MULTIPLE-VALUED GENERALIZED REED-MULLER FORMS

Ingo Schéfer, Marek A. Perkowski
Department of Electrical Engineering,
Portland State University,

P.O. Box 751,
Portland, OR 97207.
phone (503) 725-3806

Abstract

The paper introduces the concept of canonical Multiple-
Valued Generalized Reed-Muller Forms (MIGRM), a
direct extension of the well-known Generalized Reed-
Muller (GRM) Forms for the logic with multiple-valued
inputs. The motivation to study the MIGRMs is the same
as for the GRMs: their direct circuit realization as AND-
EXOR PLAs with input decoders have excellent testability
properties; they have applications to synthesis of other
kinds of circuits with EXOR gates, such as the Exclusive
Sums of Products (ESOP); they have good image
compression abilities and find applications in image pro-
cessing. Their study is also interesting for better under-
standing of the structure of canonical expansions of
switching functions. For further investigations of such
forms and their comparison to other circuit realizations, a
computer program to realize the MIGRM transform for
Boolean functions has been implemented.

1. Introduction

The concept of a fixed polarity Generalized Reed-Muller
(GRM) Form [1,2] of a n-input Boolean function has been
studied extensively in the literature. One of the reasons to
study such forms is that for each of the 2» polarities they
are canonical, which has several applications in both
theory and practice. For instance, when used as an inter-
nal representation of data in CAD systems [3,4,5] they
allow for more efficient Boolean function processing, use-
ful in various forms of decomposition. They are inten-
sively studied for better understanding of the canonical
representations of switching functions (2,6,7]. As is well
know, the circuits corresponding to Reed-Muller and
GRM forms have excellent design-for-test properties [8-
13]. Finally, GRMs have applications in signal coding
and image processing [14].

In recent years a logic with multiple-valued inputs has
been introduced with applications in state assignment
[‘15]? input encoding [16], PLA decomposition [17], syn-

CH3009-8/91/0000/0040/$01.00 © 1991 IEEE

thesis of PLAs with decoders [18,19], multi-level logic
synthesis and factorization [20,21]. The spectral
approach to analysis and synthesis of switching circuits
has been also extended for logic with multiple-valued
inputs {22]. Finally, the concept of multiple-valued input
ESOP expressions has been recently introduced [23,24]
(the forms are canonical while the expressions are not).
The canonical and non-canonical Shannon-like tree
expansions for multiple-valued input (mv, for short) logic
have been also investigated [25].

In this paper the counterpart of GRMs for the logic with
multiple-valued inputs will be introduced. We will call
such forms Multiple-Valued Input Generalized Reed-
Muller Forms (MIGRMs).

One motivation to investigate the MIGRMs is that they
are canonical forms, similar to the binary GRMs. Since
the binary forms are used for efficient coding of images
[14), it is obvious that their multiple-valued input counter-
parts can not give worse results, since the number of
MIGRMs for a given function is much larger than that of
the binary GRMs. It is thus more probable to find among
them an efficient code for any given image.

A second motivation is that the concept of the AND-
EXOR PLA [26], which is used for the realization of
ESOPs, can be extended for GRMs. When a GRM is
realized in an AND-EXOR PLA, each input is either
negated or not, but cannot be in both forms. This
decreases the number of columns in the AND plane by
50%. The AND-EXOR PLA with two-input, four-output
input decoders [26], which is used for the multiple-valued
ESOP forms can be used for the MIGRMs as well. More-
over, decoders with only three outputs are used, which
decreases the number of columns in the AND plane by
25% with respect to the multiple-valued AND-EXOR
PLA. The number of terms is usually larger in a GRM
and a MIGRM than in an ESOP or multiple-valued input
ESOP of the same function. However, for some functions
the GRM and MIGRM realizations have smaller total
areas or input counts,

The third motivation, and perhaps the most important
because it has a direct practical importance is, that the
excellent testability properties which have been proven
for the strict Reed-Muller forms (8] are extentable also
for the GRMs and MIGRMs [27].

