Object-Oriented Design of an Expandable Hardware Description
Language Analyzer for a High-Level Synthesis System

Lian Yang,
ImageBuilder Software,
7300 SW Hunziker,
Portland, OR 97223.

Abstract

The paper presenis a new approach to high-level
synthesis system design in which object-oriented pro-
gramming techniques are used to comsiruct an ez-
pansible Hardware Description Language(HDL) ana-
lyzer. There are several major advaniages of this new
methodology over the traditional top-down approaches.
The object-oriented data model for high-level synthe-
sis systems is shown lo be a betler way o model the
high-level synthesis design entities. A formal Object
Oriented Programming(OOP) model of high-level syn-
thesis and systematic ways of expanding the system are
also described. This design style influences the con-
struction of the entire high-level synthesis system. The
system has been successfully implemented in C++ and
has proven to be reliable, ezpansible, and sufficiently
fast.

1 Introduction

As the VLSI design process becomes increasingly
dependent on automated tools, various high level syn-
thesis systems, such as ADAM [16, 17], MIMOLA
[10, 28], MacPitts (23], SYCO, and CMUDA have
emerged in academic environments. On the other
hand, Computer Aided Engineering companies intro-
duce and constantly improve design environments that
start from register-transfer, state machine or logic
level and allow simulation and automatic design down
to the layout level. One of the most complete and ad-
vanced of these is the design environment of Mentor
Graphics [13], which currently starts from the behav-
ioral/structural specification of a digital system under
design in language M. To make such tools available
to the user whose area of expertise is algorithm de-
sign rather than the hardware design, we are work-
ing on system DIADES, a high-level synthesis tool,
created on top of the Mentor’s design environment.
This will allow for parallel programming at the micro-
level, direct mapping of algorithms to hardware, usage
of pre-specified user-defined modules and optimiza-
tion of complex Microprogrammed Controllers (MCs)
[9, 18, 19, 20, 21, 22, 27f. ADL (Automated Design
Language) {21, 22] has been created as the behav-
joral /functional /structural hardware description lan-
guage (HDL) of DIADES. In other words, our en-
fire design automation system can be treated as an
ADL support environment. Since the technology is

0073-1129-1/92 $3.00 © 1992 IEEE

529

Marek A. Perkowski, David Smith

Department of Electrical Engineering

Portland State University,
Portland, Oregon, 97207.

constantly changing, and new design tools and fast
prototyping methods are added to all levels of our de-
sign environment, there arises a need to develop an
expansible high-level synthesis language that would
have two levels of expansibility, one oriented towards
the user, and one oriented towards the system devel-
oper/integrator. We decided that the best way to de-
velop such a language and system is to use the object
oriented methodology. Ultimately, this decision has
had a profound influence on the entire DIADES sys-
tem design methodology. In this paper we present the
ADL Analyzer called TAG90, which compiles to an
internal description form called Program Graph (P-
graph) [18, 22, 27].

Although we present only a single realized imple-
mentation of an analyzer, it is our opinion that the
developed by us object-oriented methodology is very
general. In particular, it can be used for fast creation
of expansible compilers for not only high-level synthe-
sis languages but also other design-related languages.

Generally, each high-level synthesis system has a
software module that translates its source HDL into
an intermediate representation (IR). In this paper this
software module is called a Source Language Ana-
lyzer (SLA).

Our SLA has been been written in C++, using
tools Lex and Yacc. It is fully operational and has
been successfully used since the Fall of 1990. It is the
goal of this paper to present the advantages of our
object-oriented expansible approach to the de-
sign of HDLs’, based on the SLA concept. We will
discuss a very general object-oriented formalism con-
sisting of a notation that can be used to create ex-
pansible programs for analyzers and other high-level
synthesis tools.

Most high-level synthesis systems use purely top-
down design methodologies [11]. They begin by trans-
lating the behavior description into a data flow graph
representation. At this point a series of transfor-
mations is applied to make the design more efficient
[25]. What this approach lacks is the ability to use
detailed low-level physical information when choos-
ing a register transfer (RT) structure [11]. The
approach also lacks expansibility which is an impor-
tant feature in modern HDLs [3]. The advantages of
object-oriented design techniques within the VLSI de-
sign automation area have been discussed in many

papers, including [1, 2, 5, 26]. There even exists a
hardware description language that is object-oriented
(24]. However, all HDLs use the object-oriented data
model (data base/library) at the RT level. In [7] a
CAD design version control system is proposed and
an object-oriented design method is used in which ob-
Jects describe designs. The objects from [7], however,
correspond to the management versions of the design
results and not to the design process itself.

In this paper, the design process of the ADL An-
alyzer employs object-oriented (OO) techniques. The
OO methodology used by us has obvious advantages
over the traditional top-down design methods used
in most high-level synthesis systems. They are: (1)
Better data modeling. The object data model em-
ployed in our approach can simulate the hardware de-
sign entities at various design levels. In contrast, in
the traditional top — down approaches, the data mod-
els are black boxes, which are passive, abstract, and
suffer from a lack of communication between the mod-
ules. (2) More systematic design process. Using this
methodology, the design process and its coding pro-
cess are organized in the way required by modern soft-
ware engineering theory. The gap between the concep-
tual design and the coding is drastically reduced. (3)
Greater ezpansibility. The ADL language becomes
expansible and its extensions are partially under the
control of the user. (4) Better data management. The
class lattice (see section 4) offers better data man-
agement and information sharing. Both the low level
information and the higher level constraints become
accessible to all design entities.

Language extensibility of a HDL is an important
feature in designing a high-level synthesis system. In
(3], language extensibility is regarded as one of the
most important features for a hardware description
language, and one of the goals of the VHDL (Very
High Speed Integrated Circuit Hardware Description
Language) language design.

