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ABSTRACT

A new concept of a mixed-radix multiple-valued input
exclusive sum of products (MRESP) is presented and some pos-
sible circuit realizations for the new concept are discussed. The
algorithm starts from a Boolean function and generates an
approximate MRESP form and the appropriate multi-output cir-
cuit. Such circuits can have smaller complexity than both the
EXOR forms with mixed polarity, the PLAs with decoders, and
the networks with two-variable function generators. They are
also easily testable.

1. INTRODUCTION

There has been a growing interest in recent years regarding the design
of logic circuits using EXOR gates. Particular interest is in the minimization
of the Generalized Reed-Muller Forms (GRM) with fixed polarity of vari-
ables or EXOR forms with mixed polarity of variables [4,22,23,25,51,57,30].
Functions realized by such circuits can have fewer gates, fewer connections,
and take up less area in the VLSI realization {4,22]. More importantly, such
circuits are easily testable. They are also used in self-testing circuits
[2.4,21,25,35,41,42,45,49,50,56). Besslich writes [4] :

"secondly, the testability of circuits is significantly improved [49]. The gains from this

second advantage may even exceed possibie disadvantages in such cases where the EXOR

realization is more costly than the equivalent vertex (sum of product) form. Applications
have so far not become very popular because of the practical difficulties in the design pro-
cedure”.
Circuits of this type find applications in linear machines, arithmetic and com-
munication circuits, encrypting schemes, coding schemes for error control
and synchronization, sequence generation for process identification, system
testing, etc.

The problem of the minimization of such circuits is very important but
it was traditionally treated as extremely difficult. Since optimal solutions can
be found only for functions with not more than § variables [43], the interest is
in approximate solutions. Few authors [4,22,51] have implemented com-
puter programs. The paper [30] presents a new and efficient algorithm for
mixed polarity EXOR forms and the corresponding program. The algorithm
from [30] will be improved here, and also extended for the case of the logic
with multiple-valued inputs that generalizes the classical Boolean logic and
finds many important applications in logic design
[8,12,13,17,18,33,37,38,39,44,52-55,59-65]. We assume that the number of
truth values for each variable can be different.

‘We present a solution to a problem here that has not yet been formu-
lated and solved in the literature: mixed-radix minimization of multiple-
output, multiple-valued, incompletely specified functions. The only paper
that relates to multiple-valued PLA-like logic realization with OR-plane ele-
ments that generalize exors is [13]. The difference of our approach is, how-
ever, that we use normal EXOR gates not modsums, that the output in our
approach is binary, the function is incompletely specified and multi-output,
and that we give a constructive algorithm to find a solution.

This paper describes an approximate method that yields especially good
results for the minimization of strongly unspecified multi-output logic func-
tions with multiple-valued inputs and binary-valued outputs. Such circuits
can have smaller complexity than both the mixed polarity EXOR forms [30],
PLA with decoders from [61], and networks with two variable function gen-
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erators from [64]. The most important advantage to this method is that it can
produce circuits that are superior (in terms of speed or area) to those obtained
using other methods for the logic with multiple-valued inputs and are also
very easily testable. Although the method in question can be applied to any
type of such a function and each variable can have an arbitrary number of
logic values, an example of the method wsing 4-valued inputs will be
presented [61,64]. This variant finds, among others, applications in the
minimization of PLAs in which pairs of inputs are implemented via 2-by-4
decoders (2 inputs, 4 outputs).

2. BOOLEAN LOGIC WITH MULTIPLE-VALUED INPUTS

A multiple-valued input, two-valued output, incompletely specified
switching function f ( multiple-valued function, for short) is a mapping
f(X,,X5, --+ ,X,): PyXP,Xx -+ P, — B, where X; is a multiple-valued
variable, P; = {0, 1, ..., p; - 1) is a set of truth values that this variable may
assume, and B= (0, 1, -} ( - denotes a don’t care value). This is a generali-
zation of an ordinary n-input switching function f: B" — B.

Definition 1. For any subset S; < P;, X,-s’ is a literal of X; representing the
function such that

1 ifX; €§;
‘={0 ifX; 5.

