von
MOS-LSI-digitalen Schaltungen in System DIADES", Messen, Steuern, Regein, Vol.
6, 1979, pp. 346-350 (in German). [16] Perkowski, M, "Digital Devices Design by
Problem-Solving Transformations”, J. Comp. Artif. Intell., Vol. 1, No. 4, 1982, pp.
343-365. [17] Perkowski, M.A., Smith, D., Driscoll, M., Liu, J., and J.E. Brown:
"DIADES - A High-Level Synthesis System”, Proc. of the 1989 ISCAS, May 9-11,
1989, pp. 1895-1898. [18] Perkowski, M.A., Driscoll, M., Liu, J., Smith, D., Brown,
1., Yang, L., Shamsapour, A., Helliwell, M., Falkowski, B., and A. Sarabi: "Integra-
tion of Logic Synthesis and High-Level Synthesis into the DIADES Design Automa-
tion System", Proc. of the 1989 ISCAS, May 9-11, Portland, OR, 1989, pp. 748-751.
{19] Perkowski, M.A., and J. Liu: "Generation of Finite State Machines from Parallel
Program Graphs in DIADES", Proc. of the ISCAS’90, New Orleans, 1-3 May 1990,
pp. 1139-1142. [20] Perkowski, M.A., "A Multi-Level Logic Optimization Program
which Generates Optimal Mix of AND, OR and EXOR Gates", PSU Report, 1990.
[21] Perkowski, M.A., Zhao, W., and D.Hall, "Concurrent Two-Dimensional State
Minimization and State Assignment of Finite State Machines", Proc. of the IEEE
VLSI Design '92 Conference, Bangalore, India, 4-7 January 1992. [22} Shamsapour,
A., "Hypercard-Based Learning Environment for DIADES", M.S. Thesis, PSU, 1990.
{23] Sun, L. F., Liaw, J. M., and T. M. Pamg, "Automated synthesis of micropro-
grammed controllers in digital systems", IEE Proceedings, Computers and Digital
Techniques, Volume 135, Part E, No. 4, July 1988. [24] Smith, D., "Introduction to
DIADES system", PSU DIADES Research Group Report, 1991. [25] Smith, D.,
"Forthcoming Ph.D. Dissertation”, PSU EE Dept, 1992. [26] Smith, D., Perkowski,
M.A,, and K. Stanton: "A Distributed Processor Ensamble Methodology for the PSU-
BOT", Record of Northcon’91, Portland, 1-3 October 1991, Session S1, paper 5. [27]
Tricky, F. H., "A High Level Hardware Compiler", JEEE Trans. on CAD, DAC-6, 2
(March 1987), 259-269. [28] Von Pressentin, M., Csopenszky,, M. and M. Sand,
"Portland State University: Teaching Electrical Enginering Using HyperCard", Wheels
for the Mind, Vol. 4, No. 3., pp. 17,95-98, 1988. This is a short version, complete
PSU Report also available. [29] Yang, L., and M.A. Perkowski, "Object-Oriented
Design of an Expandable Hardware Description Language for a High-Level Synthesis
System", Proc. of the Intern. Conf. on System Sciences, Jan. 7-10 1992, Stouffer
Waiohai Beach Resort, Kauai, Hawaii. [30] Yang, L., "Object-Oriented Design of a
Hardware Description Language for the DIADES Silicon Compiler System”, M.S.
Thesis, Dept. EE., PSU, 1990. [31] Zimmermann, G. "MDS-The Mimola Design
Method," Journal of Digital Systems Vol. 4, No. 3, 1980, 337-369.

SIMC Format

(fame fparameler op)

Object Code Format

2 MI segment such as subroutine, fork.

From IFU

Intemal 1
o Si;:\lsm From [FFU

Intemat Controls
Funcdons
ca push(stack). ps<=ps+1(stack pointer) Jump Fig. 2.
Retumn POp(stack), ps<=ps-1, Addr-regis.<=top-stack
Loop push, push, continue
End-loop ‘2er0-te5t, jump or continue
Fork control transfer to nanoprogram unit
Jump Addr-regis.c=Jump-address
Cjump Addr-regis.<=targeted-address
Function & Parameters Semantics
(L (Cat Fename)) «call subroutine
(L Reum)) (subroutine) remm Fig. 3
(L @oop Lcount)) do following Mis
L-count times
(L @Ed) Loop ends, test loopeounter
(L @EHe™)) conditional jump
(single or multi)
(L (Gow L)) ‘unconditional jump
(L (Pan fokl. fokn)) ‘parallel execution of
forks (n is pot limited) Fig.5
(L Geau o)) sequential addressing U
N ‘machine status
(L (Mazp) external address mapping
'MODE SELECT
(Heady* head of 2 scgment of MI —\J
* Head is not a function, ivsatagof

MICROSEQUENCER PLA

- Next
Address

Cont/load

—

‘Control Memory
‘CONTROL
SIGNALS
External Map
Main
Con r Branch
+1
e
control transfer yvrm
Sub Sub Selector
Conroller - Controller : m x
» ®
Jl ™
0 data to data
processar-1 processor-n condition
selection
o Data Path &
Fig. 6.) Fig.7.
Control Signals

1976

