AN EXACT ALGORITHM FOR THE TECHNOLOGY FITTING
PROBLEM IN THE APPLICATION SPECIFIC STATE MACHINE
DEVICE

Marek A. Perkowski +, Malgorzata Chrzanowska-Jeske +, Alan Coppola *, Edmund Pierzchala +

+ Department of Electrical Engineering, Portland State University, P.O. Box 751, Portland, OR 97207.
* Cypress Semiconductor Inc., 12225 S.W. 2nd St. Beaverton, OR 97005.

ABSTRACT

In the paper the fitting problem for a new Application
Specific State Machine Device, CY7C361, from Cypress Sem-
iconductor is formulated and the solution is proposed. This
fitting problem consists of mapping the netlist obtained from
high-level synthesis into the chip’s physical resources. In gen-
eral, the mapping (fitting) problem can be formulated as one of
the labeled graph isomorphism between the netlist graph and the
sub-graph of the resources graph. However, the specific
architecture-related constraints of the CY7C361 device cause
the fitting problem to be generalized as a graph isomorphism
problem with some additional mapping constraints (such as
mapping some nodes of the netlist graph to more than one node
of the physical graph - nodes’ multiplication). Such formulation
is quite general for a class of Electronically Programmable
Logic Device (EPLD) fitting problems, and has not been found
in the literature. We implemented an exact, constraint-based,
tree searching algorithm with several kinds of backtracking.

1. INTRODUCTION.

Finite State Machines (FSM) are commonly used in VLSI chips, pro-
grammable devices, and board level designs to perform sequential logic func-
tions. Such machines can be realized in various programmable architectures.
In the development systems for each of those architectures there exist stages
of logic synthesis and physical synthesis. In this paper we focus on the physi-
cal design problem for one particular type of device, namely the Application
Specific State Machine Devices (ASSMDs), and especially the CY7C36 chip,
developed recently by Cypress Semiconductor [1]. The CY7C361 device has
been optimized for very fast realization of asynchronous sequential distri-
buted circuits. The high speed of the device is achieved through its unique
architecture with CDEC gates and shift registers [2]. This architecture is dif-
ferent from both standard AND/OR EPLD architectures, and cell/channel
FPGA devices. The main characteristic features of the CY7C361 device are:
(1) the architecture is partitioned hierarchically into groups of state macro-
cells (state cells for short) and their excitation functions; (2) all state macro-
cells are different than standard flip-flops and can be all programmed as a
shift register structure(s); (3) non-standard logic gates (the CDECs) are used
to implement transition and reset functions of the state cells; (4) some reset
gates must be multiplicated to satisfy the technology constraints imposed on
the placement of macrocells and gates; (5) The output functions are ORs of
the state signals from the state macrocells. (6) The CY7C361 device
observed from outside behaves as an asynchronous circuit, it is, however,
internally synchronized. Therefore, this architecture requires creation of a
unique design methodology. Such methodology [2] is based on partitioning a
design into smaller communicating machines, and possibly, realizing also
each of those smaller machines as a parallel state machine.

In this paper we present one stage of CY7C361 design system: the
Fitter, which places and routes the netlist resulting from logic synthesis to the
cells and connections existing in the device Subsequently the device is pro-
grammed according to the results from the mapping stage.

2. THE IDEA OF THE APPLICATION SPECIFIC STATE MACHINE
ARCHITECTURE.

The concept of a Tokenized State Machine generalizes the model of
the FSM, and comes from the practical methods used by industrial companies
such as IBM and Hewlett-Packard. This model has parallelism on two levels
of description. First, the machine is a network of FSMs. Second, each of
those FSMs in the network can be again a Parallel Finite State machine
(PFSM). Each component state machine from the network can have many
tokens (i.e. "control points”) in a “"state" (node) at one time. Such machines
are also called "Multiple State Machines” or "Concurrent State Machines".
The tokens can multiply and disappear, but not more than one token can exist
in any node of the machine [2]. The tokens multiply when there are several
edges with the same condition pointing out of a node. The token merge in
JOIN nodes to a single token. This concept is close but not identical to “safe
Petri Nets”, "Parallel Program Graphs” of Karp and Miller, and several
close formalisms that generalize Finite State Machines. We believe, how-
ever, that our model is easier to learn by industrial designers since it is very
similar to state machines.