This paper has the following organization. In sec-
tion 2 we discuss the salient features of the ADL lan-
guage and the general architecture underlying ADL
program compilation. The architectural description is
given, which separates the control flow from the data
flow. In section 3 the process of analyzing the ADL
language using object-oriented methodology and the
formal models of object and object transformation
are presented. In section 4 the language extensibil-
ity of ADL and TAG90 is discussed in detail. Two
kinds of extension processes are investigated, and a
user-controlled extension of ADL is proposed as a new
feature in high-level synthesis. Section 5 presents con-
clusions and future work.

2 The Target Architecture of Our Sys-
tem

In this section the underlying architecture of the
ADL is analyzed. The basic concept of DIADES is
that ofa A DIADES Digital System (DDS) which
is based on a Glushkov model of a digital system. The
task of a DDS is carried out by two main units: the
data path (DP) and the control unit (CU). The de-

530

sign is specified in terms of a hierarchy of DDS units,
described in respective ADL programs, and next au-
tomatically synthesized and optimized independently
by DIADES. Most current high-level synthesis systems
use similar models t[4, 6, 12]. ADL is a C-like HDL. Its
program consists of statements, which are behavioral,
functional or structural. Each statement contains two
facets: a node of the control flow and a node of the
data flow. In this paper, the control flow node and
its arc are represented by the micro instruction (MI);
the data flow node and its arc are represented by the
micro operation (MO). The list of the micro instruc-
tions represents the control flow and the list of the
micro operations represents the data flow.

An MI is de-
fined as a 6-tuple < ID, TY, NE, BR, S, TI >,
where ID is the label of the MI: TY is the addressing
type of the ML; NE is the label of the successive MI ;
BR is used only for conditional type MI, representing
the label of the branch MI; S is the set of the MOs
signaled by this MI; and TT represents the execution
time of the MI. In the above definition, TY can be
one of: seq - sequential type; con - conditional type;
or jum - jump type. S is a set that could be NIL, or
of one or more elements; TI is an integer that repre-
sents the time unit. An MO is defined as a 5-tuple
< ID, OP, S, {I}, {O} >, where ID is the label of
the MO; OP is the operator mnemonic; S is the label
of the MI that controls this MO; I is the set of source
elements; O is the set of destination elements. In ADL
there are four kinds of operators for OP: Arithmetic
Operators: +, -, * / : Logical Operators: AND,
EXOR, NAND, OR, NOR, XOR, XNOR, and NOT;
Relational Operators: >, <, =, #, >, <; and Built-
in Blocks of the ASL (ADL System Library): mathe-
matical functions, parallel programming primitives of
message-passing semantics, and some other complex
operation blocks [22]. In the above MO definition,
the source elemenis and the destination elements are
mentioned. An element is a storage unit. A storage
element in TAG90 is represented by VAR (variable),
which is a 4-tuple: < MN, TY, SC, BL >, where
NM is the mnemonic of a storage element; TY is the
type of the storage element, including int (integer)
and logic (logical); SC is the scope of the storage el-
ement, inlcuding input, intern, and output; and BL
is the bit length of the storage element. Each ADL
statement actually contains an MI and an MO. Both
MI and MO are machine (target code) independent,
thus are suitable for conceptual intermediate represen-
tation of CU and DP.

The P-graph based on the MI-MO-VAR model
is a result of compilation. Next it is subjected to
several transformations: First, finite state machines
(FSMs), microprogrammed controllers (MCs), and
parallel controllers are created from the P-graph. Sec-
ond, they are optimized and partially verified. Third,
a data path built from standard modules is created,
its M-language structural specification is generated,
as well as the description of logic functions and finite
state machines for further design [18, 19, 20, 21].

3 Applying OOP to High-Level Syn-
thesis
3.1 Object and Its Formal Models

In object-oriented systems and languages, any real-
world entity is uniformly modeled as an object. Fur-
thermore, an unique identifier is associated with each
object. The object identifier is used to pinpoint an ob-
ject to retrieve. Every object has a state and a behav-
ior. The state of an object is the set of values for the
attributes of the object, and the behavior of an object
is the set of methods (program code) which operate on
the state of the object. A class is specified as a means
of grouping all the objects which share the same set
of attributes and methods. An object must belong to
only one class as an instance of that class. Aninstance
of class C can be called a C-object. The notation will
be used through the rest of the paper. For an object o,
the notation Class(o) denotes the corresponding class
of o.

Methods are implementations of operations on the
instances of a class. There are two kinds of meth-
ods: (1) A procedure performs an action which may
change the state of an object. (2) A function com-
putes some value deduced from the state of the object.

A special kind of a procedure, called a construc-
tor, constructs a class object from the data it needs.

3.2 ADL Object and Its Formal Models

In high-level synthesis, most of the object-oriented
data models are at the RT level. Lipsett [8] gives the
description of the design entity, the principal hard-
ware abstraction in VHDL. Briefly, a design entity
concept provides for an effective separation of interface
and function, thus allowing hierarchical design decom-
position. It is our claim that the object-oriented data
model is the best candidate to implement the design
entity model.

An ADL Object (AO) is a design entity that a
DDS is composed of. The AO is an abstraction of a
collection of logically related aggregates of data, with-
out regard to their internal structure. There exists
several relationships between AOs. Some operations
are also defined to transform the states of AOs. An
object will refer to the ADL Object, for the sake of
convenience. The object is a three-tuple < I, C, S >,
where I denotes the identifier of the object, which is
a unique symbol for all objects; C denotes the class
type to which the object belongs; and S denotes the
state of the object at any moment. The set of possible
states of an object o (an object whose identifier is 0)
is denoted as S(o), where

S(o) = {si| siis a state of o}.

The set of states of object o will be denoted as S(A),
if 0 is an instance of the class A. Actually the notion
S(A) is more general.
3.3 The Relationship Between Object
Classes

We will introduce four kinds of relationships:
inheril-from, composed-of, supervised-by, and peer-
with.

