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ABSTRACT

ial

Several bi of logic synthesis and other CAD
problems have been solved in an uniform way using a general purpose
tree searching program MULT-IL. This paper presents two leamning
methods that have been impl d to improve ’s efficiency. A

ighted heuristic fu used to eval is applied during
searching a solution tree. The optimal vector of coefficients for this func-
tion is learned in a simplified perceptron scheme. By using the second
ieaming method, the similarity of shapes among the solution cost
improvement curves is used to define the termination moment of the
search process. The amplification effect of concurrent action of both these
methods has been observed.

1. INTRODUCTION

There exist many p of logic sy is and related bil ial
of VLSI CAD that require tree searching methods to solve them. In particular, especially

p < 1is connected with a probability of p. The probability coefficients of the flags can be
leamned in a similar way that the coefficients of the evaluation function are learned.
Analogous approaches have been successfully applied in game playing programs and
pattern recognizers (2,3,8,19,33,35,37,38,51-53,59,65] but to the best of our knowledge,
they have never been used to solve the class of combi ial design probl i

by us.

The second, completely new leamning method, used in Branch-And-Bound stra-
tegies of MULT-II, determines such a moment of search in which backtracking can be
stopped, because a better solution is very unlikely to be obtained in future. In many
problems a strategy can be constructed that quickly leads to a minimal solution, however,
it takes a very long time for the computer to prove that the solution is really the minimal
one. Therefore, it is important to know the moment when the further backtracking can be
stopped. The method uses a normalized shape diagram which for different data of the
same problem refers the cost function values to the number of subsequently generated

many of such problems can be reduced o a class of NP-hard ial

that can be characterized as constrained logic optimization problems. They are described

using muiti-valued Boolean functi graphs, or arrays of symbols, on which some con-
straints are formulated and some transformations are executed in order to optimize cost
functions. These problems include Boolean satisfiability [22], tautology (58], comple-

mentation {57], set covering {23], even/odd set covering [21], clique partitioning [62],

maximum clique [62], graph colori i indep set, set partitioning, match-

ing, linear and i i covering/cl , edge ing, and others. Con-
sidering the importance of these problems, several different approaches have been intro-
duced to solve them. These approaches include:

- mathematical analysis of the problems is done in order to find algorithms as
efficient as possible algorithms (exact or approximate), or algorithms for particular
sub-classes of these problems [7, 54-58), in spite of the fact that the problems are
NP-hard so that no efficient (polynomial) algorithm exists them.

- special hardware accelerators [22,40,58) are designed to speed-up the most often
executed or slowest operations on these types of data.

- general purpose parallel like P g hyp
arrays, data flow computers and shared memory computers are used [9].

- the ideas of Antificial Intelligence, computer leaming and neural networks are
used, also mimickiug humans that solve these problems [39,43,44].

This paper follows the last Since the probl of the d logic
optimization class, as NP-hard, will be always difficult to solve, one tries to find good
heuristics that take into account the peculiarities of real life data in order to maximize
execution efficiency, even by sacrificing the understanding why this or other technique
works well. When a problem of developing a new algorithm is encountered, the logic
theorist/program developer has, based on his experience and a large collection of similar
problems, to find an appropriate tree-searching algorithm and the corresponding heuris-
tics. A software system has been developed that helps the designer in this task, MULT II,
a fast prototyper that permits to check, evaluate and compare design ideas before writing
the final code [41-44,47). MULT I is a general purpose combinatorial problem solving
program that has been used to solve many problems related to logic synthesis, operations

Finite State Machi physical design, graph theory and other areas. The pro-
gram permits the user 1o choose values for several that define ing stra-
tegy, (like depth-first, ordered search, branch-and-bound), and other search heuristic rou-
tines. Some of the parameters are used to select a combination of learning methods for
the improvement of the search efficiency. This way the program designer can quickly
evaluate usefulness of his various ideas; how much each of them contributes 0 the suc-
cess of the tree search.

SIMD

Two learning methods are presented in this paper. The first method leamns criteria
of selecting good op by using a weigh luation function and learning its
weight coefficients. The same approach is used for selecting nodes as well, where the
coefficients of the evaluation function for solution tree nodes are learned. Another vari-

ant of this method observes the fact that a search strategy in MULT-II can be described

e predictions of the moment are for some pro-
bability of not loosing the optimal solution.
Section 2 the pose 1 problem solver with learning.

In section 3 the evaluation function leaming method and its illustration with a ser cover-
ing problem are presented. It is well known, that the PLA minimization problem, micro-
code optimization, data path all TANT network minimization problem [], factori-
zation, test minimization and many other logic synthesis problems can be reduced to the
set covering. Hence, the latter problem can be treated as a generic logic synthesis subrou-
tine. Several efficient algorithms for this problem have been created [4-
6,12,14,1822,23,34,49,64]. Section 4 presents the backtracking stopping leaming
method and illustrates it with a linear assignment problem that finds several applications
in VLSI layout, logic hesi i h, producti heduli i

g icati X ion, clustering,
psychometrics, and statistical inference [1,9,17,18,24,25,27,29,30,36,48,60,63]. It is
closely related to the traveling salesman problem [31]. Interestingly, the same problem
finds also applications to create general-purpose efficient heuristic learning schemes.
Section 5 illustrates a newly fq and more ive p of logic syn-
thesis: design of easily-testable EXOR/AND trees for mul iple-valued input i letely
specified logic functions {11,20,21,45]. The search problem here is to find the best
sequence of input variables for a Shannon-like expansion, one that minimizes the
circuit’s complexity.

2. MULT-I - THE MULTIPURPOSE MULTISTRATEGICAL COMBINA-
TORIAL PROBLEM-SOLVER WITH LEARNING

2.1. BASICIDEAS
Program MULT-II has been written in FORTRAN 77 and implemented on VAX

117750 as well as on Gould 9080. MULT-II uses a state-space tree search method that is
realized by a multipurpose, multiapplication subroutine: MULTCOM. It was used for
PLA imization, FSM sta [41,47,66], FSM two-dimensional minimiza-

tion [66], FSM state {32, FSM state and state
assignment [32], TANT network synthesis [46], negative gate network synthesis {42],
graph coloring, logic puzzles, board games and robot path planning [43,44).

MULTCOM realizes the design task by seeking to find a set of the solutions that
fulfill all problem conditions. It checks a large number of partial results and temporary
solutions in the tree search process until it finally proves the optimality of the solutions.
The state-space S for a particular problem solved by the MULT-II program is a set
which includes all the solutions for the problem. New states are created from previous
states by application of operators.