The existance of new Programmable Devices such as
Xilinx LCA 3000, 1020 series from Actel, or LHS501
from Signetics, gives motivation to study circuits with
EXOR and other complex gates. For instance in Xilinx
LCA 3000 devices every Boolean function of five vari-
ables has the same cost and speed. Using EXORSs is then
reasonable, since they are more powerful than the
inclusive gates. It has been proven that the circuits with
EXOR gates have lower worst-case complexity than the
circuits which use only inclusive gates [28,29].

Circuits with high percentage of EXOR gates lead to area
saving solutions for linear Boolean functions, which have
several applications in coding and test generation. They
are also advantageous in parity circuits, coders, arithmetic
circuits, and others. Circuits with high percentage of
EXOR gates and input decoders, which realize the
multiple-valued ESOPs and their derivatives such as the
MIGRM:s and Multiple-Valued RM Trees [25], have good
testability properties like the GRMs, but have less gates.
Therefore, they can be a good design trade-off.

With respect to the above arguments the
compiler/optimizer and minimization algorithms for the
implementation of multiple-valued programmable logic
arrays [18,24,28,30,31] have been created. [32] and [33]
discuss efficient minimization algorithms for binary
Exclusive Sum of Products (ESOP) expressions which
are realized using AND-EXOR PLAs. In [19,26] minimi-
zation algorithms for Multiple-Valued Input Binary Out-
put Exclusive Sum of product (MIESOP) expressions
have been shown. They correspond to the AND-EXOR
PLAs with input decoders. It was stated in [26] that in
most cases the AND-EXOR PLAs with input decoders
require fewer products than the AND-OR PLAs with full
input decoders. Since efficient algorithms still do not
exist for the general ESOPs, an attempt is made at
efficient logic minimization algorithms for special cases
of ESOPs, such as the Restricted and Inconsistent Forms
[34,35].

In this paper the research on MIGRMs for completely
specified multiple-valued input binary output functions
will be shown both theoretically and practically. We
introduce a general concept of a pattern—matching
method to perform the transformation. This method was
also used for other spectral transformations of Boolean
functions [22]. In section 2 the theory for the MIGRM
form and the RMIGRM form, a restriction to it, will be
presented. In section 3 the algorithms for the RMIGRM
will be described. In section 4 the algorithm for the
RMIGRM transform is given. Finally, in section 5 the

41

multiple-valued input, multi-output SOP (sum of pro-
ducts) function of a 2 bit adder is used to illustrate the
transformation to a RMIGRM form.

2. Canonical Multiple-Valued Input, Binary
Output Generalized Reed-Muller Forms

Canonical forms for multiple-valued input, multiple-
valued output functions were already proposed (36,37].
The m-Reed-Muller canonical (m-RMC) forms [36] are
obtained from the truth vector or the SOP representation
and the generalization of the Boolean difference to
multiple-valued logic. Our approach is to generate a
multiple-valued input, binary output MIGRM expansion
that makes use of spectral methods similar to the ones
introduced in [22].

The concept used to change the polarity of a singular
multiple-valued literal is given by the following Theorem.

Theorem 1

Any multiple-valued variable X;% with the set of truth
values § ¢ P; = {0, 1, .., p;-1} can be represented by p;
multiple-valued variables V;™ with the set of truth values
T; ¢ P; , where the p; vectors T;, form the row vectors
of an orthogonal p; X p; matrix PM;.

Proof:

One property of an orthogonal m X m matrix O with the
elements o;; € (0,1) is, that any vector U(ug, 4y, ..., km—1)
with u; € (0,1) can be represented by a superposition
(performing of a bit-by-bit EXOR operation) of row vec-
tors O; of the matrix O (m is an arbitrary natural
number). Thus, any set S of truth values S ¢P =
{0,1,...p-1} of a mv-literal X5 can be represented by a
superposition of the values from the orthogonal set of p
truth values T <P = {0, 1, .., p-1}, where T, is a row
vector of the orthogonal p x p matrix PM .

Example 1 : To illustrate Theorem 1, all possible sets of
truth values S ¢ P = {0,1,2} of a three-valued literal X$
are calculated from the chosen 3 x 3 orthogonal matrix
shown in Figure 1.

011 T,
PM= 0 1 0 = Tz
1 0 0 T3

Figure 1. Example of a 3 x 3 orthogonal matrix.

