THE CUBE CALCULUS MACHINE:
A RING OF ASYNCHRONOUS AUTOMATA
TO PROCESS MULTIPLE-VALUED BOOLEAN FUNCTIONS

Luis S. Kida, Marek A. Perkowski

Department of Electrical Engineering, Portland State University,
P.O. Box 751, Portland, Oregon, 97207, tel. (503) 725-5411.

ABSTRACT

The paper proposes a Cube Calculus Machine (CCM-1), a
new architecture in which the data path has been designed to
execute operations of "cube calculus”, an algebraical model
popularly used to process and minimize Boolean functions. The
machine uses a "positional cube representation” which can also
represent the multiple-valued input algebra that finds recently
many applications in logic synthesis. Another aspect of this
architecture is the implementation of the processing unit as an
iterative network of asynchronous FSMs. This is a new concept
in computer architecture that can find applications wider than
the CCM alone. CCM-1 realizes basic micro-instructions that
support the microcode implementation of all useful cube cal-
culus operations including sharp, consensus, supercube and
crosslink.

1.INTRODUCTION

There is recently an intensive and growing interest in logic synthesis,
both in the theory and in the realization of practical design programs and sys-
tems of CAD tools. Several electronic design companies use commercially
available logic synthesis tools (like those from Synoposis or Mentor). Logic
synthesis will become even more important with the proliferation of FPGA-
based dynamically reconfigurable multi-chip architectures, configurable from
high-level specifications [2]. However, good quality logic optimization pro-
grams are very slow. To speed up the logic synthesis and combinatorial algo-
rithms, it was proposed to design special computers and hardware accelera-
tors [6,9,12,15,16,18,26,28,30-38]. What all those machines have in com-
mon is that they use special hardware to do some kind of processing of
Boolean functions: evaluation, Boolean operations such as intersection or
complementation, checking for tautology or satisfiability, verification, resolu-
tion, etc. Since all NP-complete problems [5,10,1,3] can be polynomially
reduced to one of the above problems, and particularly to the 3-SAT Prob-
lem, the proposed by us general problem-solving methodology is to reduce
any problem to some consistent labeling problem (such as graph coloring or
set covering) and next reducing it to some manipulations of multiple-valued
(mv) logic functions (such as sharp or resolution). For instance, PLA minim-
ization problem is reduced to primes generation and set covering. The second
problem is reduced to Petrick function minimization, which is a particular
case of satisfiability and can be solved in many ways on CCM-1, for instance,
by using sharp operation.

Instead of numbers, the proposed by us co-processor, CCM-1,
processes cubes, the basic units of the "cube calculus” (CC) which is
popularly used to represent and process Boolean functions. CC is used in
most of the efficient modern logic synthesis programs, including the well-
known Espresso and MIS 1II [1,4,20,21]. It has been extended for a logic with
multiple-valued inputs [23-27] by Sasao, and is called a positional cube nota-
tion. This calculus has been used for many two-, three- and many level
Boolean minimizers, verifiers, programs for complementation of Boolean
functions, synthesis of mixed and fixed generalized Reed-Muller forms, gen-
eration of prime, minimal and disjoint implicants, spectral transforms (Walsh,
Reed-Muller, Arithmetic), automatic theorem-proving [32-35], image pro-
cessing, and many other [1-5,7,8,10,11,17-22).

2. THE IDEA BEHIND THE CCM-1 ARCHITECTURE.

Let us denote by 2n the number of bits of a word (register) that con-
tains a cube in positional notation. To focus our considerations, we assume
2n = 32 bits. We can have as many as n = 16 binary variables in a cube. The
encoding is as follows: x - 01, X - 10, don’t care (often denoted by X) - 11,
contradiction - 00. In this notation, the intersection of two cubes represent-
ing products of literals simply corresponds to a bit-by-bit product of the

807

respective words. For instance, assuming 4 binary variables, (a, b, ¢, d), the
product is ab - bed =[01-01-11-11] - [11-01-01-10]

= [01-01-01-10] = abcd. When the opposite literals are multiplied, the pair
00 is created from the bit-by-bit product and is detected in the next stages:
ab -ab =[01-01-11-11} - [01-10-11-11] =[01-00-11-11] = contradic-
rion. The contradiction is detected and signalized. For multi-valued input
logic, the positional notation takes for a variable as many bits as this variable
can take values. For instance, a 4-valued variable takes 4 bits. Assuming the
ﬁrst variable of 4 values and the second variable of 6 values, the product X 1
XM = X012 X,13 is represented as a cube A = [A, A;] = [1110-010100].
Assuming 4-valued variables and 2n = 32, one has 8 variables in a cube. Itis
assumed in CCM-1 that each variable can have an arbitrary even number of
values, possibly different from other variables.