By assigning values to parameters the user of this method can experiment with
variants of problem description and create various search strategies for different tree
search methods to optimize the efficiency of the search. For example, in some cases the
search can essentiaily be limited by the use of the problem’s symmetry. Then, when the
user defines a symmetry parameter, the relation of the equivalency is checked on the

by a set of subroutine flags that are used to connect or di the respective subrou-
tines from the main tree-searching program. The subroutine with a flag taking values 0 <
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C in all of the nodes. Subsequently, all but one of the operators is removed from
each equivalence class. This method expedites, among others, covering problems.



During the realization of the search process in the state-space, a memory structure
termed solution tree, solution space, is used. The solution tree D = (NO, RS] contains
nodes of NO (which stands for the stages in the solution process) and arrows of RS. The
arrows are labeled by the descriptors of the operators. Each node contains a description
of a state-space state and some other search related infc ion, in parti i
of the operators to be applied. Descriptors are some simple data items and can be
created, manipulated and stored in nodes or removed from them. Operators traverse
from node 0 node what is equivalent to searching among the states of S. Each of the
solution tree's nodes is a vector of data structures. This vector’s coordinates are denoted
as follows: NC - node number, SD - node depth, PC - node number of the immediately
preceding node, OP - descriptor of the operator applied from PC to NC, F - node cost,
AS - description of the hereditary QS - partial solution, GS - set of descriptors
of available operators, NAS - actual length of list AS, NQS - actual length of list QS,
NGS - actual length of list GS. Additional coordinates can be defined when required.

The operator descriptor is denoted by OP, application of operator O with the
descriptor OP to node N of the tree is denoted by O(OP, N). A macro-operator is a
sequence of operators that can be applied ly without ing the ily
created nodes.

Prerequisite to formulation of the design probiem for the search model is to specify
the necessary i for the specified p in the initial node - the root of the
tree. The way in which the coordinates of the subsequent nodes are created from the
preceding nodes must be specified as well. This leads to the description of the generator
of the solution space (tree generator). i ditions and/or cost fi should
be formulated for most of the problems.

QS is the partial solution i.e, the portion of the solution that is incrementally grown
along the branch of the tree until the final solution is arrived at. A set of all possible
values of QS is a state-space of the probl Itis d that some relation RE ¢ S x
S of a partial order exists. Therefore, the state s € S symbolically describes the set of all
s’ € S such that s RE s’. The solution tree usuaily starts with QS(NVo) which is either the
minimal or the maximal element of S. The set GS(N) of descriptors denotes the set of all
operators that can be applied to the node N. The hereditary structure AS(N) denotes
some properties of the node N that it has inherited along the path from the root. The solu-
tion is a state of space that meets all the solution conditions. The cost function F is a
function that assigns the cost 10 each solution. The quality function QF can be defined as
the function of integer or real values pertinent to each node. If QS(N) is the solution,
then QF(N) = F(N). D(N) denotes a subtree with node N as a root. Often function QF(N)
is defined as a sum of function F(N) and a heuristic function h(N) : QF(N) = F(N) + h(N)
. h(N) evaluates the distance h(N) of node N from the best solution in D(N). F(N) in
such a case defines a partial cost of QS(N). One attempts to define 4 in such a way that it

is p from being g¢ d and backtracking results. The by-pass condiﬁonsAdo
not cause backtracking and the tree will continue to extend from node N. The following
cut-off conditions exist:

a)  bound condition - it is known (possibly from information created in node N) that
node N, exists (not yet constructed) such that F(V,) < F(N) and QS(V,) is a solu-
tion.

b)  depth limit condition - SD(N) is equal t0 the declared depth limit SD -

¢) dead position - no operators can be applied to N ie., GSMN) =2.

d)  restricting conditions - QS(N) does not fulfill certain restriction, i.e., no solution
can be found in D(N).

e)  solution conditions of the cus-off type - if QS(N) is a solution, then for each M €

DY), EM) > F(N) (or FQM) 2F(N)) and M may not be taken into account.
f)  other types of conditions formulated for some other type of mu—icdon.s speml 0

problems (these are user selected by setting flags for MULT-II communication).

The following relations between the operator descriptors (so called reltm'otu on
descriptors) can be described by the programmer to limit the search process: relation of
domination, relation of global equivalence, relation of local equivalence 43,44). When
all the solution conditions are met in a certain node N, the QS(N) is a solution o the
given problem. Then, the latter is added to the set of solutions and is eventually printed.
The value of B := F(N) is d. If one of the jons is of the cut-off type, the pro-
gram backtracks. Otherwise, the branch is expanded.

23. THEMULT-II STRUCTURE
The simplified strcture of the Problem-Solver of MULT-II is shown in Fig. 2.1
Except for the portion inside the dotted line gle, all the seg;

can be y
linked and modified to meet the design problem formulation and strategy description.

e

MULTCOM [e==2

\
g
<]

as close 1o h as possible (see [38] for general description and [39,43,44] for appli

in VLSI CAD problems). An optimal solution is a solution QS(N) = s € S such that it
does not exist s* € S where F(s) > F(s’). The problem can have more than one optimal
solution. Additional quality functions for operators can also be used.

2.2. THEMULT-II SEARCH STRATEGIES

A number of search strategies can be specified for the tree search procedure with
the quality functions. Beginning with the initial node, the information needed to produce
the solution tree can be divided into global information, that relates to the whole tree, and
local information. Local information in node N refers to subtree D(N). The user-
specified search strategies are also divided into a global search and a local search. The
selection of the strategy by the user is based on a set of Sirategy Describing Parameters
that can also be dynamically changed by the program during the search and learning pro-
cess. They set some values or connect some Sirategy Describing Subroutines.

The approach of MULT-II offers the following advantages:

- The quasi-optimal solution is quickly found and then, by backtracking, successive,
better solutions are found until the optimal solution is produced. This procedure
allows for the trade-off between the quality of the solution and speed of arriving at
it

- ‘The search in the state-space can be limited by including as many heuristics as
required. In general, a heuristic is any rule that directs the search and is described
in the form of a p d subroutine.

- The application of various quality fi
sible.

- By using macro-operators along with other properties, the strategies require less

memory than the comparable, well-known search strategies [38,59).
The search strategy is either selected from the universal strategies (Breadth-First,
Depth-First, Branch-And-Bound, Ordered-Search, Random) or it is created by the user’s
assigning of values to local strategy describing parameters and writing of the sections’
codes. In the B h-and-Bound strategy the y cost B is d which retains
the lowest cost of the solution node already found. Whenever a new node NC is
generated, its cost F(NC) is compared to the value of B. All the nodes whose cost exceed
the value of B will be cut off from the tree. In the Ordered-Search strategy the quality
funclion_Q(OP, NC) is defined to evaluate the cost of all the availabie descriptors of the
node being extended. These descriptors are applied by the subroutine realizing the
operators; in the order that corresponds to their, evaluated earlier, costs. This strategy, as
well as the Random one, can be combined with the Branch-and-Bound strategy.