In the following Table I the calculation of all possible sets
of truth values S by exoring the rows of the orthogonal
matrix PM (Figure 1) is shown, where the rows are
denoted Ty, T and Ta.

Definition 1

The matrix PM; introduced in Theorem 1 is called the

polarity matrix or for short polarity of a multiple-valued
variable (mv-variable) X;. The row vectors T, of this

matrix are the binary representations of the
polarity literals V; T...
TABLEI
ALL POSSIBLE SUPERPOSITIONS OF
THE POLARITY LITERALS
truth values § binary code | superposition
{2} 001 T &T,
(1) 010 T,
{12} o011 T,
{0} 100 T,
{02} 101 T,0T,®T;
{0.1} 110 T,8T,
{0,1,2} 111 T, ®T,

For the representation of the polarity literals T, non-
orthogonal matrices can also be used. Thus, Theorem 1
can be generalized to the following Lemma.

Lemma

Instead of the orthogonal matrix PM defined in Theorem
1 any non-orthogonal matrix can be used. A set of vec-
tors T, can be used for the polarity literals V-, if by exor-
ing of those literals every possible set S ¢ P = {0,1,..,p-
1} of a mv-variable X* can be generated. Thus, there is
more than one way to create an mv-literal X;5 out of the
polarity literals given by the non-orthogonal matrix.
(This result is no longer a canonical form.)

Table II summarizes the notation presented in the above
Definition 1 and Theorem 1:

TABLEDI
THE NOTATION FOR THE MIGRM

x5 X,5. x; 5. X, 5
Pi=(0.1,..p1-1) Pi=(0,1,.p;-1) | P.=(0,1,..p,~1)
VL r.vh Vol.V,7..VP
PM, PM; PM,

In the first row of Table II the multiple-valued literals
X; 5 of a function F(X4, X»,...,.X,) are shown. Below the
sets of truth values P; for those literals are given. Next
the corresponding polarity literals V;” are shown, where
the r stands for the values represented by the T;:, vector
of the matrix PM; .

Finally, Figure 3 illustrates two polarity matrices PM;
consisting of the value vectors T; .

42

Ty, Tn
PM1 = Tl, PMn = T”
TlP. Tnp_

Figure 3. Description of polarity matrices.
Example 2 : The two variable mv-function F(X1,X7) =
X192 X, is used to show how to calculate the MIGRM
form for the polarity shown in Figure 4. The variable X ;!
can be represented by the superposition of the polarity
literals V3» @ V7, which is abbreviated by V2! © V3.

— — —

1111 Ty

0101 T2
Ay = =

0011 T3

0111 T4

111 [1
Az = 100 = Ty

001 Tx

Figure 4. Polarity matrices.

The natural method to perform the transformation seems
1o be an exor-term multiplication:
X1BX= (Vi@ VeV *) (Ve Vy?)
=(1oviev4)(1eVv?)
=1OVEOVIOVIBV3IVRDV,4V,3
The multiplication method realized as above is, however,
in this form computationally inefficient.

It will be now be shown how to describe the MIGRM as a
spectrum M and apply the pattem matching method
between the indices of the spectral coefficients and a
multiple-valued term to calculate the final MIGRM from
the polarity representation of the literals, X;%. It will be
shown, that the pattern matching can be used instead of
the product multiplication approach from Example 2. We
extend now the Reed-Muller form for Boolean functions
to the MIGRM form.

Definition 2

The Multiple-valued Input binary output Generalized
Reed-Muller (MIGRM) form of a function F(X,.Xs,...,
X.), where X, i=12,....n are the mv-literals, is defined as

follows:
FX 1. X200 Xn) =
ay®aV!®..®a Vy 0.8 ap, Vv
@ ap V2D ..o At +P.V"P- @
au‘V11V22 @& a.‘1+1V11V31 D..0 a,‘x_[v,.._ -y, P @
au.VI’ WVl e a.._“-lvl"' Vnp'
where a, denotes the first coefficients of the first term of
the i+1 order.

n
Because of having a total number of IT (p; +1) terms, and
i=0

a complex notation, the above formula in its general for-
mulation may be difficult to understand. It will be, there-
fore further illustrated with a spectral description and an
complete example in section 6.