531

Inherit-from. The relation inherit-from is denoted
as A C B, where B is a super class of A or Ais de-
rived from B. In the inheritance relation, a class that
inherits (directly or indirectly) from class C' is said to
be a descendant of C. C is said to be the ancestor of
its descendants. A class is considered to be one of its
own descendants. The notation Family(C) represents
the family of class C,

where Family(C) = {A | AC C}.

Composed-of. An object is either primitive or
composite. Primitive objects cannot be further de-
composed into other objects. On the other hand, com-
posite objects are formed from primitive and/or other
composite objects. The relation composed-of is de-
noted by A << B, where A is an attribute of B or
B contains A.

Supervised-by. The relation supervised-byis denoted
by B < A, where class A is called the supervisor of
class B and B is said to be supervised by A. In this
relationship, the objects of the supervisor of a class
are able to access the attribute data of the instances
of the class.

Peer-with. The relation peer-with is denoted by
A © B, where there exists a class C so that A C C,
B C C,and B and A do not have a supervised-by or
composed-of relationship.

Let us now present a few examples of the above
relationships. The inherii-from relation captures the
generalization relationship between a class and its di-
rect and indirect subclasses. For example, an FSM
and an MC are two subclasses of class Control Unit
(CU). The CU is the generalization of the FSM and
the MC. The FSM and the MC are the specification
of the CU. More importantly, the subclasses can in-
herit attributes and methods from their superclasses.
The composed-ofrelation captures the composition re-
lationship between a class and its attributes. For ex-
ample, a digital circuit is composed of a data path
and a control unit. Therefore, it is said that the
digital system has two attributes: a data path and
a control unit. The supervised-by relation is not men-
tioned by most current literature in OOP. It is, how-
ever, an important relationship between ADL classes.
This relation is particularly useful in SLA design. For
example, in TAG90, class DP and class CU are super-
vised by class DDS. Thus class DDS has a method to
access the attributes in both classes DP and CU, which
allows for the interconnection between the CU and the
DP and the optimization that is related to both DP
and CU. This relation is similar to the composed-of
relation. However, there are some aspects that differ-
entiate between these two relationships: (1) The su-
pervisor class A of class C does not contain a C-object
as its attribute; however, an A-object can access the
attributes of a C-object, which also can be realized
by the relationship C << A. It is obvious that the
supervised-by relation uses less storage space than the
composed-of relationship. (2) The supervised-by rela-
tionship also can be inherited through the class hier-
archy as in a composed-of relationship, but in a much
simpler way. For example, if B < A andC C A
then B < C. This inheritance of supervised-by re-

lationship can be realized by C inheriting the meth-
ods that access the attributes of B from A. (3) The
supervised-by relationship allows expansion of the hor-
izontal communication among classes. This communi-
cation is very important in modeling hardware design
entities. This is because the objects in hardware de-
sign, namely the design entities, are always mutually
interconnected. In software design, this interconnec-
tion can be realized by defining a port object that
supervises the interconnected objects (see F 1g.1).
3.4 The Transformations of Objects

Three types of object transformations will be in-
troduced. Two ways will be used to denote a trans.
formation. One is the code notation, the other is the
semantic notation. The code notation reflects the
programming aspects of a transformation, while the
semantic notation interprets the code notation by giv-
ing the semantic interpretation to the transformation.
The three types of transformations on the object are:
a change of a state, a computation of a state, and a
synthesis of an object.

3.4.1. A Change of a State

As mentioned above, a procedure is an ac-
tion that changes the state of an object. The
prototype of procedure consists of thrée components:
the name of the procedure, the parameter of the pro-
cedure and the class to which the procedure belongs.

A procedure f of class C is denoted as Pé. We assume
that different procedures in the same class cannot use
the same name. Therefore, the above notation repre-
sents a distinct procedure although the features of its
parameter type are not specified.

The definition of procedure Pé is as follows:

P/ . PL x S(C) - S(C);

where P means procedure, C is the class type of
the procedure, f is the name of the procedure, PL
is the set of parameter lists of f, and S(C) is the
set of all states of a C-object. The code notation of
applying a procedure to a C-object is: f(p).o where
f is a procedure, p is a parameter array, and o is the

object f is applied to. The semantic notation of the

above code notation replaces f by Pé, and o by <

0 C'n >. Therefore, the semantic notation of the
code notation f(p)_o is:

PL (p)<oCn> (1)
If the result of (1) needs to be illustrated, (1) can be
expanded as:

P ()<oCn> <oCn'> (2)
where ‘=" means ‘the result is’. In (2), the result is
< o0 C n' >, where n’ is a state of the object o, and
n’ = f(p,n). Formula (2) illustrates a state change
<n, n’ > within C-object o.

3.4.2. A Computation of a State

As mentioned above, a function computes some
value deduced from the state of the object. The

prototype of function also consists of three factors:

532

the name of the function, the parameter of the func-
tion and the class to which the function belongs. A
function g of class C is denoted as FZ.. The definition
of function FY, is as follows:

Ff : PL xS(C) —» V,

where F denotes function, C is the class type of
the function, g is the name of the function, PL is the
set of parameter lists of g, S(C) is the set of all states
of a C-object, and

V=Av|v=yg(p, s), si€ S(C), pe PL}).

The code notation of applying a function f to a C-
object o is denoted g(p)-o, where g is a function, p
is a parameter array, and o is the tdentifier of the
object that g is applied to. The semantic notation of
the above code notation replaces g by F%, and o by
< 0 C n >. Therefore, the semantic notation of the
code notation f(p).o is:

F, (p) <oCn>

®3)
If the result of (3) needs to be illustrated, (3) can be
expanded as:

Fl (p) <oCn> =y (4)
where ‘=" means ‘the result is’. In (4), the result is
v, where v = g(n), and n is a state of the object o.
Therefore, (4) shows a computation < n, v > from a
C-object at state n.