The user’s development software for CY7C361 includes: VHDL com-
piler, high level synthesizer, logic optimizer, fitter, assembler, simulator, and
device programmer [2,4]. The high level synthesis software takes a VHDL
description of a design and convers it step-by-step to the netlist of excitation
functions, memory macrocells and output cells. It is important at this point
that if the user wants to specify a standard FSM, he can just describe it in
VHDL - the user does not have to be concerned about what internal format is
his description converted to.

The pattern of interconnections between the cells that results from the
initial description satisfies always certain constraints on the type and connec-
tions of various types of cells. For instance, if a group of cells is a C_IN
chain (a shift register) most of the cells in it are pulse generators (ST type
storage macrocells). These properties are later on used by the Fitter program.
Although resource mapping problems are well-known in designing the EPLD
development software, we are not aware of any published algorithms to solve
the fitting problem. Therefore, in our opinion, the most important contribu-
tion of the reported research is the formulation of the fitting problem and the
first attempt at an exact algorithm to solve it.

3. THE ARCHITECTURE OF THE CY7C361 CHIP.

The task of this section is to present the peculiarities of the device that
affect the process of physical design. Given below are the reasons why the
CY7C361 chip may look unfamiliar to its user:

1. The reset functions and the excitation functions of the flip-flops in the
state cells are not the general-purpose Sum-of-Products Boolean Func-
tions nor similar logic in standard PLDs. To achieve high speed they
are designed as unique gates called Condition Decode (CDEC). CDEC
gate is an AND of two, fan-in unlimited, gates, AND and NAND.
These gates take primary inputs and state cell outputs as the arguments.
The presence of CDEC gates when designing with the CY7C361
means that the designer cannot use the standard FSM synthesis
methods [6], but special behavioral TSM transformations [2] and
CDEC-based logic synthesis algorithms [5] must be used.

2. There are three types of storage elements in the state cells of
CY7C361: Start (ST), Toggle (TO) and Terminate (TE). Only the
Toggle cell corresponds directly to the familiar synchronized T type
flip-flop, for which general design methods have been. developed and
are commonly used. The Start cell has one of three possible applica-
tions in TSM design: as a counterpart of D type flip-flop; as a "Dif-

1977

0-7803-0593-0/92 $3.00 1992 IEEE

ferentiation Operator”, which differentiates the input signal, and as an
"extender" for SOP excitation functions of T and JK flip-flops (realized
with TO and TE cells, respectively). The Terminate cell is somewhat
similar to a synchronized JK flip-flop but it is set ON (J input) only by
the C_IN "shifting” input from the previous state cell and it terminates
(K input) when the CDEC-implemented condition of this cell is
satisfied. The TE cell needs then at least one additional ST cell in
order to emulate a JK flip-flop.

3. All state cells can be configured to shift registers by using C_IN
inputs.

4. Even stronger restrictions are imposed on the output functions of the
CY7C361 chip. At the first approximation one can assume that each
output signal from the CY7C361 chip is only an OR function of the
cell outputs. This restriction is very important as it means that one can-
not realize the decoding of cell’s outputs, such as @, 02 or

01 Q2a + 03, where a is a primary input (input 1)

5. The reset logic is realized by the CDEC gates as well. Reset can be
Global (for all cells) or Local (for a group of cells). Condition, Global
Reset, and Local Reset are the inputs signals to a state cell. A scparate
Condition signal exists for each cell, One Local Reset signal exists for
four cells, Global Reset is for all state cells. (Currently in CY7C361
the Local Reset can be only used in a Toggle cell.)

The more detailed specification of the CY7C361 chip can be found in
[1,2,3]. The available connections of the state cells are shown in Fig. 1. The
architecture is partitioned into two groups of 16 state macrocells with their
associated reset signals and CDEC planes. Each of these groups is parti-
tioned again into two groups of 8 storage macrocells. The outputs from all
cells in each of the 8-cell groups are available at the CDEC gates of all the
cells belonging to that group. All groups of 8 include two groups of 4 with a
separate local reset CDEC for each group. The groups of 4 are called Physi-
cal LRE groups. In each group of 16, the available connections between two
groups of 8 are realized through two outputs of one group being available as
inputs for the other group and vice versa. One output of each group of 4 is
globally available to all other groups of 4.

As mentioned, each group of 4, the physical LRE group, has a common
local reset signal. This causes that in each physical LRE group there are two
possibilities:

1. After placing the netlist graph (the symbolic graph), the cells of the
group are an arbitrary collection of TE, ST, and TO type cells (or any
subset of those types), and the TO cells (if present) do not use the local
reset signal.