Definition 3

The MIGRM defined above can be represented by a spec-
trum M , where the index of a coefficient Mv,r corresponds

to the indices of the polarity literals V;” which form the
terms in the formula of Definition 2.

Because of the complexity of the muitiple-valued spec-
trum M, only a simple example of a spectrum is shown
below.

Example 3 : The MIGRM of the mv-function F(X, X ;) =
X923 X,01 (see Example 2) can be represented in a dif-
ferent way by its spectrum M. Figure 5 gives the stan-
dard trivial functions [22] of the above term for the polar-
ity from Figure 4.

For a comparison of the product X ; 92 X, % with the stan-
dard trivial functions in Figure 5, the Karmnaugh map of

this product is shown in Figure 6.
X2 X2 X2
XiN0 1 2 XiN0 1 2 X1\o 1 2
o1]1 |1 ofjofolo 0{o0jo]o
1{1 {1 |1 1{o0jo0fo 1|11
2 1|1 |1 2|1 (11 2 {1 |11
3011 |1 31111 30111
1=V i=V,! V3 vy
X2 X2 X2
Xi1N 0 1 2 X)N\o0 1t 2 X;\o 12
0 {0 }0 |1 0j0]0|o0 010 1010
1{o]o |1 1|ofo]o 1]o o1
2|0 o |1 2100 |1 2001
3100 |1 3jofo |1 310]0 1
V3 Vi3V V43

Figure S. Some standard trivial functions for the polarities
of variables X, and X ; specified in Figure 4.

le 1 2
ol 1| 1] o0
10| 0} o
2l 1] 1] o0
31 1] 110

Figure 6. Karnaugh map of function F(X1, X2) = X, 93 X,
from Examples 2gand 31.) &L X=X ?
The new expression can be now represented in the form
of spectral coefficients (see Table III), where the indices
correspond to the standard trivial functions. The same
spectrum as in Example 2 has been obtained:
X1BX,%=10V320VI VLAV IV VAVE,
The reader may wish to verify this form by exoring
corresponding maps from Fig. 5 to obtain the map from
Fig. 6. The algorithm to calculate this form will be given
in section S.
The first rows of Table VII give all possible MIGRM
terms for the above example. In the second rows a '1’
indicates, that the term represented by the index of the
spectral coefficient in the same column, is present in the
MIGRM form.

TABLEIII
THE SPECTRUM OF THE FUNCTION(X, X,)
FROM EXAMPLES 2 AND 3
Mo | My, | My, | My | My, | My, | My, | M,

1 0 0 1 1 0 0 1

MVI‘ Vll Auvll V: MVII Vl’ MV]" v" lez Vlz MV" Vl‘
0 0 0 0 [0

M, Vv Mvg A M A M, RA M Vv Mv,‘ v,
0 0] 1 0 0 1

3. Restricted Multiple-Valued Input General-
ized Reed-Muller Form (RMIGRM)

Analogously to the binary Reed-Muller expansion where
each literal can occur in only one value, we now want to
restrict the MIGRM form. The restriction makes use of
the availability of the dc term 1°, M, which is necessary
to be able to perform the complete set of operations with
AND- and EXOR-gates.

Theorem 2

Any value of a multiple-valued variable X;* with the set
of truth values P; = {0,1,...p;-1} can be created by p; — 1
variables V;” with the set of truth values A; < P; where
one of the truth values P; is not used in the set of truth
values A;. The set of truth values has to form a orthogonal
(-1 x(-1) matrix. To expand this matrix to an
orthogonal p X p matrix PM it is sufficient to add a row
corresponding to the dc-literal (literal that contains all
values).

Proof:

The proof is similar to the proof of Theorem 1 because
again an orthogonal p X p matrix PM is used. It is trivial,
that an orthogonal (p —1)x (p — 1) matrix B can be
expanded to an orthogonal p X p matrix PM by adding a
row containing only 1’s, and filling up the new positions
in the matrix PM with 0’s.

The impact of Theorem 2 is that one value of a multiple-
valued literal is not used in the orthogonal matrix, except
in the dc-literal. One advantage of this restriction is the
reduction in the number of the spectral coefficients.