Definition 2. A product of literals, X ,s‘ X zs, X,S', is referred to as a pro-
duct term (also called term or product for short). A product term that
includes literals for all function variables X, X, ..., X,, is called a full term.
A sum of products is denoted as a sum-of-products expression (SOPE) while
a product of sums is called a product-of-sums expression (POSE). An EXOR
of products will be called a Mixed-Radix Multiple-Valued Exclusive Sum of
Produts Form ( MRESP for short ).

Switching functions with multiple-valued inputs, two-valued outputs,
find several applications in logic design, pattern recognition, and other areas.
In logic design, they are primarily used for the minimization of PLAs that
have 2-bit decoders on the inputs. A Programmable Logic Array (PLA) with
1-bit decoders directly realizes a SOPE of a 2" -valued input, two-valued out-
put, function [59,60,61]. An EXOR-based PLA, is a PLA in which EXOR
gates replace OR gates in the OR plane. An EXOR-based Programmable
Logic Array (EXPLA) with r-bit decoders directly realizes a MRESP of a 27 -
valued input, two-valued output, function [59,60,61].

X;

3. DEFINITIONS AND BASIC PROPERTIES

Any multiple-output function can be repr d and mini dasa
function with a single two-valued output. Let us consider a Boolean function
F with multiple output, that is, F(X y, ..., Xy_)) = (f g, . » fm_1). We define a
single-output switching function F on n variables where variables X, ...,
X,_; are multiple-valued and the variable X, takes the values {0, ..., m—1}.
FXy, ..., Xp1, X,) = Fx (X4, ..., X,_;) where F;(X;, ..., X,_,) denotes the
i-th projection of F(X,, ..., X,_;), that is, f;. We will, therefore, consider,
henceforth, only single-output switching functions and n will denote the
number of input variables.

Example 1. Given is a 3-input 2-output binary function F(a, b, ¢) = (fy, f1)
with binary inputs from Fig. 1a. This function is described by an array of dis-
joint ON-cubes from Fig. 1b. After transforming this array to the ON-cubes
array of 4-input function F(a, b, ¢, X) with 2-valued input X, the array is as in
Fig. 1c, see also a Karnaugh map from Fig. 1d. As the result of the minimiza-
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tion of function F(a, b, ¢, X), the MRESP is F =a'b' @ c'b'X' @ ¢'X°=
ab @ cbX' @ cX° (Fig. le). Substituting X = 0 to this solution, we obtain
function f(a, b, ¢) = ab @ c. Substimting X = 1 we obtain f ,(a, b,c) =
ab @ bc (Fig. 1f). The corresponding circuit is presented in Fig. 1g.
Another solution is F(a, b, ¢, X) = abf @ bcX® @ abc _(Fig. 1h), which,
after separation to single functions, is f o(a, b, ¢) = abZ @ bc @ abc, f ,(a, b,
¢) = abc @ abc. The corresponding circuit is in Fig. 1i. As we see, a beuer
solution is obtained when both the number of terms and the number of literals
are minimized.
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Fig. 1

A switching function with multiple-valued inputs is uniquely deter-
mined by its truth table, or by an expression given in SOPE or POSE. A
multiple-valued input, two-valued output, fupction will be simply called a
function from now Any literal sof the form X; ' is identically equal 1. Hence,
we often write X ' X Although our method can be applied to a
multiple-valued input funcuon thh any number of input values, we will con-
centrate on 4-valued examples from nowonas P, =P= (0, 1,2, 3}.

Definition 3. A map of an n-variable, p-valued input, two-valued output func-
tion consists of p" cells. Cells that contain a 1 will be called true minterms
(1-cells) while cells that contain an 0 will be called false minterms (0-cells of
the map).

The maps that we will use in this paper generalize the concept of the Kar-
naugh maps for the case of multiple-valued input functions. When our
method is used for a completely specified function it uses an array ON of
arbitrary disjoint cubes (product terms, ON-cubes, cubes of minterms).
These can be minterms, full terms, or any disjoint product implicants [44]. In
the case of an incompletely specified function the function is represented as
the array ON of disjoint ON-cubes and the array DC of disjoint DC-cubes
(DC-cubes are cubes of don’t cares).

Example 2. Given is a 2-valued input, single 2-valued output function f(a, b,
¢, d), presented in the Kamaugh map (K-map) shown in Fig. 2a. Using clas-
sical approach to Boolean function minimization (Fig. 2b), the SOPE from
Fig. 2c is found.