Careful analysis of all cube calculus operations revealed that they can
be divided into three categories according to the type of result [11,18]. (1) In
the first category there is a single cube output, so-called resultant cube, for
one or two operand cubes. The resultant cube can be combinationally gen-
erated with bitwise logical operations like AND, OR, XOR, copying the vari-
able, etc. independently of other bits. This category includes the operations
of supercube and intersection [1,19,20,21], and we call them simple combina-
tional operations. In this category the operation on two cubes is a concatena-
tion of operations on all positions (respective pairs of literals of the
operands). Contradiction is also detected and signalized so that cube with
contradiction is not generated at all. In this category each variable C; from
the resultant cube C is: (2.1) C; = f(A;, Bi), where f is some set function,
and A;, B; are variables of input cubes A, B. (2) The second category of
operations includes the complex combinational operations. For each pair of
operand cubes there is a single resultant cube. This cube is a bitwise logic
operation which is, however, conditioned for each literal by some
relation/pattern of the input cubes. This includes operations prime, double
prime and binary consensus [11,18]. In this category each variable C; from
the resultant cube C is: (2.2) C; if rel (A;,B;) then fi(A;,B:) else
f2(Ai, B;), where rel is some set-relation and £, f 2 are some set functions.
(3) The third category, sequential logic operations, has multiple resultant
cubes for one or two operand cubes. Examples of these instructions are
crosslink [7,17), consensus [25,11), sharp and other [7,8,17,19,21-27].
Specific posmon J is one for which rel (A,,B,) is satisfied. A literal of the
resultant cube is conditioned by the position of this literal relative to other
literals and the current specific position. The current specific position in the
cube will be called the active position. In this category the number of the
resultant cubes is equal to the number of times that a certain relation rel is
satisfied for a pair of respective literals of the operand cubes, which means, to
the number of specific positions. Let us observe that the active position dur-
ing the generation of the i-th resultant cube is the i-th from left among the
specific positions of the cube. The general pattern of third category opera-
tions is:

@3, C5iG)0%

pl o1 ...X

X /et 4B X L acr(A,_,,B,_‘)X act(A,,B,)

"'f act@ B for each such j that reI(A,,B y=1),
where C is the set of resultant cubes, aft_act, act, and bef _act are set func-
tions corresponding to before active, active, and after active positions in the
cube, respectively. N is the number of variables in cubes. The architecture of
CCM:-1 results from an attempt to optimize the execution of the three above
types of operations; it directly implements equations (2.1) - (2.3).

3. THE ARCHITECTURE OF THE CCM-1.

All the known software subroutines process the literals sequentially,
but for most of the literals the resultant cubes generated will have contradic-
tions and will have to be removed later. In the beginning we considered
implementing a RISC processor specialized in sequential logic operations
with all control hard-wired that would process a literal of the cube in each
pulse of a fast clock. However, after some thought, we took a completely
different approach. More than just doing a direct translation of the subrou-

0-7803-0593-0/92 $3.00 1992 IEEE

tines that implement those operations to micro-instructions, we created a
completely new architecture to take advantage of the peculiarities of the
sequential cube calculus operations. The architecture is an Irerative Logic
Array (ILU) with iterative signals running from left to right and from right to
left of the iterative circuit of Asynchronous State Machines (AFSMs). The
fundamental advantage of this approach is that only cubes without contradic-
tions are generated. This is a general speed-up method by realizing the
lowest level loop of the algorithm in hardware.