The Strategy Describing Subroutines are outlined below. There are two types of
cond:ilicns for each node of the tree: by-pass and cut-off. If the cut-off condition (ie., the
predicate function defined on node N as an argument) is met in node N, the subtree 6(N)

cost fu and

is pos-
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Fig. 2.1. Soructure of the Problem-Solver in MULT-IL

MULTCOM is in charge of the giobal search which includes the selection of stra-
tegies, the arangement of the open-list of nodes [38] and the other lists as well as the
decision making facilities related to the cut-off branch, and the configuration of the
memory structure for the tree. The segments that realize the strategies of Breadth-First,
Depth-First, or Branch-And-Bound are built into MULTCOM. RANDOM1 and RAN-
DOM?2 are selectively linked for the random selection of the operator or the open node.
The role of the main subroutines linked to MULTCOM is as follows: GENER is respon-
sible for the local search that extends each node. GENER cuts off the nodes which will
not lead to the solution node when the description for the new node is created. GEN car-
ries out the task of creating nodes. MUSTO serves to find the indispensabie operators,
the operators that must be applied. This set is then substituted as the new value of coor-
dinate GS(N). MUSTNT deletes subordinate operators that would lead to worse solu-
tions or no solutions at ail. The set MUSTNT(N) is subtracted from set GS(N). EQUIV
cancels those nodes that are included in other nodes. FILTER checks whether the newly
created node meets the conditions. SOLNOD checks the solution condition. REAPNT is
used to avoid the repeated applications of op when the of op appli-
cations does not influence the solution. ORDER sorts the descriptors, Q calculates the

quality function for the d and F the cost of the nodes. The condi-
tions, sorting and selecting fi and strategy parameters, all together
describe some "personalized” solution tree searching method and strategy. The possibil-
ity of dynamic modification of flags and coefficients used in them is the basic principle of
learning in MULT-II. Itis presented in Fig. 2.2.

The Problem Solver in the top left comer is one from Fig. 2.1. Its strategy is specified by
a Strategy Vector - an ordered vector of numerical coefficients called Strategy Parame-
ters (in general real numbers, often zeros and ones or numbers from [0, 1)). Each value
of the Vector describes one of the strategies that can be realized by the Problem-Solver.

The sub-vectors of the Sysiem Vector (subsets of Strategy Parameters) are created by
four Learning Schemes:

1. Leaming Scheme # 1 - leaming the Operators Evaluation Function.

2. Leamning Scheme # 2 - learning the Tree Nodes Evaluation Function.

3. Leaming Scheme # 3 - learning the moment when to stop the searching.
4

Leaming Scheme # 4 - leaming the probabilities of calling various Strategy
Defining Subroutines.




'l'hcnsercansenheinilialvaluuofnllsmgyhmme:mandsomeohhcmcan-

Let us denote by N any node on this path, except the solution, and by NN one of its
on this path. Let O(N) be the operator transforming N to NN on the best

not be modified by leamning. The Strategy Vector Generator checks the of
Certain ine flags are ditionally disjoint. For instance, there can

branch from all the previously searched branches, and let Oi(N) stands for all other

g3

be three subroutines, SS1, §S2, and $S3, to perform sorting of g 1o
dveediﬂamtmezhodsmﬂcanpaﬁsoncﬁmuobeusdinam‘snode.S'umonly
one of them can be used at given time, selecting SS1 (flag for SS1 enabled) will disable
flags for SS2 and SS3. Let us observe, that the sum of probabilities for parameters $S1,
SSlandSSBdouno(havelobeequalone.sinceinanym.selecﬁonofmeofﬂmsub—
muﬁneﬂagsyiudinbkunoﬁhamﬁunmemp. In general, the Exclusion Condi-
lion:canbeofﬂwfmn:Si&SjorSk&SI&SI-> not Su & not Sv which means that if
ﬂagsSiandeorﬂagsSlz.SIMS/havebecnselecmddmﬂagsSumdSvmmlbedis-
abled.

Thcfourhmingschemmhavelheirloealmem«iammseuofpairs [ par-
tial vector sample, its cost ] or other similar data. The costs are provided by calculations
of some solution parameters, like cost function values, total solution times, solution cost
improvement times, sizes of the used memory. All these methods are "orthogonal” and

can be applied or her. For #1, 2, and 4, improper learning or
lack of its convergence cannot result in non-minimal solutions, but the optimal solution
can be delayed.

3. THE FIRST METHOD - LEARNING THE EVALUATION FUNCTION.
3.1. THE METHOD

Several studies lay the stress on the i of sels an priate Evalua-
tion Functions (Quality Fi while ing a tree [59,38]. This section considers
only Branch-And-Bound ics, or mixed ics, that combine the Branch-And-
Bound and Ordered-Search Strategies. This principle is used in Leaming Schemes # 1,2,
and 4,

Let the measure of the intelligence of the system be the number of nodes which
have to be generated to find the optimal solution. It is easy 10 observe that this number
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Fig. 22, Basic principle of leamning in MULT-IL

nds on how quickly the p will t_.he_ pprop! branch (it means one
dt.h?ftenninawswiﬂn.heoptimalsol\ltim)andthiswﬂlmmmdcpenclmnhegmdst:lec-
tion of i ions for and nodes. For instance, in MULT-II the qual-

ity function for operators canbedeﬁr:'ed in a form
Yafi=CT-F
=0

where FT = (fy, f3, ...f,) is & vector of partial quality functions and CT = (¢, c3, ...aCs)
is a vector of weight coefficients. For each new problem, or even particular set of data for
this problem, there is a question of how o select the vector CT. The program can
automatically leam CT while solving the given problem or a set of examples. The learn-
ing problem can be formulated as follows. On the basis of the already searched part of

P inN.
0 solve the formulated above problem we need to select such vector C7 that the
following set of i ities be satisfied:
' M [CT-FON) > CT - FON) @
or, after transformation
@ M CTFON)-FOMN) > 0. (32)

Such set is usually inconsistent, so the problem of learning is reformulated (o the

problem of selecting C” which satisfies the greatest possible number of inequalities from
the above set.
For il letus ider a two-d case (Fig. 3.1a).
f
2

a)

b)

/

4-5

Fig. 3.1. Feature vectors and differences for a two-dimensional space.