Example 3. Fig. 3a shows a four-valued input, two-valued output function.
This function corresponds to the function from the previous example.
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Variables a and b have been paired to a 4-valued variable X and variables ¢
and d to a 4-valued variable Y. The encoding of the variables’ values is as
follows: 00 - 0, 01 - 1, 10 - 2, 11 - 3. _Therefore, ab is the value 0 of variable
X, ab is the value 1 of variable X, ab is the value 2 of variable X, and ab is
the value 3 of variable X. Similarly, the values are assigned for 4-valued
variable Y as seen in Fig. 3a. Using any method of mult.lple-valued input
function minimization, an expression: f = X" ¥'2 + X' ¥® is found whose
SOPE circuit realization is shown in Fig. 3b.
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4. MULTIPLE-VALUED INPUT MIXED-RADIX EXCLUSIVE SUM
FORMS

Let A, B, C denote any values of multiple-valued input literals, or any
functions on them. The following operations hold for multiple-valued input
algebra:

1.  Associative laws:
1A. A®(BeC)=(A®B)®C 1B. A(BC)=(AB)C

2. Distributivelaw: A(B@®C)= AB®AC
3. Commutative laws: 3A. A®B=BOA
4. Identiies: 44. A®O=A 4B. X, @ 1=X,

38, AB=BA

B=S 4c. A0=0
S, -8, -5)

4D. A®A=0 4E X ex% =x 5 VVE

P,-s, P,

ar. x ex T ox a1
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6. x xS ex" xS - x e x”

4H. if§; DR;and§; N\R; = ¢
then

XX @XM x < x5 VN VN g x SR xR
4l. if§; DR; and §; D R; then

x"x e x x " =x""x%e

_ st, st,—k, ® X‘_S.—R. Xik'

Definition 4. The degree of a term is the number of literals in it that are not
identically equal to 1.
For instance the degree of X2 Y is two. The degree of X* ¥° is two in
three-valued algebra, but it is one in a two-valued algebra, since X ¥° =
17°=v°
Definition 5. The distance of two cubes is the number of variables for which
the corresponding literals have disjoint sets of truth values (in other words -
the number of variables for which the sets §; and R; are disjoint ).
For instance, the distance of cubes X”'YZ'2 and X'?¥'2"? in the four-
valued algebra is one, since sets {0, 1} and (1, 2} of variable X are non-
disjoint, so as the sets {1, 2, 3} and {1, 3} of variable Z. The sets {0, 2} and
{1} of variable Y are disjoint.

Our primary goal of MRESP synthesis is to minimize the number of
terms (inputs to EXOR gates). For the circuit with the minimum number of
terms our secondary goal is to minimize the total number of inputs. Therefore
the cost function C 10 be minimized is:

R o SR

x0T

X, ' X;

i

C=NT+ M
NI,

where:

- NT is the total number of terms in the solution,

- NI is the total number of literals in the solution,

- NI, is the total number of the literals in the initial function.

In addition, the cost function C1 for folded realizations of EXPLA or for
standard-cell realizations is:

NI'1
NI 1,

Cl1=NT +
(L
where:
- NI'1 is the total number of input wires to AND and EXOR gates in the solu-
tion,
- NI, is the total number of input wires to AND and EXOR gates in the
initial function.
For instance, literal X°'2 as an input to an AND gate requires a single wire for
the 2-by-4 decoder realization of logic with 4-valued inputs. X" is realized as
x®2x% 11, therefore, requires two wires. Similarly X° = X°12 x 013 x 02
requires three wires.

The multiple-valued mixed-radix MRESPs that are discussed here, like
RM forms and GRM forms, also have very good testability properties [58].
Tests are function independent and can easily be created from standard tests
for classical Reed Muller forms [49]. No systematic study however done by
other authors, similar to that of [49], [56] and [58], is known to us.

5. THE MULTIPLE-VALUED XLINK OPERATION.

5.1. Primary xlinking.

Basic operation of our system is the operation of xlinking that general-
izes several operations known from previous papers.

Let us first observe that any two minterms m1 and m2 in a m-valued
map can be linked by a chain of groups, where

each group includes two adjacent map cells ( adjacent are cells of dis-
tance 1),

the first group includes m1, the last group includes m2,

any two subsequent groups of the chain include a single common min-
term.