The ILU recognizes the next specific (active) position and generates a
resultant cube in each cycle. It realizes, using internal distributed control, the
Jowest level iterative loop, as described by formulas (2.1), (2.2), and 2.3).
Therefore, ILU does not need the control unit to execute the basic cube
operations: while generating the resultant cube the role of CU is limited to
generating signals ACTIVATE and REQUEST. ILU is controlled by two
types of signals, iterative signals and global signals. Two of those signals,
global REQUEST and iterative ACTIVATE, work in an "interlock mechan-
ism" that substitutes the "clock” of synchronous machines with a "two-phase
non overlapping rippling waveform" of asynchronous automata. An analogy
that helps to understand the advantages of this architecture over the sequen-
tial processing of all literals is to imagine each literal as a domino tile. The
linear iterative array has all dominos lined up in a way that if the first one
falls, all next will fall in sequence. For the specific positions the correspon-
dent domino tile is removed. This way, when the control unit pushes the first
domino, the domino tiles will fall in a "domino effect” until they reach the
gap left by the specific position, where the domino effect will stop. At that
point the literal is processed and an output cube is generated with each of its
literals being a function of its position in the array. If its domino has already
fallen down it corresponds to state aft_act, if the literal is being processed, it
corresponds to state act (active), when its domino is still standing, it
corresponds to state bef_act. The control unit begins the cycle again by push-
ing the first remaining domino until there are no more standing dominos left.
In fact the iterative circuit has a ring configuration and the control unit serves
as the first and last domino. This way, it is simple for the control unit to
observe the fact that all literals have been processed, without the need to keep
track of which literal is being processed and how many remain to be pro-
cessed.

A co-processor that processes a literal at a time would push a single
domino for each cycle and try to improve performance by increasing the rate
at which it processes each literal. Among the disadvantages of such a method
is that it generates cubes with contradiction that have to be removed. If a cir-
cuit to recognize and remove cubes with contradiction were integrated to the
architecture, then the rate of generation of resultant cubes would be irregular.
The rate of generation of resultant cubes in CCM is regular, making it suit-
able for pipelining and systolic processing, which allows to build large paral-
lel structures from them and was one of the main objectives of our approach.
A great part of the control task is distributed in the asynchronous machines.

4. HARDWARE MAPPING OF CCM-1 ARCHITECTURE.

The CCM chip consists of a processing unit, an interface controller, a
register file and a controt unit (Fig. 1). The processing unit is implemented as
an iterative logic array of basic buiding blocks IT creating an ILU. Each T
includes besides combinational logic an AFSM that modifies the interpreta-
tion of the micro-instructions. In this sense each IT is a small processing unit
that processes a part of a cube in parallel and communicates with other pro-
cessors that are connected in a linear organization. Each IT processes two
bits, i.e. a binary variable or part of an mv variable.

The micro-programmed Control Unit (CU) of the CCM receives a code
of a high level cube calculus operation (CCM instruction) in the Instruction
Register (I) and translates it into simpler basic operations implemented in the
processing unit. In the execution of the sequential instructions the CU
behaves as the first IT of the line, IT[0], and as the last IT, IT(n+1] (n is the
number of IT cells). Bus Interface Unit (BIU) handles the communication
between the system and the CCM. The communication between the BIU and
the ILU is done through shared registers/memory, as is the communication
between the BIU and the CU. The interfaces between the BIU and the ILU
and the CU were made independent, asynchronous and through a protocol to
let the design of the ILU and CU be independent of the BIU. The same Cu
and ILU can be integrated to different systems by redesigning the interface
(BIU) only, and the basic design of the interface for one particular system
can be used over and over for different versions of ILU and CU. The shared
data register file accounts for storing the input cube, the output cubes, and the
intermediate results. Usage of this file prevents also a loss of performance
due to the differences in the processing rates of the system and the ILU to
feed the input operand cubes, generate the resultant cubes, and transfer them
out of the CCM.

808

There are other registers used for communication and control, among
them: Multi-value (M), Status (S), Instruction (I). The Status register stores
information useful to support programs in the host processor: the distance of
cubes transmitted to the iterative logic unit, the number of resultant cubes,
flags and semaphores to signalize when the resultant cube is ready or when
there is no result. The register I controls additionally the data transfer and the
iterative signals of the first and the last IT cells of the ILU. The Multi-value
register specifies the number of ITs used by each literal of the cube. There is
one bit in the M for each IT of the ILU plus two for the control unit that emu-
late IT{0] and IT[n+1]. For example, when the content of M is 10011010, the
first bit is for IT[0], the following 2 bits represent a 4-valued variable and
will use the first 2 ITs, the second 2 bits are used by another 4-valued vari-
able and will take another two ITs, the third and the fourth variables are 2-
valued (binary) and will use only one IT cell each, the last bit is for IT[n+1].