2. After placing, the cells are an arbitrary collection of TE and ST cells
(or any subset of those types, possibly empty), and some TO cells.
There exists a TO cell that uses certain symbolic local reset signal. In
this case all other TO cells in this LRE group must use the same local
reset signal.

This constraint has the most significant impact on the fitting problem.
Fig. 2 presents a physical adjacency matrix of all state cells (1...32),

global reset cell (33) and local reset cells (34...41). The rows represent out-

puts of cells, the columns the inputs to cells’ CDEC gates. This matrix has
some symbolic graph mapped into it. Symbol | stands for a physical con-
nection between the output of the row cell and the input to the column cell of
the resources graph, which has not been used. Symbol E stands for a the

physical connection that is "used" to place a netlist connection. Symbol *

stands for an attempted connection which failed, because of lack of respec-

tive physical connection on the device. Empty space stands for no physical
connection on the chip, and the corresponding resources graph which
represents these connections is called the Physical Graph).

4. FORMAL SPECIFICATION OF THE FITTING PROBLEM.

The task of the Fitter is to fit the netlist of a TSM obtained in the logic
synthesis stage into the resources of the device.

The netlist is represented by a directed graph SG = (NOS, EDS), called
the symbolic graph. Tt has a set of symbolic nodes NOS and a set EDS <
NOS x NOS of symbolic edges. Each node of SG is labeled with a single
label: ST, TE, TO, LRE, or GRE. ST, TE and TO are state labels. They
correspond to symbolic nodes: Start, Terminate and Toggle, respectively.
Labels LRE and GRE are for symbolic local reset and global reset nodes,
respectively. Nodes of types ST, TE and TO are called state nodes. Nodes

of types LRE and GRE are called reser nodes. Each state node of type TO
has at most one symbolic LRE node connected to it. Each state node has one
GRE node. In this graph the reset nodes cannot be connected with reset
nodes (if sn is a reset node and (sn,sm) € EDS then sm is not a reset node).
Let us also observe that there can be more than 4 (up to 32) state node suc-
cessors of a LRE node (state cells cleared by the same LRE signal). This
means that more than one physical LRE group must be used for placing these
successors, and the symbolic LRE node must be multiplicated. This fact,
plus point 2 from the previous section constitute the essence of our
problem’s constraints of which distinguish it from isomorphism prob-
lems and require a special algorithm for solution.

The physical resources are represented by a directed graph PG = (NOP,
EDP), called a Physical Graph. NOP is an ordered set of physical nodes, and
EDP < NOP x NOP is a set of physical edges. Graph PG is the one to which
graph SG is mapped. State nodes in a set NOP are ordered as on the chip
(when reconfigured to a shift register). Each node of graph PG has its physi-
cal type. The types are: physical state nodes, physical LRE nodes, and a phy-
sical global reset (GRE) node. Each physical LRE node provides a local
reset for four physical state nodes. GRE node is a global reset of all state
nodes.

Function mapping M: NOP — NOS from nodes of PG to sets of nodes
of SG specifies the placement of nodes from set NOS to sets of nodes from
set NOP, which means that a node from set NOS can be placed in more than
one node from set NOP*. The finding of this function, or in other words,
assigning the nodes from NOS to the nodes from NOP, is the task of the
Fitter. Some symbolic LRE nodes are placed in several physical LRE nodes,
so our problem can be called graph monomorphism with nodes multiplica-
tion.

The "generic fitting problem” for "CY7C361-like" devices can be formulated
as follows:
GIVEN is:

a. The Symbolic Graph SG = (NOS, EDS) as described above.

b. The set of ordered sets of symbolic state nodes from NOS that form the
C_IN chains. A node in C_IN chain can be of ST, TE or TO type.

c. The directed Physical Graph PG = (NOP, EDP) (the PG for the
CY7C361 chip has been specified in section 3).

FIND:
such mapping M: NOP -> { NOS U phi }, where phi denotes an empty set,
that:

A. Every symbolic node from NOS is a mapping of nodes from NOP
(mapping of a node from NOP to phi means not using this node for a
placement of any node from NOS).

B. Every symbolic state node or GRE node is the mapping of exactly one
physical state node or GRE node. (More formally: for every node sn
from NOS being not a symbolic LRE node there exists exactly one
node M~!(sn) from NOP being not a physical LRE node). The sym-
bolic GRE node is a mapping of exactly one physical GRE node. This
simply means that the M function is a one-to-one function on the subset
NOP - {all physical local reset nodes}.