It can easily be proven that the EXOR of minterms m1 and m2 is equal
to the EXOR of all the groups from the chain. Figure 4 is a map of three 3-
valued variables. It shows an example of a chain from minterm 000 to min-
term 222. Let us observe that there are usually many such chains from m1 to
m?2 (there are d ! of them, where d is the distance of m1 and m2).
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Fig. 4.

The first principle of our method to minimize MRESP forms is based
on the idea that any two minterms can be expanded into an EXOR sum of one
or more terms containing fewer literals.

The chaining operation expands the well-known Boolean rules of merg-
ing and exclusion used in the Quine-McCluskey, or other, logic design algo-
rithms. It finds one of the shortest paths between two nodes of a multiple
valued hypercube. The number of generated terms equals the distance of
these nodes.

We will give a systematic procedure for finding xlinks of full terms
below. The application of this procedure will be called xlinking (pronounced
crosslinking). The result of the procedure will be called the xlink (crosslink)
of the two original full terms. The full terms and the product terms are
represented in the computer in the positional notation that allows for both 2-
valued and m-valued minimization [61]. It can be easily verified that the
xlinking can be found if the truth value sets for each variable are either dis-
joint or equal.

To find the xlink of a galr of two full terms, for example
A" B°C*D2E" and A2B2C*D?E™, in a 4-valued function, we write
them vertically like this:

Aﬂl BO CODZEIS

A2B2C2p2E®

41

Each time when the polarities of the literal are disjoint from full term to full
term in the pair it is denoted by an arrow. Each arrow will give rise to one
term of the xlink. Let us now consider each arrow separately. The above ini-
tial pair of full terms can then be expanded to three second order pairs, for
variables A, B, and C respectively, as shown below.

For variable A, the term A2 B2 C2 D2 E™ is created as follows:
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For variable C, the term A B® €% D2 E' s created as follows:

Under each pair of literals of disjoint sets of polarities under consideration (A
in the first pair, B in the second, C in the third pair), we write the multiple-
valued literal, with the set of truth values being the sum of the respective sets
from the literals of the cubes. To create the result of xlink for a second order
pair, we copy the part of the term to the left of the dash from the top full
term. The part to the right of the dash is copied from the bottom full
term as shown. The xlink of the initial pair of full terms is an EXOR of
xlink terms of the second order pairs for each variable of different polarities.
Therefore
AYB°CD2E" @ AZBCIDEY = A% DY §A"B2CDED @
AYBoC2p2p13

This procedure can easily be further extended for any two terms in

xlinking. It can easily be checked that primary xlink is not executable if at
least one of the variables with different sets includes overlapping sets. For
instance in

XOI Y13 201
XB YOl ZOI

Variable Y has different values {1, 3} and (0, 1} that are overlapping, i.e. {1,
3} M (0, 1} = {1}. Therefore, xlink of X* ¥'* Z* and X* ¥* z is impos-
sible.

Now we are able to formulate the definition of primary xlinking.
Definition 6. Let Cg =X, ... X,™ and Cz =X,™ . X,™ « C; be two cubes
in which for each j, j = 1, ..., n it holds: S;=R;jor§; R;=¢. LetX;,i=
1, ..., r be the variables for which Sj' N Rh =¢. Let X,_, k=1,..,n-rbethe
variables for which §, L =R, .

The primary xlink of cubes Cs and Cy, is defined by the following for-

wl}gich for eyery two correspondingly different literals for the same variable: s
X, and X, * the sets §; and S, are disjoint. For example, terms x'y"z®»
and X2 Y2 Z'® of function of 4-valued variables X, Y, Z, V can be xlinked
(in other words are xlinkable terms or xlinkable cubes), since

’ S; S, S, UR., R, R, BT 5

CS Ce = X ]l__'X. In'-lX. ki J‘X~ Jm__'X. Jr X 03
O @ [ J1 Jic Ji Jin1 Jr )(H L )]
- k=1
o Properties of primary xlinking.

-forX: (1)  (2,3) =¢. 1. Cubes Cs and Cy are of the same degree.

-forY: {0,1} ~ (2,3) = ¢.
-forZ: (1,3} = (1,3).
- for V: the truth values {0, 1, 2, 3} are the same.

Xlink of X' ¥” and X2 ¥®is then X' 2 ¥ @ x .