Let us assume that in some node there are 7 operators, for which the quality vec-
tors can be represented as in Fig. 3.1a. Let us also assume that after finding the next
solution the vector 4 is best. Using (3.2) we create then the difference vectors
(F(0)~F(0))) . We can observe that no vector C exists in Fig. 3.1b that would satisfy
the set of equations (3.2).

Let us, thereft the learning probl
such a vector C for which as many as passible of the inequalities from the set of equa-
tions (3.2) are satisfied. As it can be noticed, this p is equi to the p of
calculating such a hyperplane running across the coordinates system center, that as many
as possible of the differences (F(O(N)) ~ F(O;(N)) are located on one side of this hyper-
plane, and as few as possible on the other side. In the case of n-dimensional space this
problem is time consuming to solve, so we have implemented an approximate solution

according to {59]. A hyperplane will be considered optimal, when 'C7 - D; = max,
=]
where [C] = 1 and

in the ing manner: Select

F(O)-F(0)
"= TN -F )i 63
13 4 normauzea vector of differences.
The normalized vector
éD:
c=—2 G4
1 3D;i 1

i=l

is taken as a solution. Whenever new solution is found or when a backtrack occurs, the
new hwqmliﬁesmaddedmﬂwlnmingpmcedumdambamandmeumﬁng

Schw #1, 2, and/or 3 are called in order to update the values of respective vectors C,

the solution tree, and the infc thered from the p ly solved of
the same set, select such CT that if a subsequent search of the same tree were executed,
the program would directly extend the branch leading to the best of the solutions selected
until now, opening only those nodes, which are on the branch from the initial state of the
tree.
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using the above formulas.

An algorithm using the above principles is very fast and gives satisfactory results. Appli-
cation of this type of leaming increases the time (in the learning phase) by about 20% -
30 %, but reduces the tree size by about 15%- 20 %.




3.2. EXAMPLE OF APPLICATION. THE SET COVERING PROBLEM.

. This problem is widely encountered in logic design (among others, in PLA minimi-
zation [28], test minimization [28], multilevel design [34]). The covering problem is
represented in a form of k X n binary matrix. In addition, a cost is associated with each
ow. Vfl.llle 1atthe im:ersecliun of row r; and column ¢; means that row r; covers column
cj. .Thls can be described as: (r;, ¢;) € COV c R x C, or COV(r;, ¢;). A set of rows
which cover all the columns and have a minimal total cost should be found.

Problem formulation.
1. Given:
a) thesetR=(ry.r5,.,7x} (eachr;isarow in the table);
b) thesetC={cy,¢2,..c,} (cach c;isacolumn in the table);
¢) thecostsof rows f1(r;) ,j=1,..,k;
d)  the relation of covering columns by rows is COV ¢ Rx C.
2. Find:
SetSOL cR;

3. Which fulfills the condition:

(Vc;je O)(3r;e SOL)[COV (1, ).
4. And minimizes the cost function:

=¥ flr).
r & SOL
It follows from the above formulation that the state-space S = 2%, This means that SOL
< R. Hence, all the subsets of a set are being sought. Then the standard generator, called
T, that generates all the subsets of a set is selected.
The previously mentioned relation RE on the set S X S can be found for this
lem and used to reduce searching by applying using the appropriate search method. It
can be defined as follows: s; RE 5, <==> 55 ¢ 5,. Therefore, when a solution is found
a cut-off occurs in the respective branch.
For each element c; € C there exists an r; € SOL such that their relation COV is met,
_what means that the predicate COV(r;, ¢;) is fulfilled. In such a case, the cost function F
is the total sum of f1 costs of rows from the set SOL.
A tree search method and strategy for this problem will be defined below.
1) Initial node Ng:
(QS.GS, AS,P) := (@, (n€ R|COV(r,c1)). C, 0)
The first element of C is denoted by ¢, above.
2) Operator:
ON,r)={
QSANN) = QSMN) L (i}
AS(NN) = AS(N) - [c; € C|COV(ri.cp),
¢c; = the first element of AS(NN),
GS(NN) = {re€ R| COV(r,cp)
FONN) = FN) + fi(r)].
3) Solution condition (cut-off type):
1 (NN) = (AS(NN) = D).
4) The following code is declared in a Strategy Describing Subroutine called " Actions
on the Selected Node."
If ASN) ¢ { ¢; € C| @ 7 € GSQN) [COV (rix c)) 1) then GSQY) =0,
that means that the cut-off is done by clearing set GS(N) when the set of all the columns
covered by the available descriptors from GS(N) does not include the set AS(N) of
columns 1o be covered.

Quality Functions.
Serious advantages result from the introduction of that direct the order
in which the tree is ded. The introd of such fi will not only find the

optimal solution quicker but also speed up the proof of its optimality. This is due to more
i ication of the ','t‘;mpeny;mesemchislmeansivewhmthe
optimal solution is found sooner.

5) Quality function for nodes:

OF (NN) = F(NN) + h (VN), a5
where
h (NN) = CARD(AS(NN)) - CARD(GS(NN)) - K (3.6)
and
Y fi(r) - CARD{c; € AS(NN)| COV(rinc))}
L GS (NN . an
( T CARD{c;e AS(NN)| COV(ric)l)
& GS(NN)
Function h defined in this way is relatively easy to calculate. As proven in the experni-
ments, it yields an ion of the real di h of NN from the best solution.
It is calculated as an 1 inate of the node’s vector.
6) The quality function for operators is defined by the formula:
g™ (ri)y=cy fi(r)+ex f2(r)+es f3(n), (38)

where f, has been defined previously as the cost function of rows,
f2(ri)=CARD c;e AS(NN)| COV(r;. ;). (3.9)
frd= (3.10

7 :r) . CARDIr, | ¢; € AS(VN) & COV(riuc;) & T € GS(NN) & COV(r,, )
2(r) i

where n is a number of columns and ¢, ¢3, ¢3 are the arbitrarily selected weight
coefficients. Function f3 (r;) defines the "resultant usefulness factor of the row” r; in
n Let us assume that there exist k rows covering some column in the set
GS(NN). The usefulness factor of each of these rows with respect to this column is k.
‘When k = 1, the descriptor is indispensable (or with respect o Boolean minimization, the
ponding prime implicant is ial ). The res: fulness factor of the row is
the arithmetical average of the column usefulness factors of all the columns covered by it.
Then, an instruction is added in the Operator ine to sort the d in GS(NN)
according to the nonincreasing values of the quality function for descriptors ™.
7) Relations. Sections of code are also defined that check the global and local
quival and dominati i in i as well as indispensability of
descriptors [44,65].
Experimental Results.
It has been found that the application of each of the equival conditi d
diti or indispensabl ditions in the covering problem reduces the search space
by about 2 to 3 times. The joint application of all the conditions brings about a reduction
of approximately 50 to 200 times of the generated space. The influence of leaming
method on solution efficiency has been i igated. The putation time was
increased in the learming phase by 20% to 30%. The vector of coefficients obtained in
this learning was: C = [ -0.85, 025, -0.35]. This vector brings next 15% - 20% decrease
in the generated solution space size, as compared with the initial vector: C=1{-1,0, 0).