3.4.3. A Synthesis of An Object

A synthesis of an object is done by an object con-
structor. This transformation shows how an object
is constructed from other objects. A transformation
SZ is defined to denote the operation of synthesis,
wﬁich constructs a C-object. The code notation for
the synthesis transformation is

St (01, 09, ..., 0;),

where Class(0,) << Class(O) and 1 < n <i

The semantic notation for the above code notation
is

Sg (<01 Cymy>,<o0y Cy ng >,..,<0; Cy n; >)

=<0Cn>,

where Cp, << Cand 1< n <.

This operation allows the synthesis of new objects
from the existing objects. The synthesis transforma-
tion is the construction of an object; therefore, it is
called the construction transformation. To distinguish
the construction transformation, a function and a pro-
cedure will be called pure transformations.

3.4.4. Two Rules for Pure Transformations

A pure transformation is denoted as T. T can be

either a procedure or a function. Té denotes either

a procedure Pé or a function Fé

A transformation’s code notation and its seman-
tic notation can be connected by = in a format cn
= sn, which means the semantic notation sn inter-
prets the meaning of the code notation cn. For ex-

ample, f().o T, ()-<0oCn> means that

the semantic notation for transformation f().o is

TL ().<oCn>.

There are two rules of T: Polymorphism Rule and
Supervision Rule.

3.4.4.1. Polymorphism Rule.

Polymorphism means that a single format has dif-
ferent meanings. Meyer [14] gives the following defi-
nition: ¢ ”Polymorphism” means the ability to take
several forms. In object-oriented programming, this
refers to the ability to refer at run-time to instances
of various classes”.

An object variable (a variable in short) is an
alias of an object. A variable can be bound to an ob-
ject, in which case the variable is the alias of the bound
object and the object is said to be the value of the
variable.

There are three factors in a variable: the name, the
class type, and the value. To declare a variable is to
assign a class type to the variable. For example, a
variable z declared to be of class C type is denoted
as C z. Function D_class(z) returns the declared class
type of variable z. To assign a value to a variable
means to bind this variable to an object. The assign-
ment is denoted by operator ”:=”. For example, to
assign an object <7 C n > to variable x is denoted as
z =iorz :=<iCn>.

(1) Polymorphic assignment rule. If D_class(z)
C,then z := < i Bn> is a legal assignment iff
B C C. This rule allows a variable to be assigned
any object that is an instance of a class family. This
class family is determined by the previously declared
class type of this variable. When a variable is assigned
an object, the class type of this object becomes the
actual type of the variable. Therefore, the class type
of variable z is not necessarily of one type but can be
a set of types. The set of the class type of variable
¢ is denoted by TYPE: TYPE = Family(C) and
C = D_class(z).

(2) Polymorphic transformation rule. If z is a vari-
able, D_class(z) = C, and f is either a procedure or
a function, then

flp)z = T (P)-<iBn>,

iff:

(1) f is a virtual method declared in C,

(2) B € Family(C),and

(3) f is also declared in class B.

In the above formula, the transformation f(p)-z
is dynamically interpreted according to the different
binding of z. The formula shows a powerful mecha-
nism of program expansibility.

3.4.4.2. Supervision Rule. The supervision rule
for object transformations is as follows:

IfC < A and a C-object < 0o C n > is a param-
eter of transformation Tﬁ of class A, which has the
semantic notation

T, (KoCn>)<d An'>,

(5)

then there exists a method of C, T, which when
applied to object o C n produces the same result as

533

(5). This will be denoted as:

T, <oCn> =T} (oCn>)<d An'>
6
The meaning of (5) is that the supervisor class A(o)f
C has a method f to access the attributes of class C.
Formula (6) means that methods f and g of class C
are equivalent.
3.5 ADL Class Lattice
The design entity within the DDS is modeled as
an ADL Object. In this section, the structure and
organization of the classes of the ADL Objects will be
presented.
3.5.1. The Root of the System
The root of the class structure is the origin of ev-
ery ADL class. From the point of view of OOP, it
is the ancestor class of all classes in the class struc-
ture. The root of ADL classes is denoted by ROOT.
The relation between ROOT and other classes is:
C C ROOT, where C is an ADL class. There-
fore, any class in this structure can be viewed as the
member of Family(ROOT). See Fig.2.
3.5.2. The Architecture Aspect: Class Sys-
tem and Its Descendants
The global architecture of the DDS is predefined.
This global architecture needs thus to be represented
in the class structure. Class SYSTEM is a general
class of systems incorporating the architecture of the
target digital system. Class SYSTEM includes the ab-
stract class DDS and two main design entity classes
CU and DP. DDS is an abstract class reflecting the
architecture of the target digital system in our system.
Classes DP and CU are supervised by class DDS. The
relationship between these three classes under class
SYSTEM 1s:
CU « DP AND CU < DDS AND DP < DDS
Classes DP and CU contain composite and
primitive design entities. The primitive design en-
tities belong to classes under the class PRIMITIVE.
Class DDS contains the global information of the DDS
and has access to the data and methods in both CU
and DP.
3.5.3. The Functional Aspect: Class Primi-
tive And Its Descendants
Various design styles and design methodologies are
currently used in high-level synthesis systems for the
design of functional elements. Formula MI-MO-VAR
introduced in this research will represent the design
entities of the functional level architecture. Class
PRIMITIVE is an abstract class dealing with de-
sign entities at a lower level compared with the classes
of the SYSTEM family. Formula MI-MO-VAR cor-
responds to three main design entities at this level.
Class VAR, MI and MO objects are able to supervise
lower level information stored in the ASL through the
supervised-by relationship between classes LIB_.ELEM
and PRIMITIVE. This allows the transformations and
optimizations at the functional level to take into ac-
count the bottom information at an early stage. For
the same reason class LIB_LELEM is also supervised-by
class SYSTEM.
3.5.4. The Lattice Structure of Classes

Fig.2 shows the lattice diagram of ADL classes. All
classes described in the above section are shown, to-
gether with the relationships between them. Usually,
the inherit-from relation is the only relation between
classes in an object-oriented programming language
[15]. As a new contribution to the SLA design the
relation supervised-by is introduced in the lattice of
ADL classes. This class structure model essentially
improves the expressionability of the object-oriented
system that realizes the high-level synthesis system.