This form will be called the Restricted Multiple-valued
Input, multiple-valued output Generalized Reed-Muller
(RMIGRM) form.

Example 4 : The mv-function from Example 3 (Table II)
can now be represented by the reduced spectrum M

shown in Table IV,
TABLEIV
THE SPECTRUM OF THE PRODUCT X,X

product M,y MV‘, MV‘ My. va Mva

1 ! 3

X, x,0 1 0 1 1 0 1
lel V,a MV‘: V" MV‘: V.l MV‘) Vl’ MV“ V,z MV‘A V:‘
0 0 0 1 0 1

The reduced representation in this example has eight
coefficients less than in Example 3.

In general the gain of spectral coefficients, that is the ratio
of lesser spectral coefficients that have to be generated for

the RMIGRM in comparison to the MIGRM, is I’Il pi !
i=0

n
20 (p: +1) where » is the number of variables. In the case
3

of all mv variables having the same number of values, the
RMIGRM spectrum has 1. times the number of the spec-
tral coefficients of the MIGRM spectrum. Thus, the
minimal form obtained by finding the optimal polarity for
the RMIGRM spectrum for a given function contains an
equal or larger number of terms than the minimal form
obtained for a MIGRM spectrum. Hence, from the point

of view of circuit minimization, where each term has to
be realized with a certain number of gates, the RMIGRM
leads to a larger circuit.

4. Algorithm For The RMIGRM Form

The RMIGRM form was chosen for the computer pro-
gram implementation. Thus, the algorithms shown make
use of such forms. An analogous method can be created
for the MIGRM form. The method for the generation of
the RMIGRM form consists of two basic parts. First,
each muitiple-valued literal of the mv-function has to be
transformed to a polarity specified by on orthogonal
matrix. In the second part the terms with transformed
literals are used to calculate the final RMIGRM form. The
code for the transformation of a multiple-valued literal is
chosen in such a way that the second part of the transfor-
mation is not dependent on the chosen polarity of the
literal. This approach requires the introduction of the
concept of normalized codes.

4.1 Transformation for one multiple-valued
literal.

The basic steps of the algorithm for the transformation of
a multiple-valued literal to its representation of polarity
literals in the normalized code will be illustrated on an
example. Table V (see end of paper) contains the set of
transformations of a three-valued literal X for the polar-
ity used in Example 2. The first row gives all the possible
combinations of the polarity literals. In the second row
the results of the EXOR operation on the respective polar-
ity literals are shown in the binary representation. Let us
observe that the first four polarity literals are the rows of
matrix PM; from Example 2. In the first column all pos-
sible literals of the variable X are given. In the respective
row for each of these literals the representation by its
polarity literals is given, where the binary representation
for the value has to be calculated by performing the
EXOR operation among the code words that are deter-
mined by 1’ in the table (ie. X,°=1@® V4, which is
denoted by 1111 @ 0111 = 1000). Finally the last row of
the table gives the normalized code of the spectral
coefficients. It represents the combination of the polarity
literals V7. For instance 0111 means that variables V2, V3,
and V'# are taken. This row is just a binary encoding of the
first row.

As mentioned above, the code for the RMIGRM
representation of one literal is created in such a way, that
this normalized code can be directly used to perform the
transformation of the total mv-function. This can be done
by using the same representation of the polarity literals
V1,V2, ... for every chosen polarity. The code determines
then of what polarity literal/s the initial literal is com-
poscd.

If a literal has to be represented by a combination of the
orthogonal subset and the dc coefficient, the new code is
calculated by performing a bit-by-bit or-operation
between the code of the dc coefficient and the code of the
subset combination.

Example 5 : The literal X© with the internal representation
1000 is can be represented by 1 @ V4 which has the nor-
malized code 1001. The new code representing this com-
bination of polarity literals can be derived by the bit-by-
bit OR-operation of the code representation of the polarity
literals shown in Table V1.

TABLE VI
THE CODE REPRESENTATION FOR THE
POLARITY LITERALS
normalized code | polarity literals V”
1000 Vi=1
0100 vz
0010 v3
0001 Ve

The normalized code has a "1" in its bit representation
corresponding to the index of the polarity literal V.