In section 4.1 we will describe the basic timing of the active position
propagation in ILU. Section 4.2 illustrates the creation of basic internal and
output signals on a simple example.

4.1. Description of the ILU and CU.

We are now ready to understand the execution of a sequential opera-
tion by the ILU and CU. Fig. 2 illustrates the execution of a sequential
operation, with the stable state of the ITs of the literals (represented as boxes)
after the propagation of the signals showed on the left column. Sequential
operation begins by loading the operand cubes to let blocks IDENTIFY[i] to
recognize all the specific positions. The CU keeps the generated by it global
signals REQUEST and INITIALIZE, as well as the initial signal
ACTIVATE[O] faise and lets all signals VARIABLE(i] in ITs reach their final
values. This is to ensure that only a single AFSM input can change, which is
necessary to avoid all combinational hazards that might be dangerous in the
AFSM, being an asynchronous machine. The interval of time before CU is
ready to do something next has to be long enough for the IT[n] to have the
VARIABLE([n] signal stabilized (delay of 1 IT for a binary variable, 2 IT for
a 4-valued variable,...). This is represented in Fig. 2a. At the end of this
phase all specific positions are marked as values 1 of VARIABLE in
corresponding ITs.

The CU resets the ILU to its initial condition by asserting INITIALIZE, Fig.
2b). By bef we denote the state bef act (which stands for before active) of
AFSM. The control unit does not have the control over signal VARIABLE but
since A, B and M remain stable, VARIABLE will remain stable as well.
Again, it is ensured that there is a single transition in the inputs of the AFSM.
After waiting for all IT cells to reset, the CU deasserts signal INITIALIZE,
Fig. 2¢).

The execution of the instruction really begins by the assertion of ACT/IVATE
for the leftmost IT, ACTIVATE([O], to true. The first literal that has VARI-
ABLE = true will become active. (If many ITs are used to represent a literal,
all of them will have VARIABLE = 1, and all will become active). That can
be the first literal(Fig. 2d.1) or ACTIVATE may ripple through one or more
literals (Fig. 2d.2). By act we denote the state active of AFSM. By aft we
denote the state aft_act (after active) of the AFSM.

After waiting for the signal ACTIVATE to propagate to reach the end of the
string of IT cells and allow the AFSM to reach its new stable state, CU sam-
ples ACTIVATE(n], if it is true there are no resultant cubes to generate and
the operation is finished, if it is false, it means that the signal ACTIVATE has
been stopped by a specific position and the CU has to store the resultant cube
in the data register file. In the latter case the CU deasserts the signal
ACTIVATE to prepare for the next cycle(s), (Fig. 2e).

After waiting for the output to stabilize and latch the result, the CU makes the
REQUEST signal true to prepare for the next cycle. This will make the ITs
in the active position to transit to the aft_act state and let the next
ACTIVATE signal pass for the IT cells after it (Fig. 2f).

The CU deasserts REQUEST to prepare for the next cycle (Fig. 2g).

A new cycle can begin for those literals in state bef_act after the IT cell that
changed from active state to aff_act in d.1 and d.2. Such process is iterated
until signal ACTIVATE = true passes the entire ILU and, as ACTIVATE[n],
reaches the CU; the operation is finished.

4.2. Example of execution of one sequential instruction.

Now, when we understand the basic timing, we will show a complete
example to illustrate the creation of signals in ILU. For this example the
CCM has 6 ITs organized in three variables (M=10001001). The first vari-
able, U, has 6 values, the second variable, V, is binary and the last variable,
Z, is 4-valued (Fig. 3b). The inversion of operand cube A will be executed,
which will generate 2 resultant cubes, s and S. This cube complementation is