3.6 ADL Classes Close-Up
ADL classes are the abstract types of the ADL ob-
jects. An ADL class will be simply called a class. The
diagram of a class is :
{class:
class-name
inherit-from:
parent-name(s)
supervised-by:
supervising-class

attributes:
(al, a2, ..., an)
methods:
gpl, P2, ..., pii
f1, 2, ..., fj)

In the above diagram, pi denotes a procedure and fi
denotes a function. The following classes will be the
recognized types of the design entity of our system
(the remarks following ”;” are the comments).

CLASS MI represents the node of the conirol flow
of a DDS. The diagram of MI class definition is:

{ class:

MI
inherit-from:
PRIMITIVE
; inherits features from PRIMITIVE
supervised-by:
SYSTEM
attributes:
(id, ; the label of the MI
ty, ; the addressing type of the MI
ne, ; the label of the successive MI
br, ; the label of the branch MI
(used in conditional MI)
mo-list, ; the set of MOs signaled by this MI
ti ; the execution time of the MI)
methods:
(; list of procedures
MI-constructor, ; the constructor of MI-object
set-attributes; set the attributes of MI-object)

(; list of functions

print() ; the method that prints a MI-object
in a given format) }

The diagrams of the rest of the classes will not be
presented here. However, their purposes and positions
in the ADL class lattice are outlined in the following.

CLASS LIB-ELEM is a pseudo class of the ASL
elements. CLASS DP is a composite class. A DP is
composed of a list of M Os and a hash table of V ARs.
The procedure compress of DP is the major optimiza-
tion transformation in the class lattice. It compresses
(optimizes) the MO-list according to the dependency

; supervised by its superclass

534

of data in it in order to exploit the maximal parallelism
of the data flow. A DP is supervised by DDS, which
means that a DDS-object has accessibility to the at-
tributes of a DP-object. For instance, function print-
nalisset uses attributes mo-list as input and gets a list
in a *nalisset* format. Function print-lzmset uses at-
tributes var-table as input and gets a list in *lzmset+
format. *nalisset* and *lzmset* are P-graph lists.

CLASS CU represents the control unit of a DDS.
The ADL_CU class is composed of a list of MIs. The
description is similar to that of a microprogrammed
control unit, which is composed of micro-instructions.
The procedure compress 1s an optimization transfor-
mation on CU-objects. The algorithm for compress
used here is similar to the scheduling algorithms used
for the compaction of microprograms. CU is super-
vised by DDS, which means a DDS-object has accessi-
bility to the attributes of CU. Function print-coplisset
uses mi-list as input and gets a list in *coplisset* for-
mat. List *coplisset is the control flow list for the
P-graph.

CLASS DDS is the supervisor class of class DP
and CU. It does not contain a DP-object or a CU-
object. However, a DDS-object has accessibility to
the attributes of both DP and CU objects. DDS is the
supervisor for classes DP and CU. 1t is actually an ab-
stract class for a Diades Digital System. Since a DDS-
object has the right to access all information stored in
the DP-object and CU-object, it is able to generate
an IR according to the predefined format. Currently,
the IR for our system is the P-graph. Therefore, func-
tion gen_p_graph is defined to generate the P-graph.
By accessing the methods of DP and CU, the lists
nalissetx, xlzmsetx, xcoplisset, and xnolisset* of
the P-graph are generated. The P-graph list of pred-
icates, *plisset*, needs information in both DP and
CU. Therefore, in function gen_p_graph, code for gen-
erating *plissetx is specified.

The CLASS SYSTEM is the super class of sev-
eral composite classes. It supervises the classes DP,
CU, and DDS. There are two purposes for this class:
to perform some global operations and optimizations
and to make possible the incorporation of new tech-
nologies into DIADES. SYSTEM is the abstract class
representing the architectural features of the target
digital system to be designed. A SYSTEM-object is
constructed before the construction of any other ob-
Jjects. The attribute constraint-list of the SYSTEM is
derived from the compiler macro defined by the user.
The function optimization is a virtual function for
global system optimization based on the constraint-
list. This function is not specified in SYSTEM, but
inherited and implemented by its descendants, such
as the DDS. System contains some generic functions
which are further defined by the descendant classes.
PRIMITIVE, MI, MO, and VAR [27] were described
previously.

The lattice structure of classes is the crucial asset
of the system outlined here. This structure offers the
following advantages : (1) Betler conceptual model-
ing. Since conceptual hierarchies are very common
in digital system, direct modeling of such hierarchies
makes the conceptual structure of DDS easier to com-

prehend. (2) Factorization. Inheritance allows the
common properties of classes to be ”factorized” ——
that is, described only once and re-used when needed.
For example, all SYSTEM family members share the
properties of class SYSTEM. The redundancy of de-
scription is avoided. (3) Polymorphism. The hier-
archical organization of the ADL classes provides a
basis for introduction of polymorphism (in the sense
that the same function name may bind to different
code when applied to different objects at run time,
and a procedure with a formal parameter of class C
will accept any instance of the C family as an actual
parameter. The uniform storage of objects is a good
example of polymorphism. (4) Stepwise refinement in
design and verification. Inheritance hierarchies sup-
port a technique where the most general classes con-
taining common properties of different classes are de-
signed and verified first, and then more specific classes
are developed top-down by adding more details to the
existing classes. This feature makes TAG90 easy to
expand and refine.

3.7 Object-Oriented Approach in High-
Level Synthesis System Design

As a summary of this section, the methodology used
in our design is characterized as a different approach
to a high-level synthesis system.

The approach of the TAG90 system to construct
the translator stage of the high-level synthesis sys-
tem is shown in Fig.3. The ADL Analyzer and its
relationships with other entities are shown.