The procedure implemented to perform the transforma-
tion of a multiple-valued literal to the normalized code
includes the following steps:

1. Generate all possible EXOR combinations of the
polarity literals V'~ for the later comparison with the
original mv-literal (the first row of Table V).

2. Compare the binary representation of the mv-literal
(or the inverted binary representation, if the literal
contains the not used value of the polarity) with the
EXOR combination of step 1. If these two binary
representations are equal then assign to the mv-
literal its normalized code calculated by bit-by-bit
ORing of the binary representation of respective V”
(Example 5).

4.2 Transformation of a multiple-valued function.

After the transformation of each original mv-literal, as
described above, the whole set of multiple-valued terms
of the function has to be changed to the RMIGRM.
Again, the basic steps of the algorithm will be explained
on an example.

Example 6 : Let us take any function G(X, X 5, X 3) where
the literal X; being three-valued is represented by three
polarity literals V3!, V12 and V3, The second literal X,
being four-valued is represented by the polarity literals
Val, Va2, V33 and V24, the three-valued literal X3 is
represented by V3!, V32, and V4%, The polarity literals
Vi!, V2!, and V3! are dc-literals. The spectral coefficients
for a spectrum representing such a function G(X1, X2, X3)
are shown in Table VII (see end of paper).

45

The code shown in Table VII is obtained by generating all
possible combinations of polarity literals, except the dc
polarity literal, from the distinct original mv-literals. This
means that not more than one polarity literal per original
mv-literal can occur in the index of a spectral coefficient
(i.e. My . » can not occur because both polarity literals are

from the original mv-literal X;). As one can observe
from the binary representation of the index (second rows
in Table VII), called code each spectral coefficient con-
sists basically of a combination of three polarity literals,
where each polarity literal is taken from a different origi-
nal mv-literal. However, in the descriptions of the indices
of spectral coefficients (first rows of Table VII). Because
Table VII has been created for normalized mv-literals, the
normalized code has to be used to obtain the complete
spectrum. In Table VIII the possible combinations of
polarity literals of an original mv-literal are listed.

TABLE VII
THE CODE FOR THE SPECTRUM INDICES
1000 | dc-literal or V;1
0100 V;2
0010 V3
1010 VilorV;3

The final value of the spectral coefficient M, , where M; is
any of the possible spectral coefficients, determined by a
column in Table VII, is obtained by comparing the
normalized codes of all terms term, of the Boolean func-
tion (x = 0,..., m-1 ; where m is the total number of terms)
including variables X, X5, ..., X, with the normalized
code code, from Table VII. The value M; for term, is’1’
if the intersection of the code, and the term, is not empty.
To obtain the final value M, for the whole function (all its
terms), the EXOR operation among all m values M, has
to be performed. The calculation of the values of
coefficients M, is described by the following formula:
M.09=0
M =M * @ ((code, & termyy#¢), forx =0, ...,m-1
where the value of the spectral coefficient is a Boolean
variable, code; and term, are the binary representation of
the respective literals, where ((code; & termy,#¢) has to
be true for the intersection of each literal of code, and
term,.. By ¢ we denote a vector of zeros.
The final RMIGRM form consists of the terms obtained
by replacing the polarity literals in the indices of the spec-
tral coefficients M, (row cube in Table VII) which have
value *1°, with their binary representation.
To summarize, the procedure to obtain the RMIGRM of a
multi-output Boolean function includes the following
stages:
1. Transform all the multiple-valued input literals of
the function to their normalized codes according to

the chosen polarities.

2. Calculate the RMIGRM spectrum for the normal-
ized codes.

3. For each output function take the binary representa-
tion for the polarity of the non-zero coefficients of
the normalized spectrum.

4. Merge the results of each output function to a single
table.

5. A Practical Example

To illustrate the complete RMIGRM transformation a real
life example is included. The function used is a 2 bit
adder (Table IX, where the two four-valued literals X;
and X, represent two binary values each (X; = (x1, x2),
X2 =(x3,x4)).