illustrated ___in ___ a map from Fig. 3b:
U237 = 123 4 ZI2= U045+ 208 = s +S. Table 1 includes the
signals of ITs for the example from Fig. 3b. The header row includes the
names of the signals. The columns for i=1,2,3 correspond to variable U, the
columns for i=4 to variable V, the columns for i=5,6 to variable Z. The value
of index i is in the row # 1. Its corresponding IT symbol is in row # 2. The
respective bits of the input cube A are shown in row # 3. Since the relation
checked is A=X (where X is denoted by 11), then signals RELATION([i] are
satisfied in IT[2] and IT[4]. This is shown in the row # 4. Signals LEFT and
RIGHT together with RELATION are used to create signal VARIABLE in
each IT. If there is a signal RELATION = 0 within a literal, then in all ITs of
this literal VARIABLE is 1 (see row # 7). Signal COUNT, initially set to O by
CU, counts the number of literals in which signal VARIABLE is 1, i.e. the
number of specific positions. This is propagated from left to right and value
"1" is added at the frontier of the previous and next literal (see row # 8).
Rows # 9 and # 10 present the resultant cubes generated.

The Fig. 3a shows a location of three signals: VARIABLE, state and C
within IT cells from Fig. 3c. Fig. 3c presents six snapshots of the ITs states
during calculation of the resultant cubes s and S. The first three ITs
correspond to variable U, the next IT to variable V, and the last two ITs to
variable Z. In each of the six snapshots, on the left we have the state of sig-
nals signals coming from CU: ACTIVATE[0] and REQUEST. States of sig-
nals VARIABLE, state and C are shown inside boxes. Let us observe that sig-
nals VARTABLE remain stable during propagation of ACTIVATE signals.
The state of signals ACTIVATE([i] are shown between IT boxes, and the final
signal ACTIVATE(n] to CU is shown at the right.

The chain of ILUs will pass the "token" ACTIVATE to generate the
resultant cubes. In the second snapshot the resultant cube s has been gen-
erated, which can be seen as the contents of registers C. In snapshot four the
second resultant cube, S, has been generated. Notice, that the second vari-
able of cube A passes the token without becoming active and without gen-
erating a resultant cube, as it was already explained in section 4.1. The last
snapshot illustrates signal ACTIVATE(n] = I reaching the CU, which ends
the execution of the operation.

Iterative structure of three ITs is shown in Fig. 4. For a more detailed
description of the IT and the VLSI realization see [11].

5. DETAILS OF THE ARCHITECTURE OF THE CCM-1.

Some of the CCM features will be now discussed that have been
skipped in section 4 in order not to overshadow the general idea in details.

To guarantee its correct operation, the AFSM cannot have hazards. An
extra state no_race was added to guarantee state transitions without hazards.
The state no_race and register W are also used for increasing the testability
and fault tolerance of the CCM.

Water (W) register stores one bit of enable for each IT. When a bit of
W is true the corresponding IT repeats the received iterative signals and has
C=11, the AFSM is stuck in state no_race. Having all bits of W true except
for W{k] makes the iterative signals of IT[k], that otherwise would be
"buried" in the ILU, observable and controllable because all IT(i}, i #k are
“transparent as water" for the signals of IT[k). Register Water is also used
when the number of ITs in the ILU is larger than what is required by the size
of the cube. In this case the extra ITs are made inocuos or transparent for the
operation of the ILU. In case a fault is found in the IT that does not prevent
the IT to go to the transparent state this IT can be eliminated, thus preventing
the loss of the chip because of a fault in one of the ITs.

Another important control register is the Mode(D) register. Mode
stores a variable that modifies the interface of the CCM and the operation of
CU. At the moment, there are two modes of CCM operation:

(1) stand_alone mode, when the CCM works independently, the major
characteristics is that all "initial" iterative signals like LEFT[0] and
RIGHT[n+1] come from a register in the CU and the "final" iterative signals
like LEFT{n] and RIGHT[1] are latched by CU in a control register.

(2) chain mode, when CCMs can be chained, replicating in a higher level the
architecture of the ILU where each CCM replaces a part of the ILU, using the
ILUs of the chained CCM to emulate a "longer ILU". According to the data
stored in register D, the CCM is configured to be the last, first or internal
CCM. For the intemal CCM the initial iterative signals come from pins and
the final iterative signals are output to pins as well.

6. DESCRIPTION OF SYSTEM ENVIRONMENT OF CCM-1.

The CCM is a processing element specialized in cube calculus logic
operations. It can be compared to DSP modules from which large data-flow
architectures can be configured. It was designed to work as a co-processor

809

to accelerate cube calculus operations. A host processor is required for con-
trol and initialization.