C. Every symbolic LRE node is 2 mapping of one or more physical LRE
nodes. (More formally: for every node sn from NOS being an LRE
node there exist(s) one or more nodes pn; from NOP, being physical
LRE nodes, and such that M (pn;) = sn.

This means that function M does not have to be one-to-one for the
whole NOP set.

D. Mapping M restricted to physical state nodes plus physical GRE is a
monomorphism from graph PG to graph SG:
For every edge (sn, sm) from EDS such that sn and sm are state
or GRE nodes, there exist exactly one edge (pn, pm) from EDP
such that sn = M (pn), and sm = M (pm).
Mapping M restricted to physical LRE nodes is a many-fo-one function

from graph PG to graph SG:
I For every edge (sn, sm;) j=1,.,r from EDS such that sn is
an LRE node and M(pn1) = M(pny) = ... = M(png) = sn, there

exists such node pn;, M(pn;) = sn, i =1,...s and exactly one
edge (pn;, pm;) from EDP such that M(pm;) = sm;j.

II Forevery edge (snj, sm) , j = 1,...,r from EDS such that sm is an
LRE node and M(pm;) = M(pms) = ... = M(pm;) = sm, and

+ This formulation leads to simpler formalization than a more intuitive one, based on mapping from NOS to 2N0P

1978

every pm;, i = 1,...,s there exists an edge (pn;, pm;) from EDP
such that sn; = M(pn;), j=1,..r.

Comment 1. Condition I describes mapping of the connections that
start from the multiplicated LRE nodes. By multiplication of a node we
mean creating several copies of this node.

Comment 2. Condition II describes mapping of the connections that
terminate in the multiplicated LRE nodes. It means that if pn; is a
placement of sn; (pn;, pm;) € EDP, for all i =1,..s, j=1,..r orin
other words pn; is accessible in pm;.

Comment 3. Multiplication of symbolic nodes is done by mapping of
several physical LRE nodes to a single symbolic LRE node, and copy-
ing of edges pointing to such multiplicated symbolic LRE nodes. This
of course requires checking that the connections to each of the multi-
plicated nodes (condition II) can be realized.

E. Every C_IN chain of state nodes sn1, sn, ..., Shm from NOS is a map-
ping of a sequence pr;, P41, ..., Phism Of successive state nodes from
NOP.

Comment 4. Recall the natural order of nodes from NOP. Symbolic
C_IN chain must be placed in successive physical nodes.

F. In each physical LRE group (a group of state nodes from NOP which
are fed from the same physical LRE node) all toggle nodes pm; must
have the same symbolic local reset sr, if the toggles use a local reset
signal. In other words: if one toggle in the physical LRE group has a
local reset, then all other toggles in this group must have the same local
reset, but other types of state cells (not using local reset) are allowed in
this LRE group. Allowed is also an LRE group with any type of cells,
that do not use LRE signals at all. This is described formally as fol-
lows (pr) is a physical LRE node):

If:
(pri,pm,)€ EDP
and

M (pm;) is a toggle node in SG
and

sr =M (pry) isanLRE node in SG,
and

(sr,M(pmy)) € EDS,
Then

(for all pm;, j =1,...s such that (pri, pm;) € EDP)
if M (pmyjy is a toggle then (sr, M (pm;)) € EDS.

5. THE ALGORITHM OF THE FITTER.

The Fitter algorithm is a constructive placement program which places
exhaustively nodes of NOS in nodes of NOP, while additionally taking into
account several constraints. Whenever a constraint is violated, program
looks for the next possible placement of the currently considered symbolic
node (this new placement attempt is called a shift), or backtracks to the pre-
viously placed symbolic node, if no more shifts are possible. Special
mechanisms exist to backtrack from C_IN chains. The backtracking mechan-
ism has been constructed in a very efficient way. The program backtracks
immediately whenever any of the respective constraints are violated. It back-
tacks also when some specific conditions are satisfied, for which it was pro-
ven that their satisfaction causes future violation of some constraint. For
instance, an attempt to place C_IN chain of length 4 starting in node 30 of
NOP will cause immediate backtrack, since such chain is too long to be
placed in the remaining two nodes of the structure. Another property of PG
that speeds-up the search is based on the construction method applied in the
layout of CY7C361. This property of graph PG can be described as follows:

Nodes from NOP are naturally ordered in such a way that if there is no

edge from node pn to pm, and node pm is above the diagonal of the

adjacency matrix of PG (which means, cell (pn,pm) is above the diago-
nal) then there is no edge from pn to any node above pm.