The traditional top-down approach to SLA design
has the following drawbacks: (1) Lack of low level
information. At the translator stage (which corre-
sponds to our ADL Analyzer shown in Fig.3), the com-
putational elements are simply pieces of passive data
representing fixed black boxes, with certain functional
capabilities and certain abstract costs. The decisions
about what physical modules are to be used and how
they are to be placed are deferred until after the RT-
level structure has been set. (2) Lack of ezpansibility.
The translator is usually procedure oriented and the
IR generated by it is procedure- and technology- de-
pendent. Therefore, 1t is difficult to introduce new
technology into the system. A slight change in either
the behavioral description format or the IR format
usually means a great software alteration within the
translator.

In contrast, the approach of the TAG90 system uses
active code (ADL objects) to represent the design en-
tities. The approach is object-oriented, allowing easy
expansibility and maintainability.

In Fig.3 the the ADL analyzer is illustrated by
the box that contains the class lattice and the
object manager. Therefore, our approach, called
Program-Class-Manager, can be viewed as the pair
PCM = < L, M >, where L represents the class lat-
tice and M represents the object manager. The Class
Latlice consists of the ADL class definition and the
corresponding method definition. The design entities
of DIADES are established by setting up the ADL
class lattice. A set of transformations on the ADL ob-
jects is designed by defining the methods of the ADL

535

classes. The constructions and transformations of the
objects are controlled by the Object Manager. The Ob-
ject Manager is like a post office sending messages to
invoke transformations on the elements of the object
lattice. The Object Manager consists of semantic rou-
tines attached to the Yacc grammar rules. The func-
tion of the object manager is to manage the process
of ADL object construction and transformation. The
construction of an ADL object is conducted by the
constructor method associated with the object’s class.
the class whose instance is to be constructed. The
transformations on the ADL objects are performed by
the class methods that are defined in the class lat-
tice. The Object Manager invokes a class method by
sending a message to an object or several objects.

3.8 The Advantages of PCM

Using the PCM model, the design tasks are dis-
tributed among different object classes. The data
and methods are connected and organized through
the class lattice as explained in ht eprevious section.

The advantages of this new methodology are the
following: (a) The object can simulate the design en-
tity at various design levels. The object encapsulates
data and methods, thus becoming an active design
subject instead of a traditional data model, which is
a passive, abstract, and separated black boz. (b) The
design process and the coding process are organized in
the way modern software engineering theory requires.
Actually, the L (the class lattice presented in this sec-
tion) is very close to the actual code of the PCM.
Similarly, M (the Object Manager) consists of modu-
lar semantic routines attached to standard grammar
rules of the Yacc specification file. (c) The greatly im-
proved expansibility is realized (see details in the next
section). (d) Low level information is accessible at the
PCM level. The supervision relation between objects
makes it possible for the objects at the higher level
to access the lower level information through the class
lattice and the ASL. The supervision relationship be-
tween the objects is a new creation in the concept of
OOP.

4 The Expansibility of ADL

Two kinds of expansion process should be distin-
guished. System level expansion of a software sys-
tem involves modifications, additions, or deletions of
the internal data structures and procedures. This kind
of expansion process has to be performed by the expert
who knows the internal implementation of the current
software system. On the other hand, the user level
expansion of a software system does not change the
internal implementations of the objects, but simply
adds new knowledge to the knowledge base of the sys-
tem. This expansion process can be controlled by the
user through the use of simple commands. Both kinds
of expansion processes require recompilation of the
system’s compiler. The two kinds of ADL expansion
process are shown in Fig.4. Conventionally, the ezpan-
sion of a system refers to the system level expansion,
shown in Fig.4a. Additionally, the user-controlled ez-
pansion method proposed here allows the user to con-
trol and manage the expansion of ADL (Fig.4b).

4.1 The System Expansion of ADL

In PCM, the generation and manipulation of a
single object has three steps: (1) An object is con-
structed; (2) The object is put into a stack called aos;
and (3) the object is fetched from the stack and is
manipulated. Assume that the methods for the aos
are the procedure put and the function get. The
virtual method defined in class PRIMITIVE to ma-
nipulate an instance of Family(PRIMITIVE) is called
manipulate. Method manipulate is also included in
each member of the Family PRIMITIVE). Assuming
D_class(z) = PRIMITIVE and p is the list of prim-
itive objects needed for the generation of z, the code
notation for the object generation and manipulation
process is

step 1: z := S} (p)

step 2: put(z)-aos

step 3: ¢ = get()_aos

manipulate().z

At step 1, an object variable z is bound to a C-
object, where C C PRIMITIVE. This is a legal
assignment according to the polymorphic assignment
rule. At step 2, z, which represents a set of objects

z={o]o=<iCn>andCe¢ Family(PRIMITIV E)}

is stored into the aos. At step 3, manipulate()z is
interpreted as the following semantic notation accord-
ing to the polymorphic transformation rule:
pgemslate () ciCn> = <iCal >
iff C € Family PRIMITIVE).

The ADL object manipulation process at step 3 is
polymorphic. It dynamically binds the manipulation
operation to a different implementation; the exact ma-
nipulation method depends on the actual type of =
The program for ADL object manipulation will not
be changed if new ADL classes are added as descen-
dants of Class PRIMITIVE.

4.2 User-Controlled Expansion of ADL

Relevant research on organizing digital devices into
an object-oriented library can be found in [2, 26]. The
ASL 1s the knowledge base of TAG90. The user con-
trolled ezpansion of ADL adds knowledge into the
ASL through the user interface. A DDS contains digi-
tal resources. An ADL program describes the resource
elements and connections between them. There exist
two kinds of resource elements: storage elements and
Junctional elements. An atomic ADL operation is
represented by the triple < F OP1 OP2 >, where F
is the functional element of the operation; and OP1
and O P2 are twostorage resources which are the input
of F. In current ADL, F must be one of the following
operators: 4+, -, * or /, OP1 and OP2 must be one
of the variables declared in the declaration section of
the ADL program. In a practical application, F, OP],
and OP2 can be any kind of variables, blocks, or struc-
tures.