In other words, all indices of literals must be either equal or disjoint.
. This type of xlinking for any two xlinkable terms will be called primary
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2. Cubes Cg and C; are specified for the same variables (the complete
sets of truth values are for the same variables in the cubes, in other
words, the "-" symbols stand in the same positions).

r is the distance of Cs and Cp.

Primary xlinking of the distance two cubes corresponds to the formula
4G applied forward.

5.2. Secondary Xlinking.

Let us now introduce another type of xlinking. This new operation per-
mits two terms of different degrees 10 be xlinked. As we have seen, the pri-
mary xlinking reduces the degree of the terms. By the use of the primary
xlinking, together with the laws

1) A®0 = A,

2)A®A=0,

3) @ is commutative and associative,
we will be able to formulate a secondary xlinking that xlinks terms of
degrees differing by one.
Secondary xlinkable terms are two terms that satisfy these conditions:
their degrees differ by one,

there exist exactly one variable for which the truth value sets associated
with one term are included in the truth value sets associated with the
other term, for all other variables they are equal or disjoint.

For example, the terms A’B'Cc™plE! and A°B°C' D' E® are secondary
xlinkable since for variables A, B, C, D, E we have, respectively {0} = {0},
{1} (0} =6,{0,1,2) > (1), (1} = (1}, {1} (0} = 0.

The number of disjoint sets is the distance of cubes.




Let us now consider an example of secondary xlinking. It uses the pri-
mary xlinking and the above three laws.

Let us assume the function with 3-valued variable C and 2-valued vari-
ables A, B, D, and E, shown in Fig. 5.

APBICOIDDIEOD 4000021 £O
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AB\ 000100 200001 101 20§ 011111 211010410210
00 1
o1 q1iD
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A%BlCOIDpIpt A°B°C'D'E®
Fig. 5.

The secondary xlinking will be applied to:

A’B YD El @ A°BOC' D' E,

First, let us see that variable’s C set {0, 1,2} in A°B' C®2D' E! includes
set {1} of variable C in A°B°C* D' E®. Let us then create a term that is
adjacent with respect to variable C to the term A° B° C' D' E°; this will be a
term A°B° C® D' E°.

Now we EXOR the previous EXOR sum with the zero term:
A°B'C™D'E' @ A°B°C'D'E® & (A°B°C%D'E®
A°B°Cc®D'EY.

Next we apply the fact that exoring is associative:
A°Bc™2pl gt
® (A°B°C'D'E° @ A°B°C”D'E% @ A°B°C D' E°.

We xlink the terms in the parantheses:
A°B'C*2D E'e A°B°C? D} E%0 A°BO C® D' EO
We xlink the first two terms:
A°BY 2! EOg A0B1 2 p! gOlg 40 B0 % pl EO

01 0 0pl ot 02002 1 50
=A"D EE®@A"BD @A'B"C"“D E".
The above operation is illustrated in the Karnaugh map of Fig. 5. Remember
that each cell covered by an even number of groups is a "zero” cell (false
minterm) and one covered by an odd number of groups is a "one” cell (min-
term).

The above sequence of transformations was shown for the sake of
explanation but the execution of the secondary xlink is very straightforward
in our implementation of the xlink operation. Its execution is therefore
speedy.

‘We are now able to formulate the operation of secondary xlinking.
Definition 7. Let Cs =X,™ - X," - X, ™ and G = x,"- - - x,™ .- x ®
be two cubes for which there exists exactly one variable X; such that S; o R;
and other variables have disjoint or equal truth value sets.

The secondary xlinking of cubes Cs and Cg

Cs QD Cr =Cy ®(Cs 0L10D)]

where r P

Cv=X," X"

@

""X”R'.

In the current algorithm the secondary xlinking is used on cubes that
have distance 0, 1, and 2 only, but it can be very easily expanded for cubes of
arbitrary distance. It is obvious from the above definition that the difference
of cubes’ degrees is one. Secondary xlinking of distance two cubes
corresponds to the formula 4H applied forward.

5.3. Unlinking.

Unlinking operations are inverse to the xlinking operations. They are
necessary in the algorithm to permit for iteration of xlinking in order to find a

global minimum or at least some local minimum close to it. There are now
two types of unlinking operators in the system:

- primary unlinking,

- secondary unlinking.