4. THE SECOND METHOD. LEARNING THE STOPPING MOMENT.

The stopping process can be explained using an impi curve” in a diagram
where the x-axis is a solution time expressed as a number of expanded nodes and the y-
axis is a value of the cost function of the best of the solutions found until then (Fig. 4.1).
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Fig. 4.1. Example of the dependency of the cost function on the number
of nodes (The Imp:

ot Curve).

a b e NC

Fig. 4.2. Comparison of improvement curves :a) without learning

quality function coefficients, b) with learning quality f unction

coefficients.
The solution process can be in this case terminated atter expanding 23 nodes, while the
further expansion will not bring any cost function improvements. A question can be thus
raised “can one construct a system that would learn (o predict the effects (or, specifically,
lack of effects) of the further solution space expansion 7", A positive answer to this ques-
tion would additionally improve the solution space method efficiency.
h to this problem will be proposed below. It takes the following

A new app
assumptions:
1. There exist combinatorial problems for which for all examples from some set of
data the improvement curve shapes are similar.
2.  There exists a istical dependency (proportionality) the number of
nodes which have to be expanded in order to find successive, bester solutions, i.e.,
ny "Ry “ns,... (SeeFig.4.1).
In order to establish this proportionality, a sufficiently large number of examples must be
tested. Also, it is ytoi certain ™ ization" that would make possi-
ble comparison of various improvement curves.




Let us introduce the concept of the dimension of the problem with the respect to the
i-th improvement, or i-th dimension for short as a number of nodes that must be expanded
to obtain the i-th cost function value improvement. In Fig. 4.1 the dimension with
respect 1o the first improvement is #, with respect 10 the second is n,, and so on. For the

given search strategy, the di qi a unique impr curve
for this Various probl can have seq; of di ions of various
lengths.
Solution of each ple by a computer creates some number of pairs
(i, nope) @.1)

In the discussed example the pairs (n;, n3), and (n3, 53) are created. Each pair is

reduced to a N, by both its by a factor of
Nin;. The following pairs are obtained
N
™7, @2

where N is a fixed coefficient. The sccond coordinate of each pair determines the stan-
dard number of nodes N,; that results from the i-th dimension and which also has 10 be
expanded in order to find the optimal solution. By disposing several improvement curves
for many les, one can calculate average bers of nodes N,; as
weighted averages, while the weight of each result N,; grows with the value of the i-th
dimension n;. It is based on the assumption that with an increase of example dimension
the results obtained from the example are more reliable ie., are characterized by a
smaller expected standard deviation. Hence,

5 &
. Z‘Nar‘i"'ii .Z:N"’"
Ni=8g—=nN-5— “3)
Xy Xny;
j=t j=t

where ; is a number of already solved examples that have the i-th dimension. The stan-
dard deviations of the obtained results are as follows:

% =2
ZWNoij—Noi)
o= j=l

T @4)
2L

J=l
In order to assure sufficiently high probability that the space expansion would be not ter-
minated before obtaining the optimal solution, a width of half-interval of confidence with
some coefficient is added to the calculated values of N,;:

Nima =No +m -+ a; @.5)

C'oefﬁcicm m=3 assures the probability of 99.7% assuming the normal probability den-
sity of the resuits. The Nimax d ines the i number of nodes -
calculated with respect to the i-th dimension - which should be expanded in order to find
the optimum solution.

The calculated values are applied as follows. Having found the first solution by

expanding n, nodes the maximum number of nodes n ,q, (already not the standard one)
is calculated,

Ninaa o ny
Rimaz = T @4.6)
Ifa bgtter solutions is not found after expansion of 71, mg nodes the system stops. How-
ever, if after expansion of 7, < 1y, nodes a better solution is found then the value of
N 2max is calculated according to the formula:

N ‘n
(kg 7 gy + K - ——z"Nx——l-)
¥ k) @n

where k, and k, determine number of examples which have been used to calculate the
values of Ny g and N,,,. The system beh after ing next solutions is based
on the same principles.

The method described above bypasses several difficulties related to the normaliza-
tion of several individual properties of the probl such as different numbers of
improvement curve steps, or various values of quality function decrements. It can be
observed that this method collaborates with the one to learn quality functions coefficients
from section 3 and gives better results when the other produces better results.

Fig. 4.2. presents schematically the effect that can be obtained by pplicati
of the both learning methods. Without learning, n, nodes should be expanded. By apply-
ing the learning method from this section one would need n, nodes while applying addi-
tionally the method from section 3 one would need only », nodes.

M2max =

4.1. EXAMPLE OF APPLICATION. THE LINEAR ASSIGNMENT PROBLEM.

This problem, similarly to the previous one, has several CAD applications includ-
ing VLSI chip placement and Finite State Machine assignment.

Problem Formulation.

Given is n machines and n workers and the productivity of the worker § on machine j is
denoted by w;;. The assignment of machines to workers is sought that maximizes the
total productivity of all workers. The assignment matrix W,., = [w;;] is given from
which n elements must be selected in such a way that any two of them are taken from a
different row and column and the sum of the elements is maximum. Since MULT-II
looks for a the problem is d as below.

Each object has n properties. The value of property x; determines the column
number from which the element from row i has been selected. In order to simplify the
program the elements of the matrix are selected in the following order: first an element
from row one is chosen, next an element from row two, and so on. In this case the opera-
tor is a number specifying only the second coordinate of the selected element w;;, and the
first coordinate is specified by the depth of the node in the tree. Secondly, the list AS(N)
of nodes specifying the state of the object in node N becomes in this case unnecessary,
while it would contain the set of non-selected rows, and this set is already specified by
the depth of the node in the tree. For instance, in such description, the solution
<3, 1, 2> for a 3 x 3 problem means that elements w3 w2, wa; have been selected
from matrix W. The description of the initial state is as follows:

Qs(0) = @,

GS(0) = set of numbers of all columns.

Operation of operator O(N, r;) can be described as follows:
QSMN)= QSM) U (7 ),

GS(NN)= GS(N) - {r; }.

The solution condition is GS(NN) = &.