As VLSI technology improves, new storage ele-
ments and functional units come out. Some sophis-
ticated user-defined ADL systems and blocks are very
useful and should be made reusable. ASL serves as
the warehouse of these new elements.

536

There are currently two basic ASL items: func-
tion and resource. ASL divides its items into differ-
ent items. Each item contains one or more elements,
which are the instances of the item. For each ele-
ment in the data base, there is a wealth of informa-
tion available. The related information could include
size, aspect ratio, power, pin count and pin defini-
tions, delays, input impedance, output drive, clocking
requirements, and functions performed [11].

Let us discuss now the subclass of F.ELEM. An
F_ELEM-object F; represents conventional function
calls in ADL. Actually, any ADL statement can be
represented in such a function call. For example:

a = add (x, y); // represents a = x + y;

a = sin (x) ;

a = a_block(x, y, z)

// represents the call to a block called ’a_block’.

In the ADL program, if a block is called in the algo-
rithm and the block is not defined, the block may be
an ASL functional element. Therefore, TAG90 should
be able to look up the called block in the ASL and ver-
ify that the ASL item exists and is appropriately used.
Additionally, the ASL should be able to be expanded
by the ADL user, so that new technologies and mature
design methodologies can be easily incorporated into
the system.

4.3 Adding a New F_ELEM-OBJECT
Into ASL

Whenever a new ASL element is defined, some
new ADL statements become legal and the ASL and
TAG90 need to be expanded. In the ASL, all in-
stances of the F_LELEM family are stored in one
hash table. The hash table for F_LELEM is called
F_Hash_Table.

To add a new F_ELEM-object into the ASL is to
store this object into the F_Hash_Table. For this
purpose, a separate file called ADL Extension For-
mat (AEF) is defined to process the addition of a
new F_ELEM-object. An AEF consists of user de-
fined macros. The format of the macro is F_ext(name,
op_number, op_type, relurn_type, time, tmplm) where
name is a character string representing the mnemonic
of the new functional element; op_number is an inte-
ger representing the number of parameters of the new
functional element; op_type is an integer vector indi-
cating the types of the parameters. The length of the
vector equals op_number. In ADL 1 indicates type
in, 2 indicates type float, and 3 indicates type logical.
return_type 1s an integer indicating the type of the
return value of the new functional element.” {ime is an
integer indicating the average execution time of the
functional element. implm is a function that describes
the implementation details of the new functional ele-
ment.

The macros are transformed by the C preprocessor
into F_ELEM-object constructors. When the AEF and
the main program are compiled and linked together,
the ASL F_Hash_Table is built. Following construc-
tion, the F_ELEM instances place themselves into the
F_Hash_Table. In an OOP language, an object is able
to control its own behavior, such as placing itself into
a hash table, by manipulating the pointer this, which

points to the object itself at run time. After the AEF
and the TAG90 main program are compiled together,
the new TAG90, which is able to interpret the new
functional elements, is formed.
4.4 Using ASL During The ADL Analyz-
ing Process
When an ADL program is compiled, the func-
tional elements in the source ADL program are fre-
quently checked to see if they are defined in the ASL.
This process is called ASL checking. The class
F_ELEM method check_usage checks the legal usage
of an F_.ELEM element. The instances of F_.ELEM are
stored in F_Hash_Table according to their mnemonic
names. An F_.ELEM object can thus be found from
the F_Hash_Table by its name, then the F_.ELEM
method check_usage is then applied to the instance
to verify correct use.

5 Conclusion And Future Work

The object-oriented C++ SLA for the ADL lan-
guage has been implemented as the input to the de-
sign automation system DIADES. It is fully opera-
tional. We found the design methodology presented
here to be very useful —— we were able to expand
the language in a short time using this approach. For
instance, the parallel primitives FORK, DAND and
DEXOR were added in only few days. Moreover, we
find this methodology to be applicable in other high-
and logic-level synthesis programs as well. Since ADL
is a wide-spectrum language that includes properties
of many well-known HDLs, it seems that similar ap-
proaches can be used to write SLAs for VHDL and
new high-level, system-oriented descriptive languages.

Currently, only digital circuits can be described. It
is planned, however, to expand ADL to analog circuits
as well. Since the syntax of many statements will be
the same or similar, and the IR constructs will often
be similar, implementation of analog SLA will become
a real test of the approach presented above.

Extensive literature research reveals that very lit-
tle has been published in this area, and that in the
SLA design of high-level synthesis systems there are
still many issues that need to be investigated. The
advantages of OOP on TAG90 design process, which
the authors learned to appreciate during the design
process, can be summarized as follows: the complex-
ity of TAG90 design has been tremendously reduced;
the expansibility of the TAG90 has been displayed in
the stepwise refinement of the TAG90 itself; and the
simplicity of the expansion of the TAG90 system was
found to be very impressive.

In our opinion the methodologies employed in the
TAGY90 design are expected to transcend the tradi-
tional top-down design strategies of HDL compilers.

We see the following immediate research possibil-
ities of an OOP approach to DIADES: (1) Adding
OOP language features into ADL. So far, ADL is not
an OOP language. The OOP implementation of the
TAG90 is thus not very straightforward and natural.
If ADL is expanded or even redefined as an OOP lan-
guage, some new and creative features of our entire
system will have to be realized. For example, the new

537

ADL could include user defined class types. Adding
new methods to ADL classes. Currently, the meth-
ods defined for the ADL classes are limited to the
formatting and data initialization aspects. More so-
phisticated procedures and functions related to the
optimization, parallelism, and communication be-
tween objects are required E2] (2) Increased under-
standing of the role of the objects. Currently the con-
cept of the object is limited to that found in object-
oriented programming languages, which package op-
erations for data manipulation with the data itself.
To model the hardware design entities, a more so-
phisticated object model will need to be established
in the future. More precise definitions and implemen-
tations of CAD objects need to be found. Some help
may be found by studying object oriented CAD data
modelling discussed in [7).