The primary unlinking is an inverse operation to the primary xlinking
of cubes of distance two. It corresponds to the formula 4H applied in the
reverse direction.

The secondary unlinking is an inverse operation to the secondary xlink-
ing of cubes of distance two. It corresponds to the formula 41 applied for-
ward.

6. ALGORITHM.

The algorithm currently used in our program is quite simple. The idea
is to carry out all primary and secondary xlinks possible, in some reasonable
order, giving priority to xlinking least distant groups first. Next groups are
decreased by primary and secondary unlinking operations, the small groups
are re-ordered and the procedure is iterated. Since there are many xlinks and
unlinks possible, the algorithm uses permutations in successive calls of xlink-
ing and unlinking procedures, in order to provide searching the larger space
of solutions (functions F). Random reordering of cubes in F serves the same
goal. PRIMARY_XLINK(F, DISTANCE) executes primary xlinks of dis-
tance DISTANCE in array F.

Algorithm to Minimize MRESP Forms.

Input: Arrays ON and DC of disjoint cubes for a single output multi-valued
input function.

1. F:=ONDC.

2. SOLUTION :=ON, MIN_COST := COST(ON).

3. Sortrandomly F.

4 DISTANCE := 1, F := PRIMARY_XLINK(F, DISTANCE),
DISTANCE :=2, F := PRIMARY_XLINK(F, DISTANCE).

5. Repeat 4 until no primary xlinks of distance 2 can be executed.

6. F1:=ON- { cube; e ON| cube; < DC }

7. I COST(F1) < MIN_COST

then (SOLUTION := F1; MIN_COST := COST(F1) ).

8.  DISTANCE := DISTANCE + 1,
F:= PRIMARY_XLINK(F, DISTANCE).

9. If primary xlink was executed go to 4 else go to 8.

10. Repeat 8,9 until DISTANCE > MAX_DISTANCE.

11. Execute steps 6, 7.

12. DISTANCE := 1, F := SECONDARY_XLINK(F, DISTANCE).
13. Execute steps 6, 7.

14. DISTANCE :=2, F := SECONDARY_XLINK(F, DISTANCE).
15. Execute steps 6, 7.

16. If secondary xlink was executed in 12 or 14 then go to 4.

17. F:= UNLINKING(F).

18. Execute steps 6, 7.

19.  If time has not exceeded the allotted time limit then go to 3

else return SOLUTION and its cost.

It is important to do xlinking on terms of high degree first. This allows
for the results of the first xlinks to be compared for xlinking to groups of the
same degree before those groups are xlinked to groups of lower degree. After
performing secondary xlinks, it is required to check for primary xlinks again,
because the secondary xlinks may contain primary xlinkable groups.
Currently only some of the possible unlinks are executed, which still proved
to be sufficient to improve the quality of solutions.

In the case of multi-output function, the function is first transformed
from multi-output array to arrays ON and DC of disjoint cubes, using one of
the methods mentioned in section 3. After execution of the above algorithm,
the resultant MRESP is separated into the component single-output functions
by substituting all possible values to the multiple-valued variable X, whose
values 0, ..., m-1 correspond to the component outputs.
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Example 4. Let us realize the function from Example 3 as the mixed-polarity
EXOR form. The algorithm returns the solution f = @b + cd + &d from Fig.
6a. The respective circuit is presented in Fig. 6b.
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_ d
Ed cd
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Fig. 6.

Example 5. Let us realize function f from previous examples assuming the
same variable pairing as in Examples 2, 3 and 4. X = (a, b), Y = (¢, d). Two
solutions are found:

f=Xx"®Y? (Fig. 72
f=X" 0 Y™ (Fig. 8a)
The realization of f in EXPLA is shown in Fig. 7b, The realization of f* in

EXPLA is shown in Fig. 8b. Figures 7c and 8c present the standard cell reali-
zations of these functions using the function generators for X and Y.
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7. CONCLUSION

A new concept of MRESP along with the method to minimize such
forms has been introduced. Such a network concept was not yet introduced in
the literature. There are also no algorithms to minimize such networks. Even
for the particular case of MRESP - the mixed-polarity binary-output EXOR
forms [22,30], no algorithms have been published until now for the multi-
output and incompletely specified functions. The method was tested on many
examples and the computational complexity and quality of the algorithm will
be a subject of a separate paper.
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