TABLE IX
THE TRUTH TABLE OF THE
2 BIT ADDER
binary function Xy X2 Y
xl "xZ Al x; !z‘
0000 1000 1000 | 000
0001 1000 0100 | 001
0011 1000 0010 | 011
0001 1000 0001 | 001
0100 0100 1000 | 001
0101 0100 0100 | 010
0111 0100 0010 | 100
0110 0100 0001 | O11
1100 0010 1000 | O11
1101 0010 0100 | 100
1111 0010 0010 | 110
1110 0010 0001 101
1000 0001 1000 | 010
1001 0001 0100 | O11
1011 0001 0010 | 101
1010 0001 0001 | 100

The my-literal X, is obtained by changing the first two
bits of the binary function to a four-valued literal (X,° =
00, X;! =01, X;2 = 11, X,® = 10). The chosen coding
here does not relate to the implementation of input
decoders in a real circuit. The second two bits are taken
to obtain X 5.

The chosen polarity is given in Table X. To make it easier
to follow the steps of the transformation, both literals
have the same polarity. The polarity literals V7 and the
binary representations of their values (T; ,) are shown.

As one can observe from Table X, the polarity value of
four (0001) was never used among the above polarities.
That means that the mv-literals having value four require
the dc literal ’1°.

Now the binary representations of the literals X; and X,
in Table IX are replaced by their normalized code .
Because only four different values occur in the literals X ;
and X 5, the normalized code for those values is shown in
Table XI, where V" = V" =V,

TABLE XI
THE NORMALIZED CODES FOR THE
FOUR OCCURING VALUES
the binary the normalized code | the cube representation
value of a literal of the nomalized code
0001 1evievs 1011
0010 V3 0010
0100 viev? 0110
1000 Vievigvs o111

TABLEX
THE POLARITY FOR THE 2 BIT ADDER
polarity for X, | polarity for X,
V,2: 0110 V20110
V13: 0010 V43: 0010
Vl‘Z 1100 V;‘: 1100

The literals of variables X; and X, in Table IX are now
substituted with their normalized codes from Table XI.
For the first four terms of Table IX this is shown in Table
XI1I.
TABLE XTI
THE NORMALIZED CODE FOR THE
2 BIT ADDER

old representation | normalized code
Xy X, X, X
1000 1000 0111 0111
1000 0100 0111 0110
1000 0010 0111 0010
1000 0001 0111 1011

The complete code obtained in this procedure is now
compared with all the indices of the spectral coefficients
of the general spectrum for a function G(X,, X5), where
X and X ; are four-valued literals. To save space, the fol-
lowing Table XIII (see end of paper) illustrates the calcu-
lation of the spectrum only for four terms from Table XII.
The table has a "1" as an entry if for each variable the
intersection of the index of the term and the index of the
coefficient is not empty. For instance, in the cell at the
intersection of row 0111 1011 and column 0100 1000
there is "1", since the intersection of those indices is 0100
1000 so that both literals are not empty. The intersection
of row 0111 0111 and column 0100 1000 is 0100 0000 so
"0" is placed in the corresponding cell.

The next stage is to find the final coefficients for each out-
put function. The first column of Table XIV lists all
non-zero spectral coefficients M, that occur in any of its
component functions. These coefficients have been
obtained by comparing (as in Table XIII) the binary
representations of their indices (listed in the second
column of Table XIV) with the normalized code
obtained according to Tables IX and XI. Finally, the

binary representation for the literals of variables X; and
X, is obtained by replacing the polarity literals of the
indices of spectral coefficients from the first column, by
their binary representations. According to Table X the
conversion is: 1000 to 1111, 1010 to 0010, 1001 to 1100,
1100 to 0110, 0001 to 1100, 0100 to 0110, and 0010 to
0010. In the above procedure, each column (bit) of Y is
calculated separately, and next the results are merged for
every table’s row into a 3-tuple. For instance, this nota-
tion means that coefficient My, is has value "1" in func-

tions 1 and 3, coefficient M, , is has value "1" in function
2, and so on.