The specification of the quality function values for operators is in this case obvi-
ous - they are the negated values of the respective elements w;; of the matrix. The value
of cost function for states is equal to the sum of negated costs of operators on the path
from the initial state to the given state. A heuristic quality function for nodes, that
specifies the minimal cost of the path from the given node to the solution is also useful. It
is defined as follows:

h =3 Wi min
i
where is over the lected rows, and w; ;, denotes the least ele-
ment of the i-th row among the elements from the non-selected columns.
a) b}
NC Ta
2 b < d 8- c d
600 -
7-
500 -
6-
400 - 5 -
300 - 4
3 -
200 -
2-
100 -
e 1-
n n
5 10 15 5 10 15

Fig. 4.3. Dependence of a) number of nodes and b) processing time on
the problem size for strategies: a - Breadth First, b - Depth First,
¢ - Branch-And-Bound, d- Ordered Search.

Experimental Results. )
The influence of the search strategy on the solution efficiency has been i gated. Fig.
4.3. presents the statistical dependency of the solution time and the number of nodes
expanded on the problem di for various ies. The Ordered-Search strategy
has been most efficient for this problem. It is due to the usage of a very accurate heuristic
function which p for cutting hes at small depth of the tree.

This problem is one for which the Stopping Learning Method gives good results,
because it is ized by a impi curve with sufficiently large number qf
steps. (For instance about 4-10 steps for Branch-And-Bound strategy and n < 14). Add:;
tionally, it was verified that about 30% of the solution tree was expanded "redundamly_
after finding the first optimal solution. Using the above method permitted to decrease this
part of tree by about 40%. For instance, when the entire space generated by the system
included, on average, 600 nodes and the optimal solution was found after 420 nodes, by
using this method it was sufficient to expand on 530 nodes.
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5, A COMPLETE EXAMPLE: SYNTHESIS OF EASILY TESTABLE MULTI-
VALUED INPUT EXOR/AND TREES FOR INCOMPLETELY SPECIFIED
LOGIC FUNCTIONS.

In this section we will present the method to learn the best Quality Function For
Nodes for a tree search algorithm that finds the optimum Mulﬁ-\‘l_alugd [np;t ‘(Eenen!xmg

substitution:
fAN=1006X X2 ax ) Y2 pxr2ox' 229X Y and in
the next stage ing the above expression to exor of products form.

5.2. The Concept of Generalized Shannon Expansion and Multi-Valued Input Gen-

Reed-Muller Tree (MGRMT). Such circuits are new g : l
Reed-Muller Forms. In the first part of this section the concept of MGRMs will be intro-
duced.

5.1. Multi-Valued Input Generalized Reed Muller Forms.

Reed-Muller forms for binary logic are ical sum of prod: of
positive (non-complemented) input variables. Two extensions of Reed-Muller (RM)
forms have been i igated for pletely specified Bool Fixed-polarity
Generalized Reed-Muller Forms (GRM) are of similar form but allow the inputs to the
products to be both positive and negative (complemented). Each variable has, however,
to stand in either positive or negative form, but not in both (13). Such forms are also
canonical what means that only one such form exists for every polarity of variables (there
are 2* such polarites for n binary inputs). When all restrictions on input variables polari-
ties are removed (each variable can be positive and negative in the same exclusive sum
of products expression) one gets the mixed polarity Exclusive Sum of Product (ESOP)

ion that is not a 1 form [20].
A multiple-valued input, two-valued output, i ly specified switching func-

lized Reed Muller Trees.
The well-kn h
expansion is as follows [13]:

for the case of Exclusive Sum of Product

SR KirennZn) = X [ oo Xi0reces) D i« ) yernXi=LnunXn) G.1)
By applying lawsa = 1 © aand a = 1 © 4 one gets: Sy XireXa) =
S X=0,00x0) © X [flxy,aX; = 0,....%) ® f(x1,Xi=los Xa)] (5.2)
and fXy,.eXivenrXa) =
FE k= lnk) © 5+ [ Xi=0,. %) B fG2yntimlon )] (53)
In the short form:
Fon £ @ fy = £ O (£ O] = £ ®% [ OF] (5.4)

Let us observe that these formulas have been applied by several authors for syn-
thesis of GRM forms for completely specified functions [61,11], but they can be used for

tion f (multiple-valued function, for short) is a mapping f(X;, X2, X
PyXPyx -+ Py B, where X; is a multiple-valued variable, P; = (0, 1, ... . pi - 1} is
a set of truth values that this variable may assume, and B =(0,1,-} (-denotesadon’t
care value). This is a generalization of an ordinary n-input switching function f: B* —
B.
Definition 5.1, For any subset S < Pi x;‘* is a literal of X; representing the function
such that
1ifX;€S;
X5 =4,
4 {0 ifX; e S;.

5, will be called a polarity of literal X;.

Definition 5.2. A product of literals, X,** X, ... X5, is referred to as a product term
(also called term or product for short). A sum of products is denoted as a (multi-valued
input) sum-of-products expression (SOPE).

Switching ions with maultipie-valued inputs, t fued outputs, find several
applications in logic design, pattern recognition, and other areas. In logic design, they are
primarily used for the minimization of PLAs that have 2-bit decoders on the inputs. A
Programmable Logic Array (PLA) with r-bit decoders directly realizes a SOPE of a 2'-
valued input, two-valued output, function [54-57). Such decoders can be also used in any
other realization of the logic with multi-valued inputs, like ESOPs [45] and their
simplified form is used in the "fixed-polarity” Multi-Valued Input Generalized Reed-
Muller Trees (MGRMTS) that will be presented below.

In the case of binary-input logic, each variable from a GRM form can have one of
two possible polarities, 0 or 1. Let us observe that if two polarities were available for
even a single variable, then the expression would be not canonical, for instance x and
1 ® x would represent two different for the same function f(x) = x. Ina logic
with p-valued inputs one has p values for which literals with arbitrary p—1 polarities
%%, %", x"7, +++ , x' can be taken, for instance by removing x? one gets the following
allowed literals: x°, x* , x> , x*,..., xP™', It can be proven that for GRM expansion one
can take any p-1 values that form an orthogonal polarity matrix. For instance for p=4
one can have the following set of allowed literals: (X2, X%'3, X°®}, which is described

by a polarity matrix
111
110}
1011

Some examples of such sets of allowed literals for a 4-valued input variable X are:
(X012, X083 x1B) (x13 B, x3), (X2, X%, X2}, (X, X2, X'2). Let us observe
that a complete set of allowed polarities can be obtained from other ones by complement-
ing and exoring rows of the polarity matrix. All such forms have very good testability
properties (50], ially the form corresponding to the last set from the above example
leads to realizations that have a very simple decoder (a single OR gate). It is also easy
for the test generation (using an adaplation of the method from [50}), and minimizes the
total layout area.