Because the Fitter can potentially search the entire solution space of all
mappings, it can always find the solution if one exists. The approach is feasi-
ble, since the solution space is essentially restricted by the symmetries of the
physical graph and the constraints imposed by the architecture.

The Fitter program is quite complex, its basic principles are as follows:

1. The fitter places symbolic state nodes, taking them one by one from the
ordered set NOS and placing them in naturally ordered nodes of NOP
from left to right: it maps node sn from NOS to node p/, next to node

p2, and so on, of NOP. If node sx cannot be placed in node px because
there is no possibility of finding a connection from node M-'(sa) of a
previously placed node sa to node px = M -I(sx) and px is above the
diagonal, then there is no need to check all placements M\(sx) to
nodes py;, where py; > px, and a backrack is performed.

2. If node sr from NOS is a beginning of a C_IN chain, all its successors
are attempted to be immediately placed in a sequence. If, however,
this sequence cannot be fitted because of the violation of some con-
straint (for instance not enough space for this C_IN chain), the next pn
node for node sr placement is tried, followed by an attempt to place its
corresponding C_IN chain.

3. The symbolic state nodes are mapped only to physical state cells, and
the symbolic reset nodes are mapped only to physical reset cells.
Whenever a symbolic state node is placed, its respective symbolic reset
node is immediately verified, and if the verification is positive, it is
placed. If symbolic state node is placed in a physical node for which
physical LRE is already mapped, the consistency of these nodes is
verified. If the verification fails, all subsequent possible placements of
the state node are attempted, with corresponding multiplications of its
symbolic LRE node. This is performed as follows. When a toggle
node sx with a local reset is placed in node px, it is verified if all physi-
cal nodes pj in the LRE group of px are mappings of symbolic toggle
nodes with the same symbolic LRE node (see constraint F in section 4).
If not, shift or backtrack is performed, depending on the situation. This
is repeated until a mapping of node sx to node px is found, such that ail
constraints D - F from section 4 are satisfied. If the state node cannot
be placed in this LRE group, a new physical LRE group is selected,
which means the multiplication of the symbolic node LRE. Using
backtracking and constraint verification, this mechanism can create all
possible multiplications of the LRE signal. For instance, symbolic LRE
with 5 successors can be split to two LRE groups: with 2 and 3 succes-
sors, or with 1 and 4 successors in a group, respectively (these groups
are denoted as (2,3) and (1,4)). It can be also split to groups: (1,1,3),
(2,2,1), (1,1,1,2), and (1,1,1,1,1). So one LRE node can be multiplied
up to five physical LRE cells. Let us also observe that each above
group has many final physical placements. For instance, group (1,1,3)
can be placed as (1,1,3), (1,3,1), (3,1,1), (3,0,0,1,0,0,1) and so on,
where 0 means a not used physical LRE group. Moreover, all place-
ments within a physical LRE group are attempted. All these place-
ments are found by the same backtracking/constraint mechanism of the
Fitter. The execation of the algorithm depends heavily on the initial
order of nodes in NOS. The basic variant of the Fitter starts from the
order of symbolic nodes that is either defined by the user or found by
the high-level synthesis programs.

In some cases when the designer wants to have more control over his
design, he can avoid the high-level VHDL description. This can allow him to
make some special design optimizations or apply some specific design tricks.
Once this option is selected, the design is described in a "VHDL microcode”
that has primitives directly corresponding to the logical resources of the chip,
but does not specify the physical mapping, yet. Even in such cases the fitting
task was often found to be too difficult to be performed by hand. So the
Fitter was made available to process the data described in the VHDL micro-
code format as well.

Moreover, the feedback from the Fitter allows the designer to re-design
his circuit by either modifying logically his high-level VHDL or microcode
VHDL description, or by only changing the order of statements in the input
specification. To help the designer to achieve this, the visualization facility,
shown in Fig. 2, has been added that visualizes the used cells and the con-
nections of the physical resources. When the microcode VHDL is used for
initial description, the user can essentially influence the Fitter by the order of
cells in his/her description. In the case of the high-level VHDL description,
he can influence the Fitter by modifying the order of VHDL primitives. A
controlling printout such as one on Fig. 2 can be used to find which symbolic
nodes make most troubles and to obtain more clue where and how to change
the microcode description. However, the VHDL modification method gives
less predictable results.