There are two options to execute sequential operations on operand
cubes which are larger than the capacity of the ILU. One option is to cascade
CCMs in the chain mode and emulate a larger ILU. The other is to split the
cubes into pieces. The trick to split the cubes and keep the performance is
not to split literals. In the way the signals RIGHT and LEFT were designed,
the ILU is broken into small iterative circuits for each literal and there is no
propagation of iterative signals in the block IDENTIFY beyond the boundary
of the literal.

Breaking signals ACTIVATE has no performance penalty, as long as no
literal is split, because only one literal is processed at a time and the active
variable is the breaking point for block SIGNALIZE. Pieces of the cube that
are "before” and pieces that are "after” have to generate an output that is the
result of a simple logic operation and the host processor can "fill in the
blanks”. To process the literals with more values than the capacity of the
ILU, the CCM has to be in the stand_alone mode. To process a literal, all
the pieces must be loaded in order and the iterative signals from one piece of
the literal are stored to be used in the following piece. There is a small speed
penalty because all pieces have to be run once, either from left to right or
from right to left, to find the values of the iterative signals LEFT) JRIGHT. In
this case we are sub-utilizing the architecture to just “identify” the variable
and the AFSM is not used.

7. CONCLUSIONS AND EXTENSIONS TO CCM-1.

A prototype of IT was designed in scalable CMOS with the OCT tools
from U.C. Berkeley [29]. The area of the prototype as described is 496x997
lambdas. We found that CCM is an excellent research field. Not only the
idea of making a co-processor for multiple-valued cube calculus operations
opens a new and broad research area, but also the peculiarities of cube cal-
culus led to the development of a new architecture which implementation
generated many new research ideas in itself. We found many new unsolved
problems in the implementation of the circuit. Design of the CCM-1 served
to stimulate new research approaches and formulation of problems of general
nature, which are the subject of our current research [18]. The ultimate goal
of this project is to design a complete add-on board to PC-compatibles that
will serve as a hardware accelerator for logic synthesis and other programs
that use cube calculus subroutines.

The above architecture can be used for solving combinatorial problems
in many areas. In the new variant of CCM [18] several other operations and
relations for other multiple-valued cube calculus operations have been
defined in a similar way, which even further extends its applications.

We divided the architecture into loosely coupled building blocks that
were formalized and generated from a behavioral description and imple-
mented with automatic design tool. Now one can create several variants of
CCM tailoring the architecture to an application with less effort.

The scaling of the chip is simplified because the modularity of the pro-
cessing unit allows to modify its size by changing the number of iterative
cells in the iterative circuit. Also the fact that the processing element is asyn-
chronous eases the scaling problem, by not having to distribute a tightly syn-
chronized clock to large chip areas, even for an ILU with a very large
number of ITs. It seems to be a natural extension of this research to have the
control unit also asynchronous. Following the design methodology to design
asynchronous circuits in [13] the CCM could be the second asynchronous
processor [14].