Acknowledgment

The authors would like to thank very much the
anonymous Referee Number 81 for very careful read-
ing of the manuscript and remarks that helped us to
improve the paper.

References

[1] H. Afsarmanesh et al. ”An Extensi-
ble Object-Oriented Approach to Databases for
VLSI/CAD,” Proc. 11th Intl. Conf. Very Large
Databases, Aug. 1985.

K.E. Ayers, ”An Object-Oriented Logic Simu-
lator”, Dr. Dobb’s Softw Tools, Vol.14, No.12,
pp.72-75-6, Dec. 1989.

J.H. Aylor, et al, ”VHDL - Feature Descrip-
tion and Analysis”, IEEE Design and Test, April
1986.

2
(3]

[4] G. Goossens, et al, ” An Efficient Microcode Com-
piler for Application Specific DSP Processors”

IEEE Trans. on CAD, Vol.9, No.9, Sept. 1990.

[5] R. Gupta, et al,” An Object-Oriented VLSI CAD
Framework”, IEEE Computer, May 1989.

[6] L.J. Hafer and A. Parker, ” Automated Synthe-
sis of Digital Hardware”, [EEE Trans. Compul.,
Vol.C-31, pp.33-43, Febr. 1982.

[7] R.H. Katz, et al, and V. Trijanto, ” Design Version
Management”, I[EEE Design Test, 1987, pp.12 -
22.

[8] R. Lipsett, et al, ”VHDL-The language”, JEEE
Design and Test, Vol.3, pp.28-41, April 1986.

[9] J. Liu, ”A Finite State Machine Synthesizer”,
M.S. Thesis, Depat. EE, PSU, 1989.

[10] P. Marwedel, "The MIMOLA Design System:
Detailed Description of the Software System.”
Proc. 16th DAC, pp.59-63, 1979.

[11] M.C. McFarland and T.J. Kowalski, ”Incorporat-
ing Bottom-Up Design into Hardware Synthesis”,
IEEE Trans. CAD, Vol.9, No.9, pp.938-50, Sept.
1990.

[12] M.C. McFarland and A.C. Parker, "An Ab-
stract Model of Behavior for Hardware Descrip-
tions”, IEEE Trans. Comput., Vol.C-32, pp.621-
631, July 1983.

[13] Mentor Graphics, Inc., Manuals of Genesil, GDT,
Lsim, Genesil Compiler Libraries, 1988-91.

[14] B. Meyer, ”Object-oriented Software Construc-
tion”, Prentice Hall Intern., 1988.

[15] H. Mili, et al, ” An Object-Oriented Model Based
on Relations”, The Journal of Systems and Sofi-
ware, Vol.12, No.2, pp.139-155, May 1990.

[16] N. Park and A. Parker, "Sehwa: A Software
Package for Synthesis of Digital Hardware from
Behavioral Specifications”, IEEE Trans. CAD,
March 1988.

[17] A. Parker, et al, ”’7MAHA: A Program for Data
Path synthesisS, Proc. 23th DAC, 1986, pp.461-
466.

(18] M.A. Perkowski, et al, ”’DIADES - A High Level
Synthesis System”, Proc. ISCAS, Portland, 1989,
pp. 1895-1898.

[19] M.A. Perkowski, et al, ”Integration of Logic Syn-
thesis and High-Level Synthesis into the DIADES
Design Automation System”, Proc. ISCAS, Port-
land, 1989, pp.748-751.

[20] M.A. Perkowski, and J. Liu, ”Generation of
Finite State Machines from Parallel Program
Graphs in DIADES”, Proc. ISCAS, New Orleans,
1990, pp. 1139-1142.

[21] D. Smith, ”ADL, a Behavioral Description Lan-
guage”, Report, PSU EE Dept., 1988.

[22] D. Smith, Forthcoming Ph.D. Dissertation, PSU
EE Dept., 1992.

(23] J.R. Southard, ”MacPitts: An Approach to Sili-
con Compilation”, Computer, Vol. 16, No. 12, pp.
74-82, December 1983.

[24] A. Sugimoto, et al, ” An Object-Oriented Visual
Simulator for Microprogram Development”, in
Proc. 25th DAC, pp. 138-144, June 1988.

[25] H.W. Trickey, ”Compiling Pascal Programs into
Silicon,” Ph.D. Dissertation, Stanford Univ.,
July 1985.

[26] W.H. Wolf, "Fred: A Procedural Data Base for
VLSI design”, Proc. 23th DAC, 1986.

[27] L. Yang, ”The Object-Oriented Design of a Hard-
ware Description Language for the DIADES Sili-
con Compiler System”, M.S. Thesis, Dept. EE,
PSU, 1990.

(28] G. Zimmerman, *The MIMOLA Design Sys-
tem: A Computer-Aided Digital Processor De-
sign Method”, Proc. 16th DAC, 1979.

fe— 1

2. In a digital circuit,
ul interconnects with u2

b. In an OOP model, object ut

Figure

538

H

and object u2 are supervised by object port

1

The Supervised_by Relationship in

the Hardware Design

Figure 2. The lattice of ADL classes

ADL

The ADL Parser

state_chage

ot

T

transformation

[Pt
ot

object

manager
M)

class

lartice
L

~—— means data transformations

.-

Figure 3.

/" old source

TAGS0

Intemal
Change

L

new source

TAGSO

C++ Compiler

TAGS0
Target Code

a. System Extension Of ADL

Figure 4

means control signals

‘The Diagram of ADL Analyser

user macros E

TAGS0
Target Code

b. User Extension Of ADL

Two kinds of ADL extension process