The constraint-based Fitter described above has been implemented in
C++ and runs on PC-compatibles and Sun/Sparc workstations. It has been
tested on more than 22 examples. The Fitter found very quickly (in seconds)
solutions in all but six cases of large and dense graphs. In those cases the
work of the program was interrupted after 3 to 5 hours without solution. All
those cases are extremely hard ones for testing the Fitter. The statistical

1979

analysis of labeled symbolic graphs representing real-life netlists is given in
Table 1.

6. CONCLUSIONS AND CURRENT WORK

The presented Fitter is under further improvements. Our current
research is on adding other powerful heuristics to the program so that it will
be able to find quickly solutions to all tough examples produced by the
newest high-level synthesis programs [4,5]. We created algorithms that
cooperate with the main backtracking strategy to start algorithm repeatedly
from good starting points. The speed of finding the solution depends heavily
on the order of nodes in set NOS. Our new algorithms create partial initial
placements and NOS orderings. The algorithms include: (1) Exact Algorithm
for Hierarchical Bi-Partitioning, which also uses backtracking but searches a
smaller solution space. (2) Approximate Algorithm based on Simulated
Annealing, (3) Iterative Learning Algorithm, in which the nodes making most
troubles are placed at first and moved more often,

We keep looking for more efficient and more general approaches to
solve this class of problems, since they are of increasing importance for
several types of incoming new devices. On the other hand, it seems that the
existing CAD algorithms will not be very useful, since the fitting problems
are not similar to the well-known physical design and graph-theory problems.
We would, however, appreciate any hints and ideas.

Right Group of 16
LeftofRight 2 Rightof Right

Left Group of 16
LeftofLeft 2 Rightof Left

connections connections

internal
connections

o [0 oo I

Figure 1.

LITERATURE

[1] Anderson, R., "Programmable High-speed State Machine with The placement with violation is
Sequencing Capabilities”, U.S. Patent No. 4,965,472, Oct. 23. 1990. SNODES-> 00000000011111111000000000000000000000000

[2] Coppola, A., Perkowski, M.A., Anderson, R., Freedman J.S., and E. 12345678901234567000000000000000000000000
Pierzchala, "Optimal Synthesis of Tokenized State Machines into a 00000000011111111112222222222333333333344
Programmable Logic Device", PSU EE Dept. Report, April 1991, 12345678901234567890123456789012345678901

[o]
<
o
d
w0

2 1 1
[3] Cypress Semiconductor, Warpl PLD Compiler. g g g
[4] Cypress Semiconductor, WARP1 Beta Version 0.9 Release Note, 9 4 4
[5S] Perkowski, M.A., and A. Coppola, "A State Machine PLD and Associ- g g g
ated Minimization Algorithms", Proc. of FPGA’92 Conference, Berke- 0o 7 7
ley, Febr. 1992. 1 8 8
[6] Kohavi, Z., "Switching and Finite Automata Theory", McGraw-Hill, g 13 12
New York, 1970. 111 11
112 12
113 13
0 14 14
AJC Data for Fitter 115 15
Name #LB | #Connects | Max-conn | #CINS | #Backtracks g i g i?
busa 16 12 3 10 7 018 0
entcmp 9 36 5 0 48 by A
dees2 301 100 7 5 NC(>500k) 8 gé g
draml 22 28 6 11 3101 023 0
epeel 2 35 8 13 13 gz 0
peel-res 27 53 13 13 NC(>250k) 026 0
0 27
spee-con 16 34 6 8 28 0 28 g
029 ¢
example8 10 64 9 0 8516 030 o
hotrea 12 10 5 6 0 031 0
longcto 26 170 18 0 | NC(500k) o3 0
m_fsm 14 10 1 3 0 g I;; g
mbarbnr_ba 31 28 4 22 NC(>500k) 036 0
037 0
mit_fsm 21 22 3 5 7 038 o
reaword 15 23 4 S 11 039 0
I-ba 19 30 5 6 1380 040 0
- 041 0
seqdetec_fit 14 18 5 9 18
tgen-ba 25 60 10 0 NC(>500k) '
Figure 2.
tsr2-bug 18 19 2 2 7968
vmerq3 22 20 9 10 0
vmesupll 19 26 7 11 13
warpt 32 62 5 2 NC(>500k)
word 19 34 6 8 90
Table 1.

1980