Definition 5.3. The set of allowed polarities for a p-valued variable X is a set with p—1
elements whose corresponding polarity matrix is orthogonal. Allowed literal is a literal
with allowed polarity.

Definition 5.4. By a Mulriple-Valued Input Generalized Reed-Muller Form (MGRM) one
understands an exclusive sum of products in which all literals are allowed.

This is a generalization of the concept of a GRM form, where each variable can be com-
p or not p d, but it cannot stand in both forms. It results from the
above definitions that the MGRM class is properly included in the ESOP class. The con-
cept of the MGRM has not been introduced in the literature on the subject yet. The
introduced above concepts and definitions will be now illustrated with an example.
Example S5.1. Assuming 4-valued input variables X and Y, the expression:
FEHY)=1OXM2 Y2 X yB @ x'P y2 X ¥'® is an ESOP but it is not a
MGRM form because there exists the variable X that has four different polarities, while
only three polarities are allowed for it. The equivalent MGRM can be obtained by the

ty specified f as well.
ON(f) is a set of true cubes of function f (cubes for which f = 1). OFF(f) is a set of
false cubes of function f (cubes for which f = 0). All other input values are don’t cares.
Let us now denote:

ON(fp)=ON(f) "%, ON(f,)=ON(f)nx, (5.5)
OFF (f;)=OFF(fyX, OFF(f,)=0FF(f)nx, (5.6)
In general, for multi-valued input logic:
ON(fxs) = ON(f) N X5,  OFF(fxs) = OFF(f) n X", .7
Part of equation (5.4) can be now rewritten to the form:
= [ON(N),OFF ()] = [ON(f5).OFF (f5) ] ® x;-[ON(f,®f).OFF (f,®f)] (5.8)

where expressions ON(f,, ® f5;) . and OFF(f, © f.) are calculated as it is described
in section 5.3. Similarly other parts of (5.4) can be rewritten. © means joining of arrays
of cubes (of exor types); there is no cube calculus operation executed by this symbol.

Assuming any allowed polarities, equation (5.4) can be generalized for the
multiple-valued input logic. For instance, for the selected by us polarities of 4-valued
variables, the expansion is:

fefaon ®a' (fun @ fou) D aB (fun ® fy) @0 (fun B fma)  (59)

The counterpart of equation (5.8) for equation (5.9) can be also formulated in an analo-
gous way. Fora pletely specified ion and a given of expansion vari-
ables there exists exactly one ical) f: ized expression (tree) created by this
expansion. Such a tree will be called a Multi-Valued Input Generalized Reed Muller
Tree (MGRMT). In the case of i y speci jons the tree is not canonical.
The MGRMT synthesis task is to select the order of expansion variables that minimizes
the complexity of this tree. By flartening the MGRMT one gets a MGRM form. Flatten-
ing is done by repeated application of the law: a(b © c) = ab @ ac.

5.3. Search for an Optimum MGRMT.

Below we will present the program GERMANISM-MV (GEneralized Reed Muller

And Not y Specified function Minimizer for Multi-Valued logic) that finds a

MGRMT. GERMANISM-MV starts from the arrays ON and OFF of disjoint cubes of

function f. Such cubes are created using program DISJOINT {15,16]. GERMANISM-

MYV uses subroutine EXPAND( ON(f) ; OFF(f) ; X; ; POLARITY) to find expansion with

respect 10 a single multi-valued input variable. Program EXPAND expands f = [ ON(f) .

OFF(f) 1 for variable X; assuming polarity POLARITY of this variable. For

simplification we will present here only the binary case. We will denote: g, = f;, @ f3.

The symbol # means the non-disjoint sharp operation {14]. By type 1/0 minterm we

understand a situation when there is a 1 (true minterm) in f; and a 0 (false minterm) in f;

that are adjacent with respect to variable x. Similarly a 1/- cube is a cube where all

respective minterms in f; are true and all minterms in f; are don’t cares.

EXPAND( ON(P) ; OFF(0) ; X; ; POLARITY).

1. From ON(f) and OFF(f) calculate the arrays: ON( fy), OFF( fi)» ON(fy), and
OFF(f;)-

2. Calculate the following arrays of cubes: S1= ON(f;) L OFF(f), $2= ON(fy) v
ON(f), $3 = ON(fy) N OFF(f,,), $4 = ON(f) N ON(f,,), S5 = OFF(f;) N
ON(f,), S6 = OFF(f;) r OFF(f,), S7 = ON(f) # $1, S8 = OFF(f;) # 81,89 =
ON(f,,) # 82, S10 = OFF(f,,) # S2.

Comment. The meaning of the sets is: 83 =1/0,$4 = 1/1,85=0/1, $6 = 0/0, 87 =
1/-, 88 =0/-, §9 = /1,510 = /0.

3. Processing of 1/1 type cubes.

ON( f5) = ON(f) ® § 37, ON(f,) := ON(£, ) @ 53, ON(g,,) := ON(g,,) ® §3.

4. Processing of 011 type cubes.

ON(f;) = ONUZ) @ §47, ON(f, ) 1= ON(f;, ) @ S4,, OFF(g,,) 1= OFF(g,) © 4.




Processing of 1/0 type cubes.
SO;'-‘F();;) = OFF(f) ® § 55, OFF(f,)) := OFF(f,) ® §5,, ON(g, ) := ON(g,) ®
Processing of 0/0 type cubes.
S(;FF(/:) = OFF(fy) ® 56, OFF(f,) := OFF(f,) ® §6,, OFF(s, ) := OFF(g,,) ®

Processing of 1/- type cubes.

ON(f) := ON(f;) @ S 75, ON(f,,) = ON(f,) @ §7,,, OFF(g, ) := OFF(g, ) ® S7.
(as in 1/1 cubes - $4). * * ® * &) e ’
Processing of 01- type cubes.

OFF(f;) := OFF(f;) ® § 87, OFF(f,)) := OFF(f,) ® §8, , OFF(g, ) := OFF(z, ) ®
S$8. (as in 0/- cubes - S6). ) ® * " & ®
Processing of -/1 type cubes.

Ob{(f;) =ON(£) ® §9;, ON(f, ) := ON(f,) @ §9,, OFF(g, ) := OFF(g,) ® S9.
(as in 1/- cubes - §7).

Processing of -i0 type cubes.