1. LITERATURE

[1] Brayton, RK., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L., “Logic
Minimization Algorithms for VLSI Synthesis", Kluwer Academic Publishers, 1984. [2] Buits,
MR., and J.A. Batcheller, "Method of Using Electronically Reconfigurable Logic Circuits”, U.S.
Patent #5,036,473, Jul. 30, 1991. Chan, A.H.: "Using Decision Trees to Derive the Complement
of a Binary Function With Multiple-Valued Inputs,” [EEE Trans. on Comp., Vol. C-36, pp. 212 -
214, Febr. 1987. {3] Davio, M., Deschamps, J.P., and A. Thayse: “Discrete and Switching Func-
tions", McGraw-Hill Book Co., Inc., New York, 1978. [4] DeMicheli, G., Brayton, R.K. and A.
Sangiovanni-Vincentelli: "Optimal State Assignment for Finite State Machines”, IEEE Trans. on
CAD, Vol. CAD-4, No. 3, July 1985, pp. 268-284. (5] Garey, MR. Johnson, D.S., "Computers
and Intractability. A Guide to the Theory of NP-Completeness”, W.H. Freeman and Company,
San Francisco 1979. [6] Gerace, G.B. et al, "TOPI-A Special-Purpose Computer for Boolean
Analysis and Synthesis", JEEE TC, Vol. C-20, pp. 837-842, Aug. 1971. [7] Helliwell, M., and
M.A. Perkowski: "A Fast Algorithm to Minimize Multi-Output Mixed-Polarity Generalized
Reed-Muller Forms”, Proc. 25-th ACMIIEEE DAC, paper 28.2, pp. 427-432, June 12-June 15,
1988. [8) Hong, S.J., Cain, R.G., and D.L. Ostapko: "MINI: A Heuristic Approach for Logic
Minimization”, IBM J. Res. Develop., Vol. 18, pp. 443 - 458, Sept. 1974. [9] Ho, P.M., Per-
kowski, M., "Systolic Architecture for Solving NP-Hard Combinational Problems of Logic
Design and Related Areas”, Proc. ISCAS'89, pp. 1170-1173, 1989. [10] Johnson, D., "The NP-
Completeness Column: An Ongoing Guide". Journal of Algorithms, Academic Press, each
issue. [11] Kida, L., and M.A. Perkowski, "Cube Calculus Machine, Version One", Technical
Report, PSU 1991. [12] Marin, M.A., "Investigation of the Field of Problems for the Boolean

Analyzet”, Ph.D. Dissertation, Univ. of Cali
Synthesis Method for Self-Timed
Computer Architecture, May 30-J
Bums, S.M., Lee, TK., Borkovic,

Rudell, R.L., and A.L. Sangiovanni-Vincentelli: "ESPRESSO-MV: Algorith

Valued Logic Minimization, Proc. IEEE Custom Integrated Circuits

sity of Califomia,

Vincentelli,

May

Design of Prog
Valued D«
Logic Amays,’

"Multi

fomia, Los Angeles, 1971. [13] Martin, AJ., "A
VLSI Circuits”, Proc. 15th Annual International Symposium of
une 2, 1988, Honolulu, Hawaii, pp. 224-229. [14] Martin, AJ.,
D., Hazewindus, P.J., "The First Asynchronous Microproces-
sor: The Test Results”, Proc. 16th Ann. Intern. Symp. on Comp. Arch., May 28-June 1, 1989,
Jerusalem, Israel, pp. 95-110. [15] McCall, 1.T., Tront, J.G., Gray, F.G., Haralick, R.T., McCor-
mack, W.M., "Paralle] Computer Architectures and Problem Solving Strategies for the Consistent
Labeling Problem”, JEEE TC., Vol. C-34, No. 11, Nov. 1985. [16] Perkowski, M.A., "Systolic
Architecture for the Logic Design Machine”, Proc. ICCAD'85, pp. 133-135. {17} Perkowski, M.,
Helliwell, M., Wu, P., "Minimization of Multipl
Exclusive Sums of Products for L letely Specified Boolean F
(18] Perkowski, M., "The Uni

e-Valued Input Multi-Output Mixed-Radix
P P ", Proc. ISMVL-89,
1 Logic Machine”, Submitted to ISMVL '92. [19] Roth, P.:

“Computer Logic, Testing and Verification”, Rockville, MD: Computer Science, 20]
P ;

=X
Xy
[

o
o
0
°
1
1
'
10

Tabie |

©
°
°
o
1
1
"
n

rammable Logic Al
ition of G

its Conf., 1985. {21] Rudell,
R.: "Multiple-Valued Logic Minimization for PLA Synthesis”, M.S. Report, June S, 1986. Univer-
Berkeley Califomia 94720. [22) R.L. Rudell, and A.L. Sangiovanni-
ple-Valued Minimization for PLA Optimizati
2628, Boston, MA, 1987. [23) Sasao, T.: "An Application of Multiple-Valued Logic to a
srays", Proc. 8th ISMVL, 1978. [24] Sasao, T.: "Multipl

" Proc. ISMVL., pp. 198-208,

1
1
o
o
1
o
®
u

.
m | o | oo | me | mst | me

f

'

1

1

°

1

n

u

o
°
°
°
1
0
10
1

cusrmoy | vroy | iz [vien | vieu | zion |z | cusrmied

d Boolean Functions and the Complexity of Pr

P

" IEEE Trans. Comput., Vol. C-30, pp. 635-643, Sept. 1981. [25] Sasao, T.: "Input
Variable Assignment and Output Phase Optimization of P]