TABLE XIV
THE RMIGRM OF THE 2 BIT ADDER
spectral coefficient index X, X, Y

M,, 0001 1000 | 1100 1111 { 101
MV:, 01001000 | 0110 1111 | 010
va, 10000100 | 1111 0110 | 010
Mv“ 1000 0001 1111 1100 | 101
Mv:! 10000010 | 1111 0010 | 110
My 11001100 | 0110 0110 | 100
M,.,, 1100 1010 | 0110 0010 | 001
Myrs 10101010 | 0010 0010 | 110
le,V: 10101100 | 0010 0110 | 001
Mv:‘V:, 1001 1010 | 1100 0010 | 110
My .. 10011001 | 1100 1100 | 001
de 10001000 | 1111 1111 | 001

The above method was implemented in our program
called GERMS-MV (GEneralized Reed-Muller Syn-
thesizer). The calculation time for this expansion using
this program took a 1/10 of a second on a Sun 3/50.

6. Conclusions

The extension of the General Reed-Muller expansion to
multiple-valued input, binary output functions has been
shown. For this, the concept of code normalization of sin-
gle multiple-valued literais to perform a final transforma-
tion has been developed. The code normalization is used
to make the transformation of the complete function
independent on the polarity chosen. This simplifies and
speeds up the main transformation step to the final
RMIGRM form for the transformed single mv-literal. For
further investigations on the behavior of such forms the
RMIGRM transformation has been implemented on a
computer. Because an exhaustive search of all possible
polarities to find the minimal RMIGRM solution for any
polarity would be too time consuming, therefore further
research will be concentrated on avoiding a complete
search.

The main reason for the implementation of the RMIGRM
algorithm is to use and test it for the generation of the
MICRMP form, which like its Boolean counterpart makes
use of the MIGRM forms on certain subexpressions of the
function [29]. Since circuits which realize the RMIGRM
forms are both easily testable or modifiable to very easily
testable circuits, further research into them is important. It
must be however experimentally found with practical
logic benchmarks how much of a circuit cost penalty we
pay with respect to the corresponding MIESOPs. The
role of input variable pairing [28] must also be investi-
gated, since a good pairing together with a good choice of
variable polarities may significantly improve the cost.

7. References

Due to the page limitation the references could not be
included. The complete paper with references is available
from the authors.

TABLE VII

THE COMPLETE RMIGRM SPECTRUM OF THE FUNCTION
WITH 3-VALUED X,, 4-VALUED X ,,
AND 3-VALUED X;

47

dc le, MV.’ MV‘, Mv,’
100 1000 100 {| 010 1000 100 | 001 1000 100 | 1000100 100 100 1000 001
Mv,tv; lerv; lelv; Mv;v;
1101100100 | 110010100 | 1101001 100 100 1001 101
M vavRrve M, VrVRY) ‘wylx Veve
1101100110 | 1101100 101 101 1001 101

TABLEV
THE SET OF TRANSFORMATIONS FOR A
MULTIPLE VALUED LITERAL

literal 1 V2 V3 Ve Vavi | vagve | vieve || vevievs
1111 {] 0101 | 0011 | O111 0110 0010 0100 0001
X3 1
X2 1
X3 1
X! 1
X, 13 1
X0 1 1
X0 1 1
X192 1 1
X, 1 1
X0 1 1
X, 1 1
X012 1 1
X938 || 1
code 1000 || 0100 | 0010 | 0001 0110 0101 0011 0111
TABLE XIII
THE SPECTRUM FOR TABLE XI
term Jde MV : Mv N x‘lv . MV N AWV s 1WV .
1 1 1 2 2 2
1000 1000 | 01001000 | 00101000 | 00011000 | 10000100 | 10000010 | 1000 0001
01110111 0 0 0 0 0 0 0
01110110 0 0 0 0 0 [} 0
0111 0010 0 0 0 0 0 0 0
01111011 0 1 1 1 0 0 0
0 1 1 1 0 0 0
term M va M, va Mv‘. M v MV‘* Mvz‘ M v Mv’, M va M, v
01000100 | 01000010 | 01000001 | 00100100 | 00100010
01110111 1 1 1 1 1
01110110 1 1 0 1 1
0111 0010 0 1 0 0 1
0111 1011 0 1 1 0 1
0 0 0 0 0
term MV" MV; MV“ MV} le‘ le, va‘ MV,‘
00100001 | 0001 0100 | 00010010 | 0001 0001
01110111 1 1 1 1
01110110 0 1 1 [V}
0111 0010 0 0 1 0
01111011 1 0 1 1
0 0 0 0
48