OFF(£,) := OFF(f;) ® $ 10;, OFF(,) := OFF(£,) ® § 10, . OFF(s, ) := OFF
®S10. (asin - cubes - 58). " N r OFF(@.) = OFF(g:)

I ON(L) = ¢, assume £ = 0. If OFF(f3) = ¢, assume fr

assume f,, =0, If OFF(f, ) ix L HONG) = 0.
¢ /z; = 0. %) =6, assume £, = 1. If ON(g, ) = ¢, assume g, = 0, If
OFF(g,) = ¢, assume g, m 1. " b &

IfPOLARITY = 1 then
begin
ON( := ON(£;) ® x; - ON(g,.);
OFF(f) := OFF(f;) © x, - OFF(g,)
end

else
begin

ON(f) := ON(,) ® x; - ON(g,.);
OFF(D) := OFF(£,) @ x; - OFF(g,,)
end;

If ON(E) = ¢ for any function fur S 8n

then substitute the logic 0 in the respective place.

If OFF(f) = ¢ for any function £, ., 8

then substitute the logic 1 in the respective place.
Simplify the expressions for ON(f) and OFF(f) on the wp level using basic

Boolean laws.
End

Procedure EXPAND retrns an expression of f that is either a pair of cube arrays
[ON(f), OFF(f)] or a simplified expression that does not need further processing.

Similarly one can define procedure EXPAND for multi-valued input variable X;
and the list of sets of allowed polarities as a value of POLARITY. In our case the vari-
ables are 4-valued and the set of allowed polarities is (13,23,123)}, which in this particu-
lar case is a single value of the variable POLARITY.

The program GERMANISM is a tree search program which op on fi f
represented in the form of a tree (a deeply parenthesised list). Such list is a value of
coordinate QS(N). The leaves of this tree are either non-expandable (constant 1, literals
and simplified functions f7) or expandable (pairs of sets [ ON(f") , OFF(f7) ] for respec-
tive functions). An operator consists in applying expansion of QS(N) with respect to X;.
When an expansion with respect to variable X; is being performed, all the expandable

b-expressions (leaves) are . When there are no more expandable leaves the
MGRMT is complete, the cost of the solution F(N) is calculated, the solution (if better) is
obtained, and backtrack in the tree search occurs. For each partially expanded MGRMT
tree (each N of the search tree) two functions are calculated, cost function F(N) that cal-
culates the cost of the already constructed part of the circuit, and the leamning-based
Quality Function for Nodes QF(N), that evaluates heuristically nodes of the search tree.
‘Whenever the partial cost F(N) exceeds the value of B, the respective branch of the
search tree is cut-off.

The Shannon-expansion based method shown here is very general and also finds
applications to MGRMs, ESOPs, and the corresponding trees as well as Directed Acyclic
Graphs (DAGs), for i pl specified functi as arrays of ON and
OFF cubes. Separate variants for both binary and multi-valued input logic functions have
been created. The algori " heuristics are the selection of the variable and
of its polarities. Either a single variable and its polarities are chosen for the entire func-
tion (the MGRMs and respective multi-level networks), or in each “subtree” indepen-
dently (the ESOPs and respective trees and DAGs).

All the above methods give “optimal results for functions that are not sparse. For
instance, f(x), X, X3) = X X3 X3 @ x; x5 %3 is an optimal ESOP for function
f(x1, X2, X3) = X; X3 X3+ X X3 x3 but the “minimal® ESOP tree is: f(x), x5, x9) =
X3%3 ©x1(x30x;), which  after  flattening  gives: f(xy, xa, x3)
X2 X3 ®xy x3 @ x) x5, This function is an example of the sparse function, one which
has few minterms having larger Hamming distance between them. Special methods of
preprocessing of such functions have to be used [11,21].

10.
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5.4. Learning the Quality Function for Nodes.
The QF(N) function is of the form:

QF (N) =
) [c) cost(fym)+ + cafcost(fon @ fyms) + cost(fon D fym) | + ¢ cost(fan @ foon)]
EXPN

(5.10)

where:
EXPN is a set of all expandable leaves f7 in QS(N). 7 = f7 012, f" a3, f o f at®.
¢, are coefficients for learning, and

0 if for=0
cost(fg) =41 if for=1
cost HON(f)) + cost HOFF (fy1)) elsewhere

(5.11)

where t =012, 13, 23, 123.
In order to choose variable X; in such a way that X; has the least minimal number
of sub-trees, the method similar to one from [10] is used that has been modified to make
leaming possible.
Definition 5.5. Fox each variable X;, we define
{1+ \AS~D)1 X', is a product, I ¢ P,
)=

jus;| if no literal of X, is a product 612

where |S| represents the number of elements in S and the union is taken over all products.
If X; does not appear in a product then S; = P; for that product.

Definition 5.6. The delta function on X;, 8(X;), is given by

1 fLX)#p:
5(x;) ={

0 otherwise. 6.13)

Definition 5.7. The branch function is defined by &(X;) = L(X;) + 8(X,).
Definition 5.8. An n-tuple (a,, ... , a,) where 0 < a; < p; - 1, is called an n-term of func-
tion fiff f(ay, ... ,@x) = 1.
Definition 5.9. Foreachi, 1 Si<nandeachj,0<j<p; - 1, freq(i, j) is defined to be the
number of occurences of n-terms with i-th coordinate that are equal to the value of j.

The cost] function for both ON and OFF cube arrays is:

cost Warray,X;) = oy L(X;) + 0 8(X,) + 03 ¥X) + 0 LX) + a5 w(X;)  (5.14)

where:
WX;) is 1 if X; is a product (cube of array) with the fewest number of literals, or 0
otherwise.

{(X.) is the number of products in which X; appears.
W(X;) is 1 if freq(i, j) is the maximum among all freq(i’, ') for all i*, ;.
0 are learning coefficients.

6. CONCLUSION

Three new variants of the evaluation function coefficient learning method have
been formulated and implemented. The method was applied to several new problems
and for most of them gave practically useful results. A new Stopping Leaming Method
has also been proposed and found useful for a class of applications. We plan to use
leaming methods for more logic is and CAD icati those prob-
lems for which there is no human problem solving experience and proven heuristics.
Such problems include the design of various ization of the G lized Reed
Muller Forms for Multi-valued Logic [11,13,20,21,45] and spectral transform based logic
synthesis [16), since the rules and heuristics applied in them are often counter-intuitive. It
would be then interesting to see whether some good sets of operators and rules can be
learned ically. The p d methods are especially useful when many similar
problems are solved in a sequence, for instance, several calls to a Boolean minimizer dur-
ing the state assignment {32], or to the linear assignment subroutine during VLSI place-
ment [1].

In the future we consider to use various Neural Network routines in MULT-II. In
the new variant we work on the development of leaming process in a dedicated Learning
Co-processor - a Motorola DSP board that will work in parallel with the main tree-

hi Th di ding small icati heads, it will not

be any spered degradation in learning phases.
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