33, pp. 879 - 984, Oct. 1984. [26] Sasao, T, "HART: A Hard for Logic

Verification”, Proc. ICCD’85, Oct. 7-

*s,” IEEE Trans. Comput., Vol. C-
inimization and

i
]
« | ReLanona
e
RIGHTI
7 | vaRiaBLER
coUNTEI
Lol
sl

10, 1985. [27] Sasao, T.: "MACDAS: Multi-level AND- =

s
»
0

OR Circuit Synthesis Using Two-Variable Function Generators™, Proc. 23-rd Design Automation

Conference, Las Vegas, pp. 86-9.

ics Research Lab:

-y, Uni
"Boolean Analyzer”, Proc. Infc

ity of C:

P

boda A., "Paralle] P
Sept 1973. {32] Ulug, M.E., Bowen,

is of

Methods for the Synth

Proc. IEEE Intern. Conf. on Comp. and Comm. Arizona
"Application of Cubical Array Operators 10 a Relational
Workshop, July 23-26, 1985, Blue Mountain Lake, New
Al System for Military Communications”, Proc. of the 3-
Febr. 1987, Orlando, Florida. [36] Wah, B.W., Ma, Y.W.E., "MANIP - A Multicomputer Archi- =~ -

i Search Problems", IEEE TC, Vol. C-33, No. 5, pp. BE!
H., Tsujimoto, T., Tamary, K., "Parallel Exhaustive Scarch
Using Content Addressable Memories”, Proc. IEEE
, "Thinking Machines. The Evolution of Artificial Intelli- >

tecture for Solving Comt

377 - 390, May 1984. [37] Yasura,
For Several NP-Complete Problems
ISCAS'88, pp. 333- 336. [38] Pratt, V..

: 1 Fs
Ex

gence", Basil Blackwell, Inc., Oxford, UK., 1987.

] [
] [
-] 3]
R

ABMW

(VARIABLE)

g
g
g
g

INTTIALIZE
e

b

INTTIALIZE
false

<

_<

[=]
[=]
[=]

(o =0 [][]
ENEIRCIRED
(=] =] =] [=]

o [«J (=] [=] [=]

Fg.2.
An example of a sequential operation.

REQUEST g
true.

REQUEST

false

Fig. 1.

The block diagram of CCM architecture.

. 1985, pp. 292297, [(34] Ulug, ME, ~| - J< AT
Database”, Proc. of the Minnowbrook ol
York. [35] Ulug, M.E., "A Real-Time Py
rd IEEE Conf. on Artif. Intell. Applic.,

3, June 1986. [28] Shumake, D., “The MOS Boolean Analyzer”,
M.Sc. Thesis, UCLA, 1971. [29] Spickelmier, R. (ed.), "OCT Tools Distribution 2.1.", Electron-
lifomia, Berkeley, March 25, 1988. [30] Svoboda, A.,

i ing 68, A d: North-Holland, 1969. [31] N
in Boolean Algebra™, EEE TC, Vol. C-22, No. 9, pp. 848-851,
B.A., "A Unified Theory of the Algebraic Topological - wlal ol
itching Systems", JEEE TC, pp. 255-267, March 1974. [33]

o

> !

Ulug, M.E, "VLSI Knowledge Representation Using Predicate Logic and Cubical Algebra”, -
o

9
—
«

0

gt

[
—

=
el

. AT AT

EETJE: : = "{?
EE_E’ 2 : i £
5 ‘ s 12 8 7
= E?:——E 5-_.% &
::‘*ggﬁ E%_,ur_
S T Er e < E
55— % — LA -
b E E"':é g

RIG

“1[1-11

]
i
]
posifion(i]
|
1
Al [i
stal
Afil Bl
c
{mﬁmum
COUNTYi-1] T

state(i-1)
A[i-li B{i-1

Cli-1]

i-

IDENTIFY
1]
VARIABLEi-1)
=
AFSM

SIGNALIZE
£2

posi

RIGHTT{i-1
UEST
ACTIV.
c
RPN
COUNTIO}

810

Fig4.

Deails of IT and interconnections of ITs in the ILU.

Fig